
In the computations section, the matrices fPt
, fM

Pt
, and fFM

Pt
were defined for

population Pt. More generally, let fJ , f
M
J , and fFM

J be the respective matrices
for an arbitrary birth cohort J . Take X1i to be the paternal and X2i the maternal
allele of individual i, and let Xi be an allele at the locus that is randomly chosen
from the two alleles of individual i. Let si be the sire and di the dam of individual
i.

Equation

condGD(Pt) =
f
FM

Pt
− f

M

Pt

Cℱ(Pt)−
1−f

FM

Pt

2

. (1)

Proof:

For individuals i, j we have

1− fFM
ij = P (Xi ∕≡FM Xj)

= P ((Xi ∈ ℳ orXj ∈ ℳ) and (Xi ∈ ℱ orXj ∈ ℱ))

= P (Xi ∈ ℱ , Xj ∈ ℳ) + P (Xi ∈ ℳ, Xj ∈ ℱ)

and

1− fM
ij = P (Xi ∕≡M Xj)

= P (Xi ∕= Xj and (Xi ∈ ℱ orXj ∈ ℱ))

= P (Xi ∕= Xj and (Xi ∈ ℱ andXj ∈ ℱ))

+ P (Xi ∕= Xj and (Xi ∈ ℱ andXj ∈ ℳ))

+ P (Xi ∕= Xj and (Xi ∈ ℳ andXj ∈ ℱ))

= P (Xi ∕= Xj andXi ∈ ℱ andXj ∈ ℱ)

+ P (Xi ∈ ℱ , Xj ∈ ℳ) + P (Xi ∈ ℳ, Xj ∈ ℱ).

Thus, (7)
1− f

FM

J = P (XJ ∈ ℱ , YJ ∈ ℳ) + P (XJ ∈ ℳ, YJ ∈ ℱ)

= 2P (XJ ∈ ℱ , YJ ∈ ℳ)

and

1− f
M

J = P (XJ ∈ ℱ , YJ ∈ ℳ) + P (XJ ∈ ℳ, YJ ∈ ℱ)

+ P (XJ ∕= YJ andXJ ∈ ℱ and YJ ∈ ℱ)

= 2P (XJ ∈ ℱ , YJ ∈ ℳ) + P (XJ ∕= YJ andXJ ∈ ℱ and YJ ∈ ℱ)

= 1− f
FM

J + P (XJ ∕= YJ andXJ ∈ ℱ and YJ ∈ ℱ).

It follows that
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(8)P (XJ ∈ ℱ , YJ ∈ ℱ) ⋅ condGD(J) = P (XJ ∕= YJ andXJ ∈ ℱ and YJ ∈ ℱ)

= 1− f
M

J − (1− f
FM

J )

= f
FM

J − f
M

J

and

P (XJ ∈ ℱ , YJ ∈ ℱ) = P (XJ ∈ ℱ)− P (XJ ∈ ℱ , YJ ∈ ℳ)

= Cℱ(J)−
1− f

FM

J

2
.

Thus,

condGD(J) =
f
FM

J − f
M

J

P (XJ ∈ ℱ , YJ ∈ ℱ)
=

f
FM

J − f
M

J

Cℱ(J)−
1−f

FM

J

2

.

The claim follows with J = Pt.

Equation

Cℱ(Ot(c)) = Cℱ(O
N
t (c)) = cTCt (2)

Proof: We have

Cℱ(O
N
t (c)) = P (XON

t
(c) ∈ ℱ)

=
1

N

∑

i∈ON
t
(c)

P (Xi ∈ ℱ)

=
1

N

∑

i∈ON
t
(c)

P (Xi = X1i)P (Xi ∈ ℱ∣Xi = X1i) + P (Xi = X2i)P (Xi ∈ ℱ∣Xi = X2i)

=
1

N

∑

i∈ON
t
(c)

1

2
(P (X1i ∈ ℱ∣Xi = X1i) + P (X2i ∈ ℱ∣Xi = X2i))

=
1

N

∑

i∈ON
t
(c)

1

2
(P (X1i ∈ ℱ) + P (X2i ∈ ℱ))

