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SUPPLEMENTARY MATERIALS AND METHODS 

Sequence alignments 

Human protein sequences were obtained from UniProtKB Release 13.0 (The UniProt 

Consortium, 2010).  Non-human  protein sequences were downloaded from OrthoMCL-DB Version 3 

(1), and the OrthoMCL server was used to assign human sequences to ortholog groups.  To construct 

sets of orthologs unique to each human protein, in-house scripts were used first to identify non-human 

orthologs from selected species that belonged to the same ortholog group as the human protein.  When 

multiple paralogs from the same species were present within the same group, the bit score generated by 

pairwise BLASTP (BLAST2 Version 2.2.20) for each paralog and the human protein was used to select 

only the paralog most similar to the human sequence.  The sequences within each of the final ortholog 

groups were aligned using MUSCLE 3.70 (2), and in-house scripts were used to identify columns in the 

alignments that matched the observed phosphorylation sites in the human proteins.  Each potential 

phosphorylation site contained in a ModSite was investigated independently. R (R Development Core 

Team, 2009) was used to perform hierarchical clustering of phosphorylation site data by Euclidean 

distance.  Abbreviations for species are the following Homo sapiens (hsap), Pan troglodytes (ptro), 

Canis lupus (clup), Mus musculus (mmus), Rattus norvegicus (rnor), Monodelphis domestica (mdom), 

Ornithorhynchus anatinus (oana), Gallus gallus (ggal), Tetraodon nigroviridis (tnig),  Takifugu rubripes 

(trub),  Danio rerio (drer), Ciona intestinalis (cint), Bombyx mori (bmor), Anopheles gambiae (agam), 

Drosophila melanogaster (dmel), Apis mellifera (agam), Brugia malayi (bmaa), Caenorhabditis 

briggsae (cbri), Caenorhabditis elegans (cele), Schistosoma mansoni (sman), Nematostella vectensis 

(nvec), Neurospora crassa (ncra), Schizosaccharomyces pombe (spom), Candida glabrata (cgla), and 

Saccharomyces cerevisiae (scer).  
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The programs PSIPRED Version 2.61 (3) and DISOPRED Version 2.4 (4) were used to predict 

regions of secondary structure and order versus disorder, respectively, for human protein sequences. 

Pathway analysis 

Annotation of spindle, centrosome and centromere/kinetochore proteins was based on curated 

literature references, UniProt citations, and the Ingenuity software. Information on known kinase 

substrates were extracted from NCI Pathways (http://pid.nci.nih.gov/) as well as literature resources. 

Overall connectivity of identified phosphoproteins was determined using STRING (5). Highly 

connective subnetworks in the STRING network were identified using MCODE plug-in into Cytoscape 

(6). 
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Fig. S1. Spindle and chromosome morphology of inhibitor-treated HeLa cells. (A) Spindle phenotypes of inhibitor-
t t d H L ll i it i d th b i f th b f i dl l b d b t b li t itreated HeLa cells in mitosis were scored on the basis of the number of spindle poles as observed by tubulin stain
(one- monopolar, two- bipolar, more than two-multipolar, not determinable- aberrant). Cells were categorized as
pseudo-bipolar if they appeared to have two poles, but displayed a compressed spindle with an increased number of
astral microtubules emanating from the poles. Bar diagram depicting percentage of cells with normal and abnormal
spindle morphologies under different conditions of inhibitor treatment. Monopolar, multipolar, pseudo-bipolar, and
aberrant spindles were scored as abnormal, whereas bipolar spindles were scored as normal. At least 100 cells were
scored for each treatment (control or inhibitor). (B) Chromosome phenotypes of inhibitor-treated HeLa cells in mitosis
as observed by Hoechst and CREST staining. CREST is human serum containing antibodies that react with
kinetochore-localized proteins Cells displaying a monopolar spindle were scored as having a monopolarkinetochore-localized proteins. Cells displaying a monopolar spindle were scored as having a monopolar
chromosome phenotype. Bar diagram depicting percentage of cells with normal and abnormal chromosome
morphology. Misaligned, rosette-like, halo-like, and monopolar chromosome morphology were scored as abnormal,
whereas aligned chromosomes was scored as normal. At least 100 cells were scored for each treatment (control or
inhibitor).
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Fig. S2. Plk1 and Plk4 inhibition by BI2536. (A) MS1 intensity trace of the phosphorylated and nonphosphorylated
peptide LAGADNSFLEAPI from Plk1 and Plk4 in vitro kinase reactions at different concentrations of BI2536 (B)peptide LAGADNSFLEAPI from Plk1 and Plk4 in vitro kinase reactions at different concentrations of BI2536. (B)
Diagram depicting relative kinase activity as measured in the in vitro kinase reactions shown in panel A. Whereas
Plk1 is inhibited by low concentrations of BI2536, Plk4 activity does not change at any concentration of BI2536.
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Fig. S3 Experimental setup and schematic of time line of HeLa cell synchronization. (A) Scheme of SILAC strategy to identify

