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by J. Barrera-Gómez, D. Spiegelman and X. Basagaña.



Contents

A Derivation of σ̃2 for basic scenarios 4
A.1 Time-invariant exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

A.1.1 CMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
A.1.2 LDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

A.2 Time-varying exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
A.2.1 CMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
A.2.2 LDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

B Adapting the cost function for dropout 14

C Obtaining ropt under the CMD response pattern in the basic scenario 15
C.1 Time-invariant exposure (ρe = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
C.2 Time-varying exposure (0 < ρe < 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

C.2.1 Case κ = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
C.2.2 Case κ > 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

C.3 Summary results for the CMD response pattern . . . . . . . . . . . . . . . . . . . . . 19

D Obtaining ropt under the LDD response pattern in the basic scenario 20
D.1 Time-invariant exposure (ρe = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
D.2 Time-varying exposure (ρe < 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

D.2.1 Case κ = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
D.2.2 Case κ > 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

D.3 Summary results for the LDD response pattern . . . . . . . . . . . . . . . . . . . . . 23

E Simulation study for the effect of dropout 24
E.1 Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

E.1.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
E.1.2 Obtaining π1 and π2 as a function of πM and λ . . . . . . . . . . . . . . . . . 24

E.2 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
E.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

F Effect of a time-varying exposure prevalence on the results, in the basic scenarios 26

G Simulation study for the effect of confounding 28
G.1 Simulation study 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
G.2 Simulation study 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

H R package usage 31
H.1 Some examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

H.1.1 Study 1. Maximizing power . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
H.1.2 Study 2. Particular case: Cost of a cross-sectional study . . . . . . . . . . . . 31

H.2 Obtaining results in section 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2



I Simulation study for the accuracy of the Wald test approximation 35

J Simulation study for the impact of an unbalanced design 36
J.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
J.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3



A Derivation of σ̃2 for basic scenarios

A.1 Time-invariant exposure

A.1.1 CMD

We assume a CS(σ, ρ) response covariance structure, no missing data and constant exposure preva-
lence (i.e., pej = pe, ∀j = 0, . . . , r).

From model (1) we have

X′iΣ
−1Xi =

 1 1 · · · 1 · · · 1
0 s · · · sk · · · sr
Ei Ei · · · Ei · · · Ei


 ν00 · · · ν0r

...
. . .

...
νr0 · · · νrr




1 0 Ei
1 s Ei
...

...
...

1 sj Ei
...

...
...

1 sr Ei



=

 1 1 · · · 1 · · · 1
0 s · · · sk · · · sr
Ei Ei · · · Ei · · · Ei




∑r
j=0 ν0j s

∑r
j=0 jν0j Ei

∑r
j=0 ν0j

...
...

...∑r
j=0 νmj s

∑r
j=0 jνmj Ei

∑r
j=0 νmj

...
...

...∑r
j=0 νrj s

∑r
j=0 jνrj Ei

∑r
j=0 νrj


=

 ω00 sω10 Eiω00

sω10 s2ω11 sEiω10

Eiω00 sEiω10 E2
i ω00

 ,

where s = 1
r

is the elapsed time between two consecutives measurements in units of the fixed total
follow-up time and

ωpq :=
r∑
j=0

r∑
k=0

jpkqνjk.

Since Ei ∼ Bernoulli(pe), we have

EX

[
X′iΣ

−1Xi

]
=

 ω00 sω10 peω00

sω10 s2ω11 speω10

peω00 speω10 peω00


and

det(EX

[
X′iΣ

−1Xi

]
) = ω00(ω00ω11 − ω2

10)s2pe(1− pe).

We are interested in the [3,3]–th element of (EX [X′iΣ
−1Xi])

−1
which is∣∣∣∣ ω00 sω10

sω10 s2ω11

∣∣∣∣
det(EX [X′iΣ

−1Xi])
=

1

ω00pe(1− pe)
.
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Thus,

σ̃2 =
1

pe(1− pe)
∑r

j=0

∑r
k=0 νjk

.

If the response correlation structure is CS(σ, ρ), then

Σ[j, k] =

{
σ2 , j = k
σ2ρ , j 6= k

and

Σ−1 = σ−2


1 ρ · · · ρ ρ
ρ 1 · · · ρ ρ
...

...
. . .

...
...

ρ ρ · · · 1 ρ
ρ ρ · · · ρ 1


−1

=
1

σ2(1− ρ)(ρr + 1)


ρr + 1− ρ −ρ · · · −ρ −ρ
−ρ ρr + 1− ρ · · · −ρ −ρ
...

...
. . .

...
...

−ρ −ρ · · · ρr + 1− ρ −ρ
−ρ −ρ · · · −ρ ρr + 1− ρ


so

ω00 =
r∑
j=0

r∑
k=0

νjk =
r + 1

σ2(ρr + 1)

and then

σ̃2 =
σ2(ρr + 1)

pe(1− pe)(r + 1)
.
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A.1.2 LDD

We assume a CS(σ, ρ) response covariance structure, no missing data and constant exposure preva-
lence (i.e., pej = pe, ∀j = 0, . . . , r).

From model (2), we have

X′iΣ
−1Xi =


1 1 · · · 1
0 s · · · sr
Ei Ei · · · Ei
0 sEi · · · srEi


 ν00 · · · ν0r

...
. . .

...
νr0 · · · νrr




1 0 Ei 0
1 s Ei sEi
...

...
...

...
1 sj Ei sjEi
...

...
...

