

Fig. S1 Scheme for chemical synthesis of γ -glutamylanilide (γ -GA).

Fig. S1 continued

(i) Amidation of aniline with Boc-Glu-OBzl.

To an ice-cooled solution of *N*-(*tert*-butoxycarbonyl)-*L*-glutamic acid 1-benzyl ester (Boc-Glu-OBzl, Compound 1, 1.602 g, 4.75 mmol) (Tokyo Chemical Industry, Tokyo, Japan) and aniline (0.5 ml, 5.49 mmol) in 20 ml of chloroform, a solution of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC·HCl, Compound 2, 1.055 g, 5.50 mmol) in 10 ml of chloroform was added dropwise under an N_2 gas atmosphere. After removal of the ice bath, the reaction mixture was agitated at room temperature for 12 h. The resulting mixture was transferred into a separatory funnel and washed with 1M HCl, 5% (w/v) NaHCO₃ aqueous solution, and saturated NaCl aqueous solution. The organic layer was dried over Na_2SO_4 . After removal of Na_2SO_4 by filtration, the chloroform was removed under reduced pressure using a rotary evaporator. After fractionation by silica gel column chromatography using CHCl₃-MeOH (10:1) as the eluent, the solvents were removed under reduced pressure using a rotary evaporator. The residue was dried using a vacuum pump to obtain the product (Compound **3**) as a light yellow solid.

(ii) Deprotection of the butoxycarbonyl group (BOC).

Compound **3** (1.746 g, 4.23 mmol) was completely dissolved in 9 ml of CF_3COOH . Confirming the generation of fine bubbles (CO_2 gas), the solution was agitated at 30 °C for 30 min and the reaction mixture was concentrated under reduced pressure using a rotary evaporator. Chloroform (30 ml) was added to the residue, and the resulting solution was transferred into a separatory funnel, washed with 5% (w/v) NaHCO₃ aqueous solution and saturated NaCl aqueous solution, and dried over Na₂SO₄. After removal of the solvent under reduced pressure using a rotary evaporator and being dried with a vacuum pump, the product (Compound 4) was obtained as a light yellow oil, which was used in the next reaction without further purification.

(iii) Deprotection of the benzyl group (Bzl).

A solution of Compound 4 (1.261 g, 4.04 mmol, 95%) in 30 ml of 50% (v/v) acetic acid was hydrogenated over 100 mg of 10% Pd/C by bubbling hydrogen gas through the solution at room temperature for 6 h. The catalyst was removed by filtration and washed with warm water. The combined filtrate was neutralized with 28% aqueous ammonia solution. At approximately pH 6, a white solid precipitated. After filtration of the precipitate, washing with water, and drying using a vacuum pump, the product (Compound 5, γ -GA) was obtained as a white solid. The above sequence was repeated to recover the product from the filtrate.

Fig. S2 Analysis of DNA fragments amplified by PCR from the total DNA of *P. putida* KT2440 and its gene disrupted mutants. (A) For the analysis of *catA2*-disrupted mutants. DNA fragments from *P. putida* KT2440 (W1), one mutant after first cross-over (F1), one mutant after second cross-over (S1), and size marker (φ X *Hinc*II digest, Takara) (M). (B) For the analysis of *catA1*-disrupted mutants. DNA fragments from *P. putida* KT2440 (*AcatA2*) (W2), one mutant after first cross-over (F2), one mutant after second cross-over (S2), and the same size marker (M). For this analysis, PCR was carried out using the total DNA of each strain as the DNA template and the primers cA1F-F and cA1R-R for *catA1* amplification and cA2F-F and cA2R-R for *catA2* amplification.

Fig. S4 Determination of native molecular mass of AtdA1 based on a standard curve using Gel Filtration Calibration kit (A, thyroglobulin 669kDa; B, ferritin 440kDa; C, aldolase 158kDa; D, albumin 67kDa; E, ovalbumin 43kDa; F, chymotrypsinogen 25kDa; G, Ribonuclease 13.7kDa).

Fig. S5 Effects of temperature and pH on the enzyme activity of AtdA1. The reaction mixture (1 ml) contained 1 mM *L*-glutamate, 0.5 mM ATP, 5 mM MgCl₂, and 1µg of AtdA1 in 10 mM phosphate buffer (standard pH = 8.0) (open circles) or 10 mM glycine-NaOH buffer (closed circles). The reactions were performed at various temperatures (standard temperature = 30° C) for 30 min.

