Journal of Experimental Botany, Involvement of microRNA-related regulatory pathways in the glucose-mediated control of Arabidopsis early seedling development.

Gustavo Turqueto Duarte, Cleverson Carlos Matiolli, Bikram Datt Pant, Armin Schlereth, Wolf-Rüdiger Scheible, Mark Stitt, Renato Vicentini, Michel Vincentz

		Primer Sequences		
Target	AGI	Forward (5' - 3')	Reverse (5'- 3')	Reference
PAP1/AtMYB75*	AT1G56650	GGTTGAACTATTTGAAGCCA	GCAATTAAAGACCACCTATTC	
TAS4	AT3G25795	CGACCTCGATCCTTCACCT	ATTTTCTAGACCTGCATTGTTTAT	Luo <i>et al.,</i> 2011
AT2G28390	AT2G28390	AACTCTATGCAGCATTTGATCCACT	TGATTGCATATCTTTATCGCCATC	
AT5G15710	AT5G15710	AAGTTCGCCAGCAAAACATGTC	GCTGACCAGGTCTTCATTAACACTG	
PP2A/PDF2	At1g13320	TAGATCGCTCGGAACTTGGAAA	CCTCACCAAAACTCAAATCACTCC	
Pri-miR156d	AT5G10945	CAGAAGAGAGTGAGCACACAAAGGG	GTGAGCACGCAAAAGCAACCATATAC	
Pri-miR156f	AT5G26147	TGGTGAGGAATTGATGGTGACA	CCTTCAAATATGCAAGAAAGCCAC	
Pri-miR159b	AT1G18075	GGAGGGTTTAGCAGGGTGAAGTAAAG	CCAAAGAAGAGTGAAGCCATTAAAGGG	
Pri-miR166c	AT5G08712	AGTGTTGAGAGGATTGTTGTCTGGC	GAATGAAGCCTGGTCCGAGAATCATC	
Pri-miR169a	AT3G13405	AAAGTAACATGATCGGCAAGTTGTCC	GCGACACAAAGTAACGTGTAGCC	Devision 1 2000
Pri-miR390a	AT2G38325	TAGCGCCATGATGATCACATTC	AATGAAACTCAGGATGGATAGCG	Pant <i>et dl.,</i> 2009
Pri-miR399c	AT5G62162	CATCTTTCTATTGGCAGGCGACTTGG	AAGCAGTGACAGGGCAACTCTCC	
Pri-miR773	AT1G35501	AGGAGGCAATAGCTTGAGCAAA	AGGTGACAGCTTTAGTCGATGGA	
Pri-miR775	AT1G78206	CATTGAAACTGTCTTTCAACATTCCA	TGGCACTGCTAGACATCGAAAAT	
Pri-miR823	AT3G13724	CCATTTAGTTCTAGTGGGTGGTGAT	GATATGTTTCACTGTTACCATTACCAATCT	
Pri-miR827	AT3G59884	TCCTTGTGTTGATCGATTGGTTTA	CGATGCAAAACCACGAAAGAG	
Pri-miR828	AT4G27765	AAATGATTCACTCACTCGTAT	GATATTAAATAGTCCCACTTCC	
UBQ10	AT4G05320	GGCCTTGTATAATCCCTGATGAATAAG	AAAGAGATAACAGGAACGGAAACATAGT	
ABI3*	AT3G24650	GCAGTGCCGCCTCAATTAC	TTCTGGTTTCCATCCCTGCC	
ABI4	AT2G40220	GAGGTGGCGTTAGGGCAGG	GGTGGATGAGTTATTGATAGAC	
ABI5*	AT2G36270	GCAAGAAAACAAGCATATACAG	TTCCTCTTCCTCTCCAACTC	
ARF3*	AT2G33860	CTGTCTCTGAGGGGATTCG	GGCTCCACCATCCGAACAAG	
AT1G53290*	AT1G53290	TATCGAAGAGGAGTACAGTAAG	TAGCAGAGAGAGTCGATCTG	
CMT3*	AT1G69770	TCAGGTTCACAATCAAAGTCC	AATTCGCTCCCTTTCTCTTGG	
MET2/DMT2*	AT4G14140	AGGTTTACGCTATGATGCTGG	GTAGTTCCATACTCTTTGTTTAT	This Work
MYB33*	AT5G06100	GCACGTATGGCTGCACATTTG	CACTCAAGTGCCTCAACATGC	
NF-YA5*	AT1G54160	AATGCCGTAAACCGTACCTTC	GCTTCTTTGTATTGAGGAAACG	
PHV/ATHB9*	AT1G30490	AACATGAAGAGTTTCTCGAAG	AGCACAACCTCCAACCACATT	
SPL13A*	AT5G50570	ACAATGCAGCAGGTTTCATG	GACGACCGATATGTTCAGGC	
TAS3	AT3G17185	AAACATAACCTCCGTGATGC	GCTCAGATAGGATAACACCG	