...
1 sr Ei srEi



=


1 1 · · · 1
0 s · · · sr
Ei Ei · · · Ei
0 sEi · · · srEi

 ·


∑r
j=0 ν0j s

∑r
j=0 jν0j Ei

∑r
j=0 ν0j sEi

∑r
j=0 jν0j

...
...

...
...∑r

j=0 νmj s
∑r

j=0 jνmj Ei
∑r

j=0 νmj sEi
∑r

j=0 jνmj
...

...
...

...∑r
j=0 νrj s

∑r
j=0 jνrj Ei

∑r
j=0 νrj sEi

∑r
j=0 jνrj



=


ω00 sω10 Eiω00 sEiω10

sω10 s2ω11 sEiω10 s2Eiω11

Eiω00 sEiω10 E2
i ω00 sE2

i ω10

sEiω10 s2Eiω11 sE2
i ω10 s2E2

i ω11

 .

Then,

EX

[
X′iΣ

−1Xi

]
=


ω00 sω10 peω00 speω10

sω10 s2ω11 speω10 s2peω11

peω00 speω10 peω00 speω10

speω10 s2peω11 speω10 s2peω11

 .

and
det(EX

[
X′iΣ

−1Xi

]
) =

[
(ω00ω11 − ω2

10)s2pe(1− pe)
]2

We are interested in the [4,4]–th element of (EX [X′iΣ
−1Xi])

−1
which is∣∣∣∣∣∣

ω00 sω10 peω00

sω10 s2ω11 speω10

peω00 speω10 peω00

∣∣∣∣∣∣
det(EX [X′iΣ

−1Xi])
=

ω00

(ω00ω11 − ω2
10)s2pe(1− pe)

.

Thus,

σ̃2 =
r2
∑r

j=0

∑r
k=0 νjk

pe(1− pe)
[(∑r

j=0

∑r
k=0 νjk

)(∑r
j=0

∑r
k=0 jkνjk

)
−
(∑r

j=0

∑r
k=0 jνjk

)2
] .
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If the response covariance structure is CS(σ, ρ), then

ω10 =
r∑
j=0

r∑
k=0

jνjk =
r(r + 1)

2σ2(ρr + 1)

and

ω11 =
r∑
j=0

r∑
k=0

jkνjk =
r(r + 1)(ρr2 + (4− ρ)r + 2)

12σ2(1− ρ)(ρr + 1)

and then

σ̃2 =
12σ2(1− ρ)r

pe(1− pe)(r + 1)(r + 2)
.
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A.2 Time-varying exposure

A.2.1 CMD

We assume a CS(σ, ρ) response covariance structure, no missing data and constant prevalence of the
exposure (pej = pe, ∀j = 0, . . . , r). We consider a general exposure covariance matrix with elements

ΣE[j, k] =

{
Var(Eij) = pe(1− pe) , j = k
σejk

:= Cov(Eij, Eik) = ρejk
pe(1− pe) , j 6= k

where ρejk
= Cor(Eij, Eik) is correlation between the j–th and the k–th exposure measurements,

assumed to be common to all participants.
From model (1), we have

X′iΣ
−1Xi =

 1 1 · · · 1
0 s · · · sr
Ei0 Ei1 · · · Eir


 ν00 · · · ν0r

...
. . .

...
νr0 · · · νrr




1 0 Ei0
1 s Ei1
...

...
...

1 sj Eij
...

...
...

1 sr Eir



=

 1 1 · · · 1
0 s · · · sr
Ei0 Ei1 · · · Eir




∑r
j=0 ν0j s

∑r
j=0 jν0j

∑r
j=0 ν0jEij

...
...

...∑r
j=0 νmj s

∑r
j=0 jνmj

∑r
j=0 νmjEij

...
...

...∑r
j=0 νrj s

∑r
j=0 jνrj

∑r
j=0 νrjEij


=

 ω00 sω10 φ0

sω10 s2ω11 sφ1

φ0 sφ1 ε

 ,

where

φq :=
r∑
j=0

r∑
k=0

kqνjkEij, q = 0, 1; ε :=
r∑
j=0

r∑
k=0

νjkEijEik.

Now we compute

EX [φq] = EX

[
r∑
j=0

r∑
k=0

kqνjkEij

]
=

r∑
j=0

r∑
k=0

kqνjkEX [Eij]

= pe

r∑
j=0

r∑
k=0

kqνjk = peωq0, q = 0, 1.
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EX [ε] = EX

[
r∑
j=0

r∑
k=0

νjkEijEik

]
=

r∑
j=0

r∑
k=0

νjkEX [EijEik]

=
r∑
j=0

νjjEX

[
E2
ij

]
+

r∑
j=0, j 6=k

r∑
k=0

νjkEX [EijEik]

=
r∑
j=0

νjjEX [Eij] +
r∑

j=0, j 6=k

r∑
k=0

νjk {Cov(Eij, Eik) + EX [Eij] EX [Eik]}

= pe

r∑
j=0

νjj +
r∑

j=0, j 6=k

r∑
k=0

νjk
[
ρejk

pe(1− pe) + p2
e

]
= pe

r∑
j=0

νjj + pe(1− pe)
r∑

j=0, j 6=k

r∑
k=0

νjkρejk
+ p2

e

r∑
j=0, j 6=k

r∑
k=0

νjk

= pe

r∑
j=0

νjj + pe(1− pe)

[
r∑
j=0

r∑
k=0

νjkρejk
−

r∑
j=0

νjjρejj

]
+ p2

e

[
r∑
j=0

r∑
k=0

νjk −
r∑
j=0

νjj

]

= p2
e

r∑
j=0

r∑
k=0

νjk + pe(1− pe)
r∑
j=0

r∑
k=0

νjkρejk
= p2

e

r∑
j=0

r∑
k=0

νjk +
r∑
j=0

r∑
k=0

νjkσ
2
ejk

= p2
e ω00 + α0,

where

α0 :=
r∑
j=0

r∑
k=0

νjkσ
2
ejk

and σ2
ejk

is the [j, k]–th element of the covariance matrix of exposure ΣE.
Then,

EX

[
X′iΣ

−1Xi

]
=

 ω00 sω10 peω00

sω10 s2ω11 speω10

peω00 speω10 p2
e ω00 + α0


and

det(EX

[
X′iΣ

−1Xi

]
) = (ω00ω11 − ω2

10)s2α0 .