Fig. S6 γ -Glutamylanilide (γ -GA) degradation by the cell suspensions of *P. putida* KT2440- $\Delta catA \Delta ggt$ (open circles) and KT2440- $\Delta catA$ (closed circles). The experiment was performed in triplicate and the average \pm standard deviation is shown.

Table S1 Prime	ers used in this study
Name	Sequence (5' to 3')
A1F	CGGATCCCATGAGTGAGAAATTAG
A1R	CGGATCCATCACAGTAAGTTGAAGTATTC
A2F-salI	GAGGTCGACATGTCTAAACGCTTTGCA
A2R	CGGATCCTTCATACATCACCCACCAAG
cA1F-F	TGCGAATTCGACGGTACTTCTTCAAGATGAAC
cA1F-R	CGAAAGCTTTGTGCAAGGCGAGCGCTTT
cA1R-F	CGAAAGCTTGGCCCTGAAGGAACATCACC
cA1R-R	CATTCTAGAAACTACAGCGTGTTCGATGTGCCC
cA2F-F	CTGGAATTCATCAACCTGCCACTGCAACTC
cA2F-R	CACGGATCCTTCCAGGAACATCACCGTG
cA2R-F	GTGGGATCCGTCGAAGGGCCGGATGGTCG
cA2R-R	CCCTCTAGAGGACCAGGCGATTACTACC
ggt-2FF-H	ACTTCTAGACCCACGAAGATATCCGCACAGG
ggt-2RR	ACGGGATCCACGATCCAGTCGATGAACCA
ggt-2FR	CGCGTCGACCGCGTTGCCGCCCTTTTTCA
ggt-2RF	ATCGTCGACAAGCAGGGCAACGCGGTCA
F-pAS51	GAGGGATCCATGTCTAAACGCTTTGCAT
pTB01-A2-5R	GGAGGATCCTTTGTATGATTTTTCGAGCAC
A1R2	ATTGAATTCTGAAAATCACAGTAAGTTGA
A3F	TTCAGAATTCGGTGGGTGATGAAAAC

Compound and structure	¹ H-NMR	IR (cm ⁻¹ , in KBr)
HN O Bzl NHBoc Compound 3	(ppm in CDCl ₃ at 500 MHz) δ 1.45 (s, 9H, tBu), 1.88-1.97 (m, 1H, β -CH), 2.24-2.32 (m, 1H, β -CH), 2.36-2.45 (m, 1H, γ -CH ₂), 4.37-4.42 (m, 1H, α -CH), 5.13-5.21 (m, 2H, CH ₂ Ph), 5.37 (d, <i>J</i> = 7.8 Hz, 1H, NHCO ₂), 7.08-7.57 (m, 10H, ArH), 8.43 (brs, 1H, NHPh)	N.A.
HN +	(ppm in CDCl ₃ at 500 MHz) δ 0.54 (brs, 1H, NH ₂), 1.93-1.96 (m, 1H, β - CH), 2.22-2.26 (m, 1H, β -CH), 2.42-2.55 (m, 2H, γ -CH ₂), 3.59-3.61 (m, 1H, α -CH), 5.13- 5.20 (m, 2H, CH ₂ Ph), 7.07-7.49 (m, 10H, ArH), 8.16 (brs, 1H, NHPh).	N.A.
HN HN NH_2 Compound 5 (γ -GA)	(ppm in D ₂ O at 500 MHz) δ 2.09-2.13 (m, 2H, γ-CH ₂), 2.50-2.54 (m, 2H, β-CH), 3.63-3.65 (m, 1H, α-CH), 7.21 (brs, 1H, NHPh), 7.36-7.38 (m, 5H, ArH).	1407.9, 1444.6, 1533.3, 1583.4, 1662.5, 3317.3

Table S2 Analytical data on γ -glutamylanilide (γ -GA) and its synthetic intermediates.

N.A.: Not analyzed

Purification process	Vol (ml)	Amt of protein (mg ml ⁻¹)	Total act (U)	Sp act (U mg ⁻¹)	Yield (%)
Cell extract	13.5	4.320	4.49	0.1	100
Hi-Trap Q chromatography (1st)	18	0.252	3.08	0.7	68.5
Hi-Trap Q chromatography (2nd)	18	0.058	1.90	1.8	42.3
Hi-Trap Butyl FF chromatography	8	0.036	0.61	2.1	13.6
Final soln.	1	0.208	0.45	2.2	9.9

 Table S3
 Aniline conversion activities in samples after each purification step

Abbreviations: Amt : amount, Vol. : volume, act.: activity, Sp : specific. One unit (U) was defined as the activity which converts 1 µmole of aniline per min.