Supplementary Table S1.

Note. Primer pairs spanning exon-exon junctions are marked with an asterisk.

miRNA Primer Sequences					
miRNA	Amplification Forward (5' - 3')	Reverse Transcription Primer (5'- 3')	Reference		
miR159	CGGCGGTTTGGATTGAAGGGA	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAAGAGC			
miR166	CTCGCTTCGGACCAGGCTTCA	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGGGGAA			
miR169	CGTGAGCAGCCAAGGATGACT	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTCGGCA			
miR390	GGACGGAAGCTCAGGAGGGAT	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGGCGCT	This Work		
miR773	CGATGCGTTTGCTTCCAGCTTT	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGAGACA			
miR775	GCGGCGGTTCGATGTCTAGCA	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTGGCAC			
miR823	GGACGGTGGGTGGTGATCATA	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACATCTTA			
miR828	CGGCGGTCTTGCTTAAATGAGT	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTGGAAT			
miR156	GCGGCGGTGACAGAAGAGAGT	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGTGCTC	Varkonyi-Gasic		
miRuniversal-R*	-	GTGCAGGGTCCGAGGT	et al., 2007		

Supplementary Table S1. Continued.

Note. The miRuniversal is the amplification reverse primer for all miRNAs.

miRNA Family	4% Glucose-responsive pri-miRNAs	4% Mannitol fold 4% Glucose fold	Target Family	Target Genes	
	<u>156d</u>	1.24 -1.67		AT1G27360, AT1G27370, AT1G53160,	
156/157	<u>156f</u>	-1.02 -7.62	SPI	AT1G69170, AT2G33810*, AT2G42200,	
100,107	157a	1.24 -2.83	0	AT3G15270*, AT3G57920, AT5G43270,	
159	1570	1.95 -2.50	DDD	A15G50570, A15G50670	
136	1380	1.34 3.42	FFN	- AT2626950 AT2632460 AT4626930	
159	159b	3.24 6.70	MYB	AT2G20930, AT2G32400, AT4G20930, AT5G55020	
161	161a	1.89 4.90	PPR	AT1606580, AT1662590, AT1662670, AT1662860, AT1662910, AT1662930, AT1663070, AT1663080, AT1663130, AT1663150, AT1663230, AT1663330, AT1663400, AT1664580, AT2641720, AT3616710, AT4626800, AT5616640, AT5641170, AT5665560 AT1666690, AT1666700, AT1666720	
163	163a	1.86 -1.87	SAMT	AT3G44860, AT3G44870	
164	164a	1.15 -2.59	NAC	AT1G56010, AT3G12977, AT3G15170, AT5G07680, AT5G53950, AT5G61430	
	165a	1.17 3.68		AT1G30490. AT1G52150. AT2G34710.	
165/166	165b 166c	1.63 3.36 3 55 -1 61	HD-ZIP III	AT4G32880, AT5G60690	
167	167d	2.72 -3.38	ARF	-	
169	169a	1.90 4.37	HAP2	AT1G17590, AT1G54160, AT1G72830, AT3G20910, AT5G12840	
173	173a	1.64 5.61	TAS1,TAS2	AT1G50055, AT2G27400, AT2G39675, AT2G39681	
390	390a	1.29 9.88	TAS3	AT3G17185	
394	394a	-1.06 5.51	F-Box	AT1G27340	
395	395a	-1.21 4.67	APS,AST	AT3G22890, AT4G14680, AT5G10180, AT5G43780	
399	399a	2.45 5.03	E2-UBC	AT2G33770	
402	402	1.10 2.52	ROS1-Like	AT4G34060	
413	413	1.55 4.96	-		
773	773	4.72 17.45	MET2	AT4G14140	
775	775	4.00 22.28	GT	AT1G53290	
777	777	1.23 3.25	CIP4.1-like	AT1G30060	
779	779	2.84 7.39	-	AT5G53890	
823	823	4.40 17.06	CMT3	AT1G69770	
825	<u>825</u>	1.22 -3.61	-	-	
827	827	-1.53 3.39	SPX	AT1G02860	
828	828	1.41 3.93	MYB	AT1G66370	
829	829	2.85 10.91	-	-	
850	850	-1.31 -3.90	-	-	
856	856	6.67 13.39	СНХ	AT5G41610	
861	861	1.43 -2.31	-	-	
863	863	-1.12 -3.39	-	-	
865	865	-1.08 2.03	-	-	
3932	<u>3932b</u>	-1.09 -9.87	-	-	
4221	4221	2.35 7.06	-	-	