We are interested in the [3,3]–th element of (EX [X′iΣ
−1Xi])

−1
which is∣∣∣∣ ω00 sω10

sω10 s2ω11

∣∣∣∣
det(EX [X′iΣ

−1Xi])
=

1

α0

and thus

σ̃2 =
1∑r

j=0

∑r
k=0 νjkσ

2
ejk

.
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If the response covariance structure is CS(σ, ρ), then

νjk =

{
ρr+1−ρ

σ2(1−ρ)(ρr+1)
, j = k

−ρ
σ2(1−ρ)(ρr+1)

, j 6= k

and

α0 =
r∑
j=0

r∑
k=0

νjkσ
2
ejk

=
r∑
j=0

νjjσ
2
ejj

+
r∑

j=0, j 6=k

r∑
k=0

νjkσ
2
ejk

=
1

σ2(1− ρ)(ρr + 1)

[
pe(1− pe)

r∑
j=0

(ρr + 1− ρ)−
r∑

j=0, j 6=k

r∑
k=0

ρσ2
ejk

]

=
1

σ2(1− ρ)(ρr + 1)

[
pe(1− pe)(r + 1)(ρr + 1− ρ)− ρ

r∑
j=0, j 6=k

r∑
k=0

σ2
ejk

]

=
1

σ2(1− ρ)(ρr + 1)

{
pe(1− pe)(r + 1)(ρr + 1− ρ)− ρ

[
r∑
j=0

r∑
k=0

σ2
ejk
−

r∑
j=0

σ2
ejj

]}

=
1

σ2(1− ρ)(ρr + 1)
{pe(1− pe)(r + 1)(ρr + 1− ρ)− ρ [sum(ΣE)− (r + 1)pe(1− pe)]}

=
pe(1− pe)(r + 1)(ρr + 1)− ρ sum(ΣE)

σ2(1− ρ)(ρr + 1)
=
pe(1− pe)(r + 1)[ρ(1− ρe)r + 1− ρ]

σ2(1− ρ)(ρr + 1)

and then

σ̃2 =
σ2(1− ρ)(ρr + 1)

pe(1− pe)(r + 1)[ρ(1− ρe)r + 1− ρ]
,

where the intraclass correlation of the exposure is

ρe =
sum(ΣE)− Tr(ΣE)

rTr(ΣE)
,

where sum() and Tr() denote the sum of the elements and the trace of a matrix respectively.
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A.2.2 LDD

We assume a CS(σ, ρ) response covariance structure, no missing data and constant exposure preva-
lence (i.e., pej = pe, ∀j = 0, . . . , r). We consider a CS structure for exposure covariance matrix:

ΣE[j, k] =

{
Var(Eij) = pe(1− pe) , j = k
σejk

= Cov(Eij, Eik) = ρepe(1− pe) , j 6= k

where ρe = Cor(Eij, Eik) is the common correlation of the exposure, also the intraclass correlation
of exposure.

From model (2), we have

X′iΣ
−1Xi =


1 1 · · · 1
0 s · · · sr
Ei0 Ei0 · · · Ei0
0 E?

i1 · · · E?
ir


 ν00 · · · ν0r

...
. . .

...
νr0 · · · νrr




1 0 Ei0 0
1 s Ei0 E?

i1
...

...
...

...
1 sr Ei0 E?

ir



=


1 1 · · · 1
0 s · · · sr
Ei0 Ei0 · · · Ei0
0 E?

i1 · · · E?
ir

 ·


∑r
j=0 ν0j s

∑r
j=0 jν0j Ei0

∑r
j=0 ν0j

∑r
j=0 ν0jE

?
ij

...
...

...
...∑r

j=0 νmj s
∑r

j=0 jνmj Ei0
∑r

j=0 νmj
∑r

j=0 νmjE
?
ij

...
...

...
...∑r

j=0 νrj s
∑r

j=0 jνrj Ei0
∑r

j=0 νrj
∑r

j=0 νrjE
?
ij



=


ω00 sω10 Ei0ω00 η1

sω10 s2ω11 sEi0ω10 sη2

Ei0ω00 sEi0ω10 E2
i0ω00 Ei0η1

η1 sη2 Ei0η1 η3


where

η1 :=
r∑

k=0

r∑
j=1

νjkE
?
ij, η2 :=

r∑
k=1

r∑
j=1

kνjkE
?
ij, η3 :=

r∑
k=1

r∑
j=1

νjkE
?
ijE

?
ik .