 
mitotic kinase-specific substrates of Aurora A, B, and Plk. HeLa cells labeled with “heavy” arginine and lysine were arrested in
mitosis with Taxol and treated with kinase inhibitor and MG132. Light cells were arrested in mitosis with Taxol and MG132 and 
control-treated with DMSO. Afterwards, cells were counted, mixed, lysed, and digested with trypsin. Peptides were separated by
SCX chromatography, and phosphopeptides were isolated from each fraction with titanium dioxide microspheres and analyzed by 
LC-MS/MS. (B) Time line of HeLa cell synchronization for the different inhibitor and control conditions. (C) Experimental setup for
inhibitor SILAC experiments.
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Fig. S4. Flow cytometry analysis of inhibitor-treated HeLa cells. (A) Flow cytometry profiles of DNA content and
MPM-2 staining, which stains mitotic cells, of asynchronous, Taxol-arrested, and Taxol + inhibitor-treated HeLa cells.
(B) Table indicating the percentage of cells in G1 and G2/M in DNA profiles, and percentage of MPM-2 and pS10
Histone H3 positive cells.
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Fig. S5. Ratio distributions. (A) Heavy/light ratios of all quantified ModSites were log2 transformed, normalized and
plotted. Heavy Taxol-treated samples were compared to Taxol-treated light samples as the control. AZDZM
represents the combined results of the AZD1152- or ZM447439-treated cells (B) Enlargement of the log ratio spacerepresents the combined results of the AZD1152- or ZM447439-treated cells. (B) Enlargement of the log2 ratio space
between 0 and -3 from panel A.
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Fig. S6. Comparison of the heavy to light ratios in AZD1152- or ZM447439-treated cells. (A) Correlation plot forg p y g ( ) p
all 11,206 ModSite ratios that occurred in both of the AZD1152 and ZM447439 datasets. Because most of these
ModSites were not AZD1152 or ZM447439 sensitive (random distribution of ModSite ratios similar to Taxol/Taxol
control), no significant correlation is anticipated from the bulk of these ModSite ratios. (B) Correlation plot for
those ModSite ratios that were generated for all candidate Aurora A, Aurora B, and Aurora-ambiguous ModSites
listed in table S4 for which values are present in both the AZD1152 and ZM447439 conditions. Note the high
degree of correlation between these two biological replicate experiments performed with different Aurora B
inhibitors.
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Fig. S7. Candidate Aurora A versus B targets. Hierarchical clustering output for the ModSite array used to distinguish
Aurora A from Aurora B candidate substrates. AZDZM represents the combined results of the AZD1152- or
ZM447439-treated cells.
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Fig. S8. Cluster and motif analysis of ambiguous Aurora substrates. (A) Ambiguous subclusters of Aurora substrates
that remain after Aurora A- and Aurora B-specific subclusters have been identified. (B) Line graphs of log2 ratios of
the ModSites of the three ambiguous Aurora subclusters from panel A. The red line represents the average. (C) Motif
analysis of all ambiguous Aurora phosphorylation sites.
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Fig. S10. Candidate Plk targets. Hierarchical clustering output for the ModSite array used to classify Plk candidate 
substrates.
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Details Regarding Data Availability 

