
Supplementary Information for Remarkably Fast Coupled Folding and Binding of the 
Intrinsically Disordered Transactivation Domain of cMyb to CBP KIX 

 
Sarah L. Shammas, Alexandra J. Travis, and Jane Clarke 

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW 
 
 
Supplementary Figures 
 

 

-30

-20

-10

0

10

20

190 200 210 220 230 240 250 260

cMyb
FITC-cMyb

M
R

E
 x

10
-3

 (d
eg

 c
m

2  d
m

ol
-1

)

Wavelength (nm)  
 
Figure S1. CD spectrum for FITC-cMyb and unlabeled cMyb peptide in pH 7.4 100 mM 
sodium phosphate at 25 ºC. Various methods for estimation of helical content of peptides (see 
Methods in main text) suggest that the labeled version is around 3% more helical. 
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Figure S2. Dependence of the apparent increase in helicity on mixing FITC-cMyb with KIX on 
protein concentration. Solutions of KIX and FITC-cMyb in pH 7.4 100 mM sodium phosphate 
were mixed in a 1:1 ratio. Protein concentrations for the individual protein solutions were (A) 
20 µM and (B) 100 µM. An equilibrium binding curve (Figure 2B) performed under the same 
conditions suggests that 38% (A) and 64% (B) of the protein will be in complex, which is 
consistent with these results. 
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Figure S3. (A) Apparent rates obtained from fitting fluorescence anisotropy and intensity 
kinetic traces are similar, with no apparent additional kinetic phase. (B) Equilibrium 
dissociation constants estimated from equilibrium (closed circles) and kinetic (open circles) 
anisotropy measurements give similar values. Kinetic estimates for Kd were determined from 
the ratio kapp,0M/kon, where the rate constants are extracted from the intercept and gradient of 
straight line fits in Figure 3B. Consistency of equilibrium constants between the two 
approaches implies there are no populated intermediates in the association process. 
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Figure S4. Thermal denaturation curves for KIX and FITC-cMyb in pH 7.4 100 mM sodium 
phosphate buffer from CD[. Helical content was reduced on increasing temperature for both 
proteins. The curve for KIX shows probable helix fraying, followed by a cooperative unfolding 
transition. Curves were not fit to determine melting temperature because of apparent non-
reversibility. 
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Figure S5. (A) Binding curves for FITC-cMyb with KIX in pH 7.3 MOPS buffers of various 
ionic strengths at 10 ºC. Solid lines represent fits to Equation 2. Equilibrium constants obtained 
from these curves are shown in Figure 4A. (B) Circular dichroism spectra for FITC-cMyb and 
KIX in MOPS buffers of selected ionic strengths at 10 ºC. 
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Figure S6. Example stopped-flow anisotropy traces following roughly equimolar mixing of 
FITC-cMyb and KIX in pH 7.30 MOPS buffers of various ionic strengths. Solid lines represent 
fits to Equation 3. 
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Figure S7. Plots used for extraction of association rate constants using a pseudo-first order 
approach in MOPS buffers of two different ionic strengths at 10 ºC. The association rate 
constant was obtained from the gradient of the straight line fits, and is shown in Figure 4B 
(open circles). 
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Figure S8. KIX and his-KIX proteins have very similar association and dissociation rates with 
FITC-cMyb at 10.0 ºC in pH 7.4 100 mM sodium phosphate. (A) Stopped-flow anisotropy 
traces for mixing of FITC-cMyb with KIX at final concentrations of 5 µM (black), 10 µM 
(blue), 15 µM (purple), 20 µM (violet), 30 µM (pink), 40 µM (red) and 50 µM (orange). Thick 
solid lines show single exponential fits to obtain apparent rate constants. Thin solid lines show 
final anisotropy values (after five minutes) for each concentration of KIX. (B) Dependence of 
observed rate constants on KIX concentration for KIX (solid circles) and his-KIX (open 
circles). The gradient and intercept of the straight-line fits provide estimates for the association 
and dissociation rate constants respectively. 



Summary of previous ionic strength dependence studies of protein association 
 
The most extensive study of ionic strength dependence on association rate constants was 
reported by Schrieber and Fersht for the proteins barnase and barstar1. Second order rate 
constants are reported as a function of ionic strength for a large selection of single point 
mutants. The data, which showed a very strong dependence on I, were fitted with a Debye-
Huckel like model to account for long-range electrostatic effects (Equation 4). The various 
mutants displayed large variations in association rate at low ionic strengths, but converged at 
high ionic strengths to give very similar estimates for the basal kon of around 105 M-1s-1. Similar 
behavior has since been observed in mutational studies for several different protein complexes, 
suggesting that changes in long-range electrostatic effects that originate from changes in charge 
are well accounted for2-4.  
 