Now, for j > 1,

EX

[
E?
ij

]
= EX

[
s

j∑
m=1

Eim

]
= s

j∑
m=1

EX [Eim] = pesj ,

EX

[
E?
ij

2
]

= s2EX

( j∑
m=1

Eim

)2
 = s2EX

[
j∑
l=1

j∑
m=1

EimEil

]
= s2

(
jEX

[
E2
ij

]
+ (j2 − j)EX [EijEik 6=j]

)
= s2j

{
EX [Eij] + (j − 1)

[
ρeVar(Eij) + (EX [Eij])

2]}
= pes

2j [1 + (j − 1)λ] ,
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where
λ := ρe(1− pe) + pe,

and

EX

[
E?
ijE

?
ik 6=j
]

= s2EX

min(j,k)∑
l=1

Eil

max(j,k)∑
m=1

Eim


= s2EX

min(j,k)∑
l=1

Eil

2

+

min(j,k)∑
l=1

Eil

 max(j,k)∑
m=1+min(j,k)

Eim


= EX

[
E? 2
i min(j,k)

]
+ s2|j − k|min(j, k)EX [EijEik 6=j]

= pes
2 min(j, k) [1 + (max(j, k)− 1)λ] .

Then,

EX [η1] =
r∑

k=0

r∑
j=1

νjkEX

[
E?
ij

]
= pes

r∑
k=0

r∑
j=1

jνjk = pes ω10 ,

EX [η2] =
r∑

k=1

r∑
j=1

kνjkEX

[
E?
ij

]
= pes

r∑
k=1

r∑
j=1

jkνjk = pes ω11

and

EX [η3] =
r∑

k=1

r∑
j=1

νjkEX

[
E?
ijE

?
ik

]
= pes

2[(1− λ)ψ1 + λω11],

where

ψ1 :=
r∑

k=1

r∑
j=1

νjk min(j, k).

Also,

EX [Ei0η1] =
r∑

k=0

r∑
j=1

νjkEX

[
Ei0E

?
ij

]
= s

r∑
k=0

r∑
j=1

νjkEX

[
Ei0

j∑
m=1

Eim

]

= s

r∑
k=0

r∑
j=1

νjk

j∑
m=1

EX [Ei0Eim] = s

r∑
k=0

r∑
j=1

jνjkEX [Ei0Eim 6=0]

= pesλω10 .

Then

EX

[
X′iΣ

−1Xi

]
=


ω00 sω10 peω00 pesω10

sω10 s2ω11 pesω10 pes
2ω11

peω00 pesω10 peω00 pesλω10

pesω10 pes
2ω11 pesλω10 pes

2[(1− λ)ψ1 + λω11]


and

det(EX

[
X′iΣ

−1Xi

]
) = s4p2

e(1− pe)2(ω00ω11 − ω2
10)
{
ω00 [(1− ρe)ψ1 + ρeω11]− ρ2

eω
2
10

}
.
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We are interested in the [4,4]–th element of (EX [X′iΣ
−1Xi])

−1
which is∣∣∣∣∣∣

ω00 sω10 peω00

sω10 s2ω11 pesω10

peω00 pesω10 peω00

∣∣∣∣∣∣
det(EX [X′iΣ

−1Xi])
=

ω00

s2pe(1− pe) {ω00 [(1− ρe)ψ1 + ρeω11]− ρ2
eω

2
10}

and thus

σ̃2 =
r2ω00

pe(1− pe) {ω00 [(1− ρe)ψ1 + ρeω11]− ρ2
eω

2
10}

.

If the response covariance structure is CS(σ, ρ), then

ψ1 =
r∑

k=1

r∑
j=1

νjk min(j, k) =
1

σ2(1− ρ)(ρr + 1)

[
(ρr + 1− ρ)

r∑
j=1

j − 2ρ
r−1∑
k=1

m∑
j=1

j

]

=
r(r + 1)(ρr + 3− ρ)

6σ2(1− ρ)(ρr + 1)

and

σ̃2 =
12σ2(1− ρ)(ρr + 1)r

pe(1− pe)(r + 1) {ρρer2 + [2ρ+ ρe + 3(1− ρ)ρe(1− ρe)]r + 2[1 + (1− ρe)(2− ρ)]}
.
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B Adapting the cost function for dropout

We considered monotone dropout (3), i.e., that losing one individual measurement implies losing all
the subsequent measurements of that individual. We assumed that there is no missing data at the first
measurement and that each subject that has not dropped out of the study at a given measurement
time had a probability πm of dropout at the subsequent measurement. Thus, the probability and
cost of each of the r + 1 dropout pattern is

# of measurements Probability Total
before the missing of the pattern cost

1 πm c1

2 (1− πm)πm c1

(
1 + 1

κ

)
3 (1− πm)2πm c1

(
1 + 2

κ

)
...

...
...

j (1− πm)j−1πm c1

(
1 + j−1

κ

)
...

...
...

r (1− πm)r−1πm c1

(
1 + r−1

κ

)
r + 1 (1− πm)r c1

(
1 + r

κ

)
and then the expected value of the total cost for N participants is

E(Cost) = Nc1

[
πm + πm

r−1∑
j=1

(1− πm)j + (1− πm)r +
πm
κ

r−1∑
j=1

j(1− πm)j +
r

κ
(1− πm)r

]

= Nc1

[
1 +

(1− πm)[1− (1− πm)r−1(1 + πm(r − 1))]

πmκ
+
r

κ
(1− πm)r

]
= Nc1

[
1 +

(1− πm)[1− (1− πm)r]

πmκ

]
= Nc1

[
1 +

πM
[
[1− (1− πM)1/r]−1 − 1

]
κ

]

where
πM = 1− (1− πm)r

is the proportion of subjects lost at the end of follow-up.
In addition, as expected, if there is no possibility of missing data, then

lim
πm→0

E(Cost) = Nc1 lim
πm→0

[
1 +

(1− πm)[1− (1− πm)r]

πmκ

]
= Nc1 lim

πm→0

[
1 +

(1− πm)[1− (1− πmr)]
πmκ

]
= Nc1 lim

πm→0

[
1 +

(1− πm)r

κ

]
= Nc1

(
1 +

r

κ

)
.
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C Obtaining ropt under the CMD response pattern in the

basic scenario

Let ropt be the value of r that minimizes the function

f(r, κ, ρ, ρe) =
(κ+ r)(1 + ρ r)

(r + 1)(1− ρ+ ρ(1− ρe)r)
, (C.1)

with r ∈ N, κ > 1, ρ ∈ (0, 1) and ρe ∈ (0, 1].