Raw mass spectrometry data files have been submitted to Tranche. Hash codes are as follows:  

1) Taxol: 

yZvu2oEGflJA+aypAEwlCqPOzde5znxjO8U3ELwiKwVBolndbzYPTaVLRIQjcgAvb32Hajgv/S+mRz

DJsgpPUzNxM3QAAAAAAAAWWA== 

2) MLN0.25 (1 of 4): 

NVtqbw3KbeXvlBRTaqBvCz8fH1cQd9RhRq6XQ1b1g5wOZzgFFLKgRG4hFZsNoU8a57zCqf+A6bs

WXWUDOwKxSMAmGjgAAAAAAAANnQ== 

3) MLN0.25 (2 of 4): 

EXd9hXsD+KHKGi36ehCeLpdR1kExgyaDSwivRIVAhNtx98xrO1dQL5hAUMWSX5AVgEUITb7aw

a7xRTOR/a4fTJ6WcNkAAAAAAAAJRg== 

4) MLN0.25 (3 of 4): 

Poo2J7gvOt6fYgbE2Z1P+mGj95HunFJHv0WJkww5woi2Aw3OHH9oYM8ZyYR8s05+uvK6MDM0u

ysKzvym7Is1jAO6YgsAAAAAAAAS3g== 

5) MLN0.25 (4 of 4): 

dIUHZNAh3K7aebXsMDptMkoVprktbQ+ZwgBWFbvNP2eP+guoFl0oYXFBmueH739CjZBKXccLZ

GorgoqSXFNKd02Q/AIAAAAAAAAK9Q== 

6) MLN1 (1 of 4): 

CXEY1ikEM7az7IVXAs/SJjcK6OV9pnDrBxXw32TeLPPyDv1+Y+a7l+0asSIsjOSzy40V6H2E2vDr6P

+zkt3q0+5/ExMAAAAAAAANtg== 

7) MLN1 (2 of 4):  

Yqg2Reqe/zhenOz+CV3mfiOoNjezqJdo3qba5fOuXilpQGm9m1VrcGRkXvL739ZO9J7zCDc6yQ7Yz

VckBJaulBvlG5EAAAAAAAAOsA== 
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8) MLN1 (3 of 4): 

2iSaEurZSibWcydKzazfCCGnxCSEsmwzPyBywQO29DfoyM7ouHiIeEUwO6II31bJWtznG0zMFQcW

nS3YvQE91HUWC/oAAAAAAAAQ8w== 

9) MLN1 (4 of 4): 

ISe4MrpjbxXqH4LFNXAOiCi8RWpIFMtKjhzgMQNtKJVgpE45oxbmiKXMZVfPfpovDZNBDIGDG

qYhelgQkkSBuXMKEcEAAAAAAAAOrw== 

10) MLN5 (1 of 2): 

z14avfdbuqQD7HBcn4MSK+05H2BAEjYYTbIxzi7G0ZEGfkuoH5PamUgFfSA/5C4fJfGtdfk0eo/sl/Dx

eflhssg2cTgAAAAAAAALyQ== 

11) MLN5 (2 of 2): 

6oT77guljsJwL2olcPYwgpMVBk7/pgrqgzvWqYLmrQnGWpexz2Mjm2dMxbnbKGyWVImVUBg4kw

A9i0JZ9qQ4XmTg2ZYAAAAAAAAM7A== 

12) AZDZM (1 of 4): 

gnGZtCfwTK/JHQzfKXIJxURJH9wV+sjW/79FGppYTDI7QSFWDIka8DYMlMbjypr/nSZ7/cCV5GA

IhMiX3YbkXrUMuuUAAAAAAAAP3Q== 

13) AZDZM (2 of 4): 