=
1

2N

∑

i∈ON
t
(c)

P (Xsi ∈ ℱ) + P (Xdi ∈ ℱ)

=
1

2N

∑

a∈Pt

#{i ∈ ON
t (c) : si = a or di = a}P (Xa ∈ ℱ)

=
∑

a∈Pt

caP (Xa ∈ ℱ)

= cTCt
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Equation

condGD(Ot(c)) = lim
N→∞

condGD(ON
t (c)) =

cT (fFM
Pt

− fM
Pt
)c

cTCt −
1−cT fFM

Pt
c

2

(3)

Proof:

For brevity let JN = ON
t (c). From the proof of Equation (1) we have:

condGD(JN) =
f
FM

JN
− f

M

JN

Cℱ(JN)−
1−f

FM

JN

2

In analogy to Wellmann and Pfeiffer (2009) it can be shown that

f
FM

JN
=

1

(2N)2
(

c̃TfFM
Pt

c̃+ 2N − c̃TDiag(fFM
Pt

)
)

f
M

JN
=

1

(2N)2
(

c̃TfM
Pt
c̃+ 2N − c̃TDiag(fM

Pt
)
)

,

where c̃ = 2Nc, and Diag(X) is the vector that contains the diagonal elements
of matrix X. It follows that

(9)lim
N→∞

f
FM

JN
= cTfFM

Pt
c and lim

N→∞
f
M

JN
= cTfM

Pt
c.

Thus,

lim
N→∞

condGD(JN) =
cTfFM

Pt
c− cTfM

Pt
c

cTCt −
1−cT fFM

Pt
c

2

.

Equation

lim
N→∞

�B(O
N
t (c)) = cT (fFM

Pt
− fM

Pt
)c (4)

Proof:

For brevity let JN = ON
t (c). We have

lim
N→∞

�B(O
N
t (c)) = lim

N→∞
P (XJN ∕= YJN , XJN ∈ ℱ , YJN ∈ ℱ)

= lim
N→∞

P (XJN ∈ ℱ , YJN ∈ ℱ)condGD(JN)

(8)
= lim

N→∞
f
FM

JN
− f

M

JN

(9)
= cT (fFM

Pt
− fM

Pt
)c
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Equation

lim
N→∞

�C(O
N
t (c)) = 1− cTfM

Pt
c (5)

Proof:

For brevity let JN = ON
t (c). We have

lim
N→∞

�C(O
N
t (c)) = lim

N→∞
P (XJN ∕= YJN and (XJN ∈ ℱ or YJN ∈ ℱ))

= lim
N→∞

P (XJN ∕= YJN , XJN ∈ ℱ , YJN ∈ ℱ)

+ 2 lim
N→∞

P (XJN ∕= YJN , XJN ∈ ℱ , YJN ∈ ℳ)

= lim
N→∞

�B(O
N
t (c))

+ 2 lim
N→∞

P (XJN ∈ ℱ , YJN ∈ ℳ)P (XJN ∕= YJN ∣XJN ∈ ℱ , YJN ∈ ℳ)

= lim
N→∞

�B(O
N
t (c)) + lim

N→∞
2P (XJN ∈ ℱ , YJN ∈ ℳ)

(4),(7)
= cT (fFM

Pt
− fM

Pt
)c+ lim

N→∞
(1− f

FM

J )

(9)
= 1− cTfM

Pt
c

Equation

lim
N→∞

�D(O
N
t (c)) =

cT (fFM
Pt

− fM
Pt
)c

cTQtc
(6)

Proof:

From Equation 3 we have

lim
N→∞

condGD(JN) =
cTfFM

Pt
c− cTfM

Pt
c

cTCt −
1−cT fFM

Pt
c

2

=
cT (fFM

Pt
− fM

Pt
)c

cTCt1
T c+cT1CT

t
c

2
−

cT11T c−cT fFM

Pt
c

2

=
cT (fFM

Pt
− fM

Pt
)c

cT 1
2

(

Ct1T + 1CT
t − 11T + fFM

Pt

)

c
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