C.1 Time-invariant exposure (ρe = 1)

If ρe = 1, (C.1) reduces to

f(r, κ, ρ, ρe) =
(κ+ r)(1 + ρ r)

(1− ρ)(r + 1)

and we can equivalently minimize the function

g(r, κ, ρ, ρe) =
(κ+ r)(1 + ρ r)

r + 1
. (C.2)

If κ = 1, (C.2) reduces to
g(r, κ, ρ, ρe) = 1 + ρ r

which is monotone increasing and then ropt = 0.

If κ > 1, the minimum of (C.2) is allocated at r0 = −1 +
√

1−ρ
ρ

(κ− 1) which is greater than 0 if

κ > 1
1−ρ .

Then for time-invariant exposure:

ropt =

{
0 , κ 6 1

1−ρ

−1 +
√

1−ρ
ρ

(κ− 1) , κ > 1
1−ρ

.

In general, r0 is irrational. In that case, ropt will be [r0] or [r0] + 1 ([·] is the integer part function),
depending on which provides a lower value of g(r, κ, ρ, ρe). Our R package take this correction into
account.

C.2 Time-varying exposure (0 < ρe < 1)

The form of (C.1) changes depending on the values of κ, ρ and ρe. Hence, we consider different
scenarios.

C.2.1 Case κ = 1

• If κ = 1 and ρe = ρ, (C.1) reduces to the constant f(r, κ, ρ, ρe) = 1
1−ρ , independent of r and

hence, for simplicity of the study design, we fix ropt = 0.
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• If κ = 1 and ρe 6= ρ, (C.1) reduces to

f(r, κ, ρ, ρe) =
1 + ρ r

1− ρ+ ρ(1− ρe)r

and
∂f(r, κ, ρ, ρe)

∂r
=

ρ(ρe − ρ)

[1− ρ+ ρ(1− ρe)r]2

so f(r, κ, ρ, ρe) is monotone increasing if ρe > ρ and monotone decreasing if ρe < ρ, for all
positive value of r. Thus, ropt = 0 if ρe > ρ and ropt = +∞ if ρe < ρ.

C.2.2 Case κ > 1

• If ρe = ρ, (C.1) reduces to

f(r, κ, ρ, ρe) =
r + κ

(1− ρ)(r + 1)

and
∂f(r, κ, ρ, ρe)

∂r
= − κ− 1

(1− ρ)(r + 1)2
< 0 ∀r 6= −1

so f(r, κ, ρ, ρe) is monotone decreasing and ropt = +∞.

• If ρe 6= ρ, there are still several different structures of f(r, κ, ρ, ρe), related to the parameter

κ? :=
1− ρ

ρ(1− ρe)
> 0.

– If κ = κ? > 1 and ρe 6= ρ, (C.1) reduces to

f(r; ρ, κ, κ?) =
ρ r + 1

ρ(1− ρe)(r + 1)

and
∂f(r; ρ, κ, κ?)

∂r
= − 1− ρ

ρ(1− ρe)(r + 1)2
< 0 ∀r 6= −1 ,

so f(r) is monotone decreasing and ropt = +∞.

– If κ > 1, κ 6= κ? and ρe 6= ρ (the general, most common case), (C.1) can be writen as

f(r; ρ, κ, κ?) =
κ?

1− ρ
· (r + κ)(1 + ρ r)

(r + 1)(r + κ?)
(C.3)

and

∂f(r; ρ, κ, κ?)

∂r
=

κ?

1− ρ
· [ρ(κ? − κ)− (1− ρ)]r2 + 2(ρκ? − κ)r + [(κ? − κ)− κκ?(1− ρ)]

(r + 1)2(r + κ?)2
,

(C.4)
so solving

∂f(r; ρ, κ, κ?)

∂r
= 0
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is equivalent to solving the equation

[ρ(κ? − κ)− (1− ρ)]r2 + 2(ρκ? − κ)r + [(κ? − κ)− κκ?(1− ρ)] = 0. (C.5)

If ρ(κ? − κ)− (1− ρ) is equal to zero (equivalently, κ = ρe(1−ρ)
ρ(1−ρe)

), then

∂f(r; ρ, κ, κ?)

∂r
= −(κ− 1)

2r + κ?(κ? + 1)

(r + 1)2(r + κ?)2
< 0 ∀r /∈ {−κ?,−1}

and ropt = +∞.

We consider now ρ(κ? − κ)− (1− ρ) 6= 0. The discriminant of (C.5) can be writen as

∆ = 4(1− ρ)(κ− 1)(κ− κ?)(1− ρκ?)

and the sign of ∆ is equal to the sign of (κ − κ?)(1 − ρκ?). Since κ 6= κ? and ρκ? 6= 1
(consequence of ρe 6= ρ), ∆ can’t be zero. Now, we analyze all the sign combinations of
(κ− κ?) and (1− ρκ?) :

∗ 1− ρκ? < 0 (equivalently, ρe > ρ) and κ > κ?:
In this case, ∆ < 0 and hence f(r) is monotone ∀r /∈ {−κ?,−1}. Then, since from
(C.4),

∂f(r;ρ,κ,κ?)
∂r

∣∣∣
r=0

= −(κ− κ?) + κκ?(1− ρ)

(1− ρ)κ?
< 0,

f(r) is monotone decreasing ∀r /∈ {−κ?,−1} and ropt = +∞.