Supplementary Table S2. Glucose-regulated pri-miRs and corresponding miRNAs targets.

Note. Red denotes induction by glucose after three days of light exposure; green represents repression. Mannitol and glucose fold values are in comparison to the pri-miR expression in non-treated Col-0 seedlings. Potential HXK1-dependent pri-miRs (Figure 2) are underlined. SPL genes marked with an asterisk are exclusive targets of miR156. Target gene families are based on miRBase (Kozomara and Griffiths-Jones, 2011) and TarBase (Vergoulis *et al.*, 2011) databases.

Supplementary Fig. S1. Effects of different concentrations of glucose on early seedling development of wild-type Col-0, miRNA-deficient mutants *ago1-25* and *hyl1-2*, and glucose-insensitive mutant *abi4-1/gin6*. (A) Germination (*testa* rupture), (B) post-germination (radicle emergence and elongation), and (C) establishment (cotyledons expansion and greening) were scored three days (D-F), five days (G-I) and seven days (J-L) after light exposure. Seeds of each genotype were sown in MS/2 plates supplied with the indicated sugar concentration, kept for two days at 4°C in the dark for stratification and transferred to continuous light (50 μ mol m⁻² s⁻¹) at 24°C. Results presented are the means \pm SD of two independent experiments each of which including 20 seeds.

Ctrl	4% mannitol	glucose	Ctrl	4% mannitol	4% glucose
Treatment				Treatment	

Supplementary Fig. S2. Analyses of deviance and interaction plots used to compare the germination and development efficiencies of each genotype grown in the following conditions: (**A**) Three or five days after light exposure in control media or media supplied with 4% glucose or 4% mannitol (Fig. 1 samples); (**B**) Three or five days after light exposure in control media or media supplied with 4% glucose or 4% mannitol (Supplementary Fig. S3 samples); (**C**) Five days after light exposure in control media or media supplied with 0.5-5 μ M of ABA (Supplementary Fig. S4 samples). The null model considered no effect of treatment or genotype in germination or development efficiencies, nor interaction between these variables. Significant *p* values (*P* < 0.05) are marked with an asterisk.

Supplementary Fig. S2. Continued.

Supplementary Fig. S2. Continued.

Supplementary Fig. S3. Glucose-induced delay of early seedling development is dependent upon miRNA machinery activity (**A**) Developmental phases that were monitored; Germination (*testa* rupture), post-germination (radicle emergence and elongation) and establishment (cotyledons expansion and greening); (**B**) Effects of 4% glucose on germination and development of miRNA-deficient mutants *dcl1-11* and *hyl1-2* was less severe than for wild-type Col-0 and L*er*, and was similar to the glucose insensitive *gin2-1*. (**C**) Osmotic control 4% mannitol could not reproduce the delay observed for glucose. In media not supplied with sugar, all seeds reached post-germination stage after two days, and establishment within three days after light exposure (Supplementary Fig. S2B). In glucose-supplied media, growth arrest was not observed before seedling establishment stage was reached. Seeds of each genotype were sown in MS/2 plates supplied or not with the indicated sugar, kept for two days at 4°C in the dark for stratification and transferred to continuous light (50 µmol m⁻² s⁻¹) at 24°C. Germination, post-germination, and establishment were scored from two to five days after light exposure. Results presented are the means \pm SD of three independent experiments each of which including 20 seeds.