The best fit to the barnase/barstar data was obtained with a value for a of 6 Å, which was 
identified in the initial paper as the minimum distance of approach between an anion and 
cation, but amended in a later paper after theoretical considerations to be the sum of the radii 
for the two associating proteins5. The relatively small value of a was rationalized by 
Vijayakumar et al. by noting that the residues which were found to affect the association rate 
significantly were those along the (oppositely charged) interacting surfaces between barnase 
and barstar in the complex, and that the distance between these two groups of charges is around 
7 Å. 
 
Three of the reported studies have applied the same approach as that of Schreiber et al., 
including fixing the distance a of 6 Å. These are for the CheA/CheY6, PUMA/Mcl-17 and 
TEM1/BLIP3 protein complexes reported in Figure 5. We found our data to be better described 
by a larger value of a (of the order of 30 Å), so we allowed this to be a freely varying 
parameter8 when fitting our data as suggested by Schreiber. We also used this approach when 
analyzing the data for other protein complexes, where ionic strength dependence of association 
rate was investigated, but a basal kon not reported9-10. For the interactions between IL4/IL4-
BP11-12, ColE9/Im912 and HEL/HyHEL-510 the errors in estimated kon were larger than the 
values themselves. In the case of IL4-IL4-BP we were able to obtain an estimate of kon after 
fixing a to 6 Å, and this estimate is included in Figure 5. 
 
Interactions between S-protein/S-peptide13 , thrombin/hirudin4, heterodimeric leucine zipper14 
and AchE/FAS22 were modeled with alternative Debye-Huckel like equations to estimate basal 
kon values. These reported values are shown without alteration in Figure 4. 
 
We found a further two systems where ionic strength dependence of association rates had been 
investigated, but were unfortunately not able to include the data in Figure 4. Firstly, in the 
association of intrinsically disordered HPV E7 protein and RbAB15 there appeared no plateau 
effect of increasing concentration to give a basal association rate, which makes it difficult to 
compare their results with those presented here and by other groups. It does seem likely that 
electrostatics play an important role since there was an approximate 15-fold reduction in the 
association rate between 0.1 M and 1 M sodium chloride to 4 × 106 M-1s-1 (in a 20 mM 
phosphate solution). Secondly, apparent rate constants for the association of Cdc42 and G-
protein at several concentrations of sodium chloride have been reported16. We used this data to 
estimate an upper limit of the basal kon of 2 × 106 M-1s-1, by assuming that koff was negligible. 
 
 
 



Other candidates for fast associating protein complexes 
 
Extremely fast association between two intrinsically disordered proteins, the activation domain 
of p160 and nuclear co-activator binding domain of CBP, has recently been observed17. The 
reported kon at 1 M ionic strength is 1.6 × 107 M-1s-1 (at 5 ºC), however at around 200 mM ionic 
strength this rate is significantly increased to 2.8 × 107 M-1s-1, which suggests electrostatic 
steering plays a role, and indeed mutation of a conserved salt-bridge between the two proteins 
caused a 20-fold reduction in the association rate constant. It is thus unclear how this rate 
relates to the one we have obtained for the cMyb/KIX interaction. 
 
A basal kon of (3.6 ± 0.5) × 106 M-1s-1 (at 25 ºC) was reported for 250 mM ionic strength for the 
interaction between HLE and elafin18. This interaction is a good candidate for a fast association 
reaction because on increasing the ionic strength to 1 M there was only a marginal decrease in 
rate to (3.2 ± 0.7) × 106 M-1s-1. This value is in good agreement with the basal rate of 2.9 × 106 
M-1s-1 predicted for the system by the TransComp19. As is the case in our system, the two 
components are relatively small, with HLE being 30, 000 Da and elafin only 6000 Da. The 
NMR solution structure of r-elafin shows that is has a flexible N-terminus and a flexible loop20.  
 
Finally, a basal kon of 2 × 106 M-1s-1 was reported for the interaction between the two folded 
proteins CheA and CheY6. (Stewart2004). CheA rapidly phosphorylates CheY in vivo, and the 
authors point out that since the complex does not need to be long-lived it is possible that few 
contact points are required, and thus the orientation of the two proteins may not need to be too 
specific. 
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