∗ 1− ρκ? > 0 (equivalently, ρe < ρ) and κ < κ?:
In this case, ∆ < 0 and hence f(r) is monotone ∀r /∈ {−κ?,−1}. Then, since from
(C.4),

lim
r→+∞

∂f(r; ρ, κ, κ?)

∂r
= lim

r→+∞

κ?[ρ(κ? − κ)− (1− ρ)]

(1− ρ)r2
,

f(r) is monotone decreasing ∀r /∈ {−κ?,−1}, and then ropt = +∞, because ρ(κ? −
κ)− (1− ρ) < 0 as shown by the following:

1− ρκ? > 0⇒ 1− ρκ? > ρ(1− κ)⇒ ρ(κ? − κ)− (1− ρ) < 0.

∗ 1− ρκ? > 0 (equivalently, ρe < ρ) and κ > κ?:
In this case, ∆ > 0 and the two solutions of (C.5) are

r± =
±
√

∆
2
− (κ− ρκ?)

(1− ρ) + ρ(κ− κ?)

whose denominator is positive and then r+ > r−. Further, since κ > κ?, then r− < 0.
From (C.4),

∂2f(r;ρ,κ,κ?)
∂r2

∣∣∣
r=r±

= ∓ κ?
√

∆

(1− ρ)(r± + 1)2(r± + κ?)2
, (C.6)

and there is a local minimum at r− < 0 and a local maximum at r+ so f(r) is
monotone decreasing for all r > r+. We can show that r+ < 0 and then f(r) is
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decreasing in [0,+∞) so ropt = +∞. To show that r+ < 0, we only need to prove
that the numerator of r+ is negative:

√
∆

2
− (κ− ρκ?) =

√
(1− ρ)(κ− 1)(κ− κ?)(1− ρκ?)− (κ− ρκ?)

<
√

(1− ρ)(κ− 1)(κ− ρκ?)(1− ρκ?)− (κ− ρκ?)
<

√
(1− ρ)(κ− ρκ?)(κ− ρκ?)(1− ρκ?)− (κ− ρκ?)

= (κ− ρκ?)
[√

(1− ρ)(1− ρκ?)− 1
]

< (κ− ρκ?) [1− 1] = 0.

∗ 1− ρκ? < 0 (equivalently, ρe > ρ) and κ < κ?:
In this case, ∆ > 0 and the two solutions of (C.5) can be writen as

r± =
±
√

∆
2

+ (ρκ? − κ)

(1− ρ)− ρ(κ? − κ)
(C.7)

and, by (C.6), there is a local minimum at r− < 0 and a local maximum at r+ so f(r)
is monotone decreasing for all r > r+. But now the denominator of (C.7) can be both
positive and negative, so we will consider these two possibilities.
If the denominator of (C.7) is positive, then r+ > r− and κ? < κ+ 1−ρ

ρ
so

√
∆

2
+ (ρκ? − κ) =

√
(1− ρ)(κ− 1)(κ? − κ)(ρκ? − 1) + ρκ? − κ

<

√
(1− ρ)(κ− 1)

(
1− ρ
ρ

)
(ρκ− ρ) + ρκ+ 1− ρ− κ

=
√

(1− ρ)2(κ− 1)2 + (1− ρ)(1− k)

= (1− ρ)2(κ− 1)− (1− ρ)(k − 1) = 0

and then r+ < 0 so f(r) is monotone decreasing for all positive r and ropt = +∞.
If the denominator of (C.7) is negative, then r+ < r− and κ? > κ+ 1−ρ

ρ
. In this case,

the sign of r− is not constant. For example, if we have ρ = 0.55 and ρe = 0.80, if
κ = 1.3, the local mininum is at r− ≈ −0.24 so ropt = 0 while if κ = 2.6, the local
minimum is at r− ≈ 4.08 so ropt = 4 or ropt = 5. Then

ropt = max

(
0,

√
(1− ρ)(κ− 1)(κ? − κ)(ρκ? − 1)− ρκ? + κ

ρ(κ? − κ)− (1− ρ)

)
.

In addition, it can be shown that

√
(1−ρ)(κ−1)(κ?−κ)(ρκ?−1)−ρκ?+κ

ρ(κ?−κ)−(1−ρ)
< 0 if κ 6 ρκ?

1+(1−ρ)ρκ?

and thus,

ropt =

{
0 , if κ 6 ρκ?

1+(1−ρ)ρκ?√
(1−ρ)(κ−1)(κ?−κ)(ρκ?−1)−ρκ?+κ

ρ(κ?−κ)−(1−ρ)
, otherwise
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C.3 Summary results for the CMD response pattern

The results are summarized in Table C.1.

Table C.1: Optimal total number of measurements under the CMD response pattern in the basic scenario.