6C0x7Z1sFszLvlq/3ka6xNxYrkbZreRunRXo2gPbg8FBmetHbZDNxObw2lquCvCIre8016JDHPXf/9o

MbEAjUo2aA3MAAAAAAAAQlg== 

14) AZDZM (3 of 4): 

bGonsM+aKXN9rCIojSO5ONmQnBLCdWgnwmLvjpVa3PZniKTHi9AJwAiNu7ZwVwHcsCRd06ad6

3NWSg6K+sqAozEeXZ0AAAAAAAANNg== 
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15) AZDZM (4 of 4): 

e7FiityhPJHj55v1U/F2xg8+rqGMmyCIPGRMTdpz2fdDsGMyTCg90lOuNDiXJxNRmDMgRjVe4cY4

YiJUzz/DLx5NT5EAAAAAAAARbA== 

16) BI entry: 

DYmrNkDRx1WVGe76DuZVWhaxVw6H2x6+Ku9+aem2t+7EyD60OrywqFDVYMEKUKF6DsuV0

O7S033zE0tJZv9FFE+ztG8AAAAAAAAXAw== 

17) BI mitosis: 

mopDwxnvEwWkYbVqrYvOCXKFGCCy702E5nCownwHf7JjHhwhA6/g9+RFB8KxYzyXtI+5hsxPY

WZorkNv0XSoQ4DsCUYAAAAAAAAWfA== 
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Description of tables S1-S6 

Table S1. Complete list of all ModSites and representative peptides. UniProt ACC, UniProt accession; 

UniProt Name, UniProt protein identifier; XCorr, SEQUEST cross-correlation score; dCn, SEQUEST 

delta-correlation score; MMA (PPM), mass measurement accuracy in parts per million; Olsen, 2010 (7); 

Dephoure, 2008 (8). 

 

Table S2. ModSites assigned to the Aurora kinase substrate cluster. Cluster 3.0 output file containing 

ModSites, gene names, protein descrioptions, and corresponding log2 ratios across all relevant treatment 

conditions. Gene names and protein descriptions are defined from UniProt. Tax, Taxol-arrested cells; 

MLN250, MLN8054 250 nM; MLN1, MLN8054 1 µM; MLN5, MLN8054 5 µM; AZDZM, combined 

results from both the AZD1152 (1 µM concentration) and ZM447439 (5 µM concentration).  

 

Table S3. ModSites assigned to the Plk substrate cluster. Cluster 3.0 output file containing ModSites, 

gene names, protein descrioptions, and corresponding log2 ratios across all relevant treatment 

conditions. Tax, Taxol-arrested cells; MLN250, MLN8054 250 nM; MLN1, MLN8054 1 µM; MLN5, 

MLN8054 5 µM; AZDZM, combined results from both the AZD1152 (1 µM concentration) and 

ZM447439 (5 µM concentration); BI entry, 0.1 µM BI2536-treated HeLa cells entering mitosis; BI 

mitosis, 0.1 µM BI2536-treated HeLa cells arrested at metaphase with Taxol.  

 

Table S4. Analysis of site- and motif-conservation for candidate Aurora A, B, and Plk substrates across 

evolution. Rows represent species (see Supplementary Materials Methods for details), columns represent 

ModSites. Last two rows provide protein accessions and protein descriptions. 5 (green) 

[R/K]X[R/K][S/T] and/or [R/K][R/K][S/T]; 4 (blue) [R/K][S/T]; 3 (yellow) [D/E/N]X[S/T]; 0 (gray) no 
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homolog; black homolog exists, no conservation. Aurka_sites and Aurka_motif, ModSites and motifs in 

the Aurora A cluster; Aurkb_sites and Aurkb_motif, ModSites and motifs in the Aurora B cluster; 

plk_sites and plk_motifs, ModSites and motifs in the Plk cluster.  

 

Table S5. ModSite assignments to Aurora A, Aurora B, Aurora ambiguous, and Plk clusters. 

Heavy/light log2 ratios from the indicated conditions (see tables S1 and S2 for definitions). Async, 

asynchronous cells; Olsen, 2010 (7); Dephoure, 2008 (8).    

 

Table S6. Plk1-interacting proteins. Proteins identified in duplicate Plk1 immunoprecipitation 

experiments by total peptide count. Proteins identified in duplicate unspecific IgG control 

immunoprecipitation experiments by peptide count. Only those proteins identified by 6-fold more total 

peptides across the union of the two experiments versus the union of the two control IgG experiments 

are considered Plk1 interactors.  
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