Supplementary Fig. S4. Effects of different ABA concentrations on early seedling development of wild-type Col-0, miRNA-deficient mutants *ago1-25*, *dcl1-11* and *hyl1-2*, ABA-insensitive mutant *abi4-1*, and ABA-biosynthesis mutant *aba2-1*. (**A**) Germination (*testa* rupture), (**B**) post-germination (radicle emergence and elongation) and (**C**) establishment (cotyledons expansion and greening) were scored five days after light exposure. Except for the ABA-insensitive mutant *abi4-1*, all genotypes had the development arrested before establishment within five days (Supplementary Fig. S2C). Seeds of each genotype were sown in MS/2 plates supplied with the indicated ABA concentration, kept for two days at 4°C in the dark for stratification and transferred to continuous light (50 μ mol m⁻² s⁻¹) at 24°C. Results presented are the means \pm SD of two independent experiments each of which including 20 seeds.

Supplementary Fig. S5. Accumulation of (**A**) pri-miR156f, (**B**) pri-miR159b, (**C**) pri-miR166c, (**D**) pri-miR169a, (**E**) pri-miR390a, (**F**) pri-miR773, (**G**) pri-miR775, (**H**) pri-miR823, and (**I**) pri-miR828 in Col-0, *ago1-25*, *dcl1-11* and *hyl1-2* seedlings grown in control media for three days of light exposure and treated for 4h with 4% glucose. All expression values are in comparison to untreated Col-0. The values are means of three biological replicates \pm SD. Below each graph is given the relative transcript abundance. Changes in transcript accumulation were considered significant for differences with fold change $\geq |1.5|$ and according to Student's *t* test (p < 0.05) for the following comparisons: **a.** untreated *ago1-25*, *dcl1-11* or *hyl1-2 vs* untreated Col-0; **b.** glucose *vs* untreated samples (same genotype); **c.** glucose-treated mutant *vs* glucose-treated.

Supplementary Fig. S6. Accumulation of (A) pri-miR166c, (B) pri-miR169a, (C) pri-miR390a, (D) pri-miR773, (E) pri-miR775, (F) pri-miR823, (G) pri-miR828 and their corresponding mature miRNA family and respective targets in Col-0, *ago1-25* and *hyl1-2* seedlings grown in 4% glucose or control media after three days of light exposure. All expression values are in comparison to untreated Col-0. The values are means of three biological replicates \pm SD. Below each graph is given the relative transcript abundance. Changes in transcript accumulation were considered significant for differences with fold change $\geq |1.5|$ and according to Student's *t* test (p < 0.05) for the following comparisons: **a.** untreated *ago1-25* or *hyl1-2 vs* untreated Col-0; **b.** glucose *vs* untreated samples (same genotype); **c.** glucose-treated mutant *vs* glucose-treated Col-0. miR828 did not yield a specific amplification.

Supplementary Fig. S6. Continued.

Supplementary Fig. S6. Continued.

Supplementary Fig. S7. Validation of glucose-promoted changes on *AB13*, *AB14* and *AB15* accumulation. (A) Relative expression of *AB13*, *AB14* and *AB15* in Col-0 seedlings grown in 4% glucose or 4% mannitol in comparison to untreated samples three days after light exposure (ALE). (B) Relative expression of *AB13*, *AB14* and *AB15* in untreated Col-0 seedlings with one day ALE in comparison to three days ALE samples. The values are means of three biological replicates \pm SD. Below each graph is given the relative transcript abundance. Changes in transcript accumulation were considered significant for differences with fold change $\geq |1.5|$ and according to Student's *t* test (p < 0.05) for the following comparisons: **a.** untreated one day ALE *vs* three days ALE samples; **b.** glucose *vs* untreated samples; **d.** mannitol- *vs* glucose-treated samples.