Time-varying exposure (ρe < 1)

ρe κ Optimal total number
of measurements

ρe ≥ ρ 1 1
ρe > ρ κ ≤ κ0 1

κ ∈ (κ0, κc) 1 + r0

other combinations of (κ, ρ, ρe) +∞
where:

κ0 := 1−ρ
1−ρe+(1−ρ)2

, κc := ρe(1−ρ)
ρ(1−ρe)

r0 :=
κ−1−ρ(κc−1)+

√
(1−ρ)(κc−1)(κ−1)[1−ρ+ρ(κc−κ)]

ρ(κc−κ)

Time-invariant exposure (ρe = 1)

κ Optimal total number
of measurements

κ 6 1
1−ρ 1

Otherwise
√

1−ρ
ρ

(κ− 1)

19



D Obtaining ropt under the LDD response pattern in the

basic scenario

Let ropt be the value of r that minimizes the function

f(r, κ, ρ, ρe) =
r(r + κ)(ρ r + 1)

(r + 1)[ρρer2 + [2ρ+ ρe + 3(1− ρ)ρe(1− ρe)]r + 2[1 + (2− ρ)(1− ρe)]]
, (D.1)

with r ∈ N+, κ > 1, ρ ∈ (0, 1) and ρe ∈ (0, 1].

D.1 Time-invariant exposure (ρe = 1)

If ρe = 1, (D.1) reduces to

f(r, κ) =
r(r + κ)

(r + 1)(r + 2)
(D.2)

which does not depend on ρ.

• If κ = 1 or κ = 2, (D.2) reduces to

f(r, κ) =
r

r + 3− κ

and
∂f(r, κ)

∂r
=

3− κ
(r + 3− κ)2

> 0 ∀r /∈ {−2,−1}

so f(r, κ) is monotone increasing and ropt = 1.

• If κ /∈ {1, 2},
∂f(r, κ)

∂r
=

(3− κ)r2 + 4r + 2κ

(r + 1)2(r + 2)2
(D.3)

so solving
∂f(r, κ)

∂r
= 0

is equivalent to solving the equation

(3− κ)r2 + 4r + 2κ = 0. (D.4)

– If κ = 3,
∂f(r, κ)

∂r
=

4r + 2κ

(r + 1)2(r + 2)2
> 0 ∀r > 0

so f(r, κ) is monotone increasing and ropt = 1.

– If κ 6= 3, the solution of (D.4) is

r± =
−2±

√
2(κ− 1)(κ− 2)

3− κ
. (D.5)
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If κ < 2 the discriminant of (D.5) is negative and hence f(r, κ) is monotone. And, since

from (D.3) ∂f(r,κ)
∂r

is positive at r = 0, f(r, κ) is monotone increasing and ropt = 1.

If κ > 2, both values of (D.5) are real.

If κ ∈ (2, 3), from (D.5) we have

r− < r+ =
−2 +

√
2(κ− 1)(κ− 2)

3− κ
<
−2 +

√
2 · 2 · 1

3− κ
= 0 ,

so f(r, κ) is monotone increasing for non negative r and hence ropt = 1.

If κ > 3, r+ < 0 and r− > 0 so we only need to analize r−. By differentiating (D.3) and
given that r± is solution of (D.4), we have

∂2f(r,κ)
∂r2

∣∣∣
r=r±

= ±
2
√

2(κ− 1)(κ− 2)

(r± + 1)2(r± + 2)2
(D.6)

which is negative for r = r−, so f(r, κ) has a local maximum at r = r− and f(r, κ) is
increasing for 0 6 r < r− and decreasing for r > r−. On the other hand, it can easily
be shown that r− is decreasing in κ for κ > 3 and that limκ→+∞ r− =

√
2, so r− > 1 for

all κ > 3. Hence, ropt = 1 if f(r = 1, κ) 6 limr→+∞ f(r, κ) (equivalently, from (D.2), to
κ 6 5) and ropt = +∞ otherwise.

In summary, for a time-invariant exposure:

ropt =

{
1 , κ 6 5

+∞ , κ > 5
.

D.2 Time-varying exposure (ρe < 1)

D.2.1 Case κ = 1

In this case, (D.1) reduces to:

f(r;κ, ρ, ρe) =
r(ρ r + 1)

ρρer2 + [2ρ+ ρe + 3(1− ρ)ρe(1− ρe)]r + 2[1 + (2− ρ)(1− ρe)]
. (D.7)

Note that since all three coefficients in the polynomial of degree 2 in r in the denominator of f(r)
are positive, f(r;κ, ρ, ρe) is continuous for all positive r.

Also,

∂f(r;κ, ρ, ρe)

∂r
=
ρ[2ρ+ 3(1− ρ)ρe(1− ρe)]r2 + 4ρ[1 + (2− ρ)(1− ρe)]r + 2[1 + (2− ρ)(1− ρe)]

[ρρer2 + [2ρ+ ρe + 3(1− ρ)ρe(1− ρe)]r + 2[1 + (2− ρ)(1− ρe)]]2
.

(D.8)

Note now that all six coefficients in this rational function are positive. Hence, ∂f(r;κ,ρ,ρe)
∂r

is positive
for all positive r and thus f(r;κ, ρ, ρe) is monotone increasing for all positive r, and ropt = 1.
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D.2.2 Case κ > 1

We consider two cases: ρe = 2ρ(2−ρ)
3(1−ρ)

and ρe 6= 2ρ(2−ρ)
3(1−ρ)

.

• Case ρe = 2ρ(2−ρ)
3(1−ρ)

(which implies ρ < 1
2
):

In this case, ignoring constant positive factors, (D.1) reduces to

f(r;κ, ρ, ρe) =
r(r + κ)

(r + 1)(r + α)
, α :=

9− 20ρ+ 11ρ2 − 2ρ3

ρ(2− ρ)
∈ (+2,+∞) (D.9)

If κ = α, f(r;κ, ρ, ρe) = r
r+1

which is monotone increasing for all positive r and ropt = 1.

We consider now κ 6= α. Then

∂f(r;κ, ρ, ρe)

∂r
=

(α + 1− κ)r2 + 2αr + ακ

(r + 1)2(r + α)2
. (D.10)

If κ 6 α + 1, then f(r;κ, ρ, ρe) is monotone increasing for all positive r, and ropt = 1.

If κ > α + 1, the roots of (D.10) are

r± =
α±
√

∆

κ− (α + 1)
, where ∆ = α(κ− 1)(κ− α) > α2 (D.11)

which implies r− < 0 and we only need to analyze r+ where there is a local maximum since

∂2f(r,κ,ρ,ρe)
∂r2

∣∣∣
r=r+

=
−2
√

∆

(r+ + 1)2(r+ + α)2
< 0.

It can be shown that r+ > 1 and then f(r;κ, ρ, ρe) is increasing for r ∈ [1, r+) and decreasing
for r ∈ (r+,+∞). Thus, ropt = 1 if f(r = 1;κ, ρ, ρe) 6 limr→+∞ f(r;κ, ρ, ρe) (equivalently, if
κ 6 2α + 1) and ropt = +∞ otherwise.

Summarizing,

ρe = 2ρ(2−ρ)
3(1−ρ)

⇒ ropt =

{
1 , κ 6 κ∗

+∞ , κ > κ∗
, κ∗ := 18−38ρ+21ρ2−4ρ3

ρ(2−ρ)

• Case ρe 6= 2ρ(2−ρ)
3(1−ρ)

(the most general and common case):

In this case, the analytical optimization of (D.1) is practically impossible because it requires
solving a polynomial equation of degree 4 with complex expressions for their coefficients, which
depend on ρ, ρe and κ. Over a fine grid of values of the parameters ρ ∈ (0, 1), ρe ∈ (0, 1) and
κ ∈ (1, 10000), we found that ropt = 1 or ropt = +∞ always. Assuming that the value of ropt

can be only 1 or +∞, and since from (D.1), f(r = 1) = (κ+1)(1+ρ)
6[2−(1−ρ)ρ2e]

and limr→+∞ f(r) = 1
ρe

, we
have

ropt =

{
1 , κ 6 κ∗

+∞ , κ > κ∗
, κ? := 5 + 6(1−ρe)[2+(1−ρ)ρe]

(1+ρ)ρe
(D.12)

which is coherent with results in all the others cases analyzed in this section.
In addittion, since

∂κ∗

∂ρ
= −12(1− ρ2

e)

(1 + ρ)ρe
< 0 ,

∂κ∗

∂ρe
= −6[2 + (1− ρe)ρ2]

(1 + ρ)ρ2
e

< 0 ,

κ∗ decreases with both ρ and ρe.
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D.3 Summary results for the LDD response pattern

The results are summarized in Table D.1. In general, we should take only one measurement if κ is

not greater than the threshold 6[2−(1−ρ)ρ2e]
(1+ρ)ρe

− 1, which decreases with both ρ and ρe.

Table D.1: Optimal total number of measurements under the LDD response pattern in the basic scenario.

Time-varying exposure (ρe < 1)

κ Optimal total number
of measurements

κ 6 6[2−(1−ρ)ρ2e]
(1+ρ)ρe

− 1 2

Otherwise +∞

Time-invariant exposure (ρe = 1)

κ Optimal total number
of measurements

κ 6 5 2
Otherwise +∞
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E Simulation study for the effect of dropout

In this simulation study, we assumed that the probability of dropout of participant i at measurement
j was π1 if the response at the measurement j − 1 was lower than its third quartile or π2 otherwise.
We explored 9 scenarios, obtained from all combinations of the overall dropout fraction (0.1, 0.3
and 0.6) and the ratio π1/π2 (0.5, 0.8 and 1, corresponding this last value to missing completely at
random, MCAR).

E.1 Parameterization

E.1.1 Parameters

• πm = P (Yj = missing)

• πM = P (loosing i-th participant)

• π1 = P (Yj = missing|Yj−1 < Y
(p)
j−1)

• π2 = P (Yj = missing|Yj−1 > Y
(p)
j−1)

• Y
(p)
j−1 is the p-quantile of Yj−1, i.e., P (Yj−1 6 Y

(p)
j−1) = p

• λ := π1/π2.

• Input parameters: πM and λ

• Simulation parameters: π1 and π2

E.1.2 Obtaining π1 and π2 as a function of πM and λ

Assuming a monotone missing pattern,

πM = 1− (1− πm)r.

Also,

πm = P (Yj = missing)

= P (Yj = missing|Yj−1 < Y
(p)
j−1)P (Yj−1 < Y

(p)
j−1)

+ P (Yj = missing|Yj−1 > Y
(p)
j−1)P (Yj−1 > Y

(p)
j−1)

= π1 p+ π2(1− p) = π2[1− (1− λ)p].

Thus,  π2(πM , λ)(r,p) =
1− (1− πM)1/r

1− (1− λ)p
π1(πM , λ)(r,p) = λπ2

(E.1)

From (E.1), must be

λ > 1− (1− πM)1/r

p
.
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E.2 Scenarios

We set some parameters to fixed values (most of them from the illustrative example in the paper):
N = 43, r = 14, θ = 0, ρ = 0.3, ρe = 0.13, pe0 = per = 0.37, σ2 = 0.43, p = 0.75, β0 = 1,
βtime = −0.5, βE0 = −0.5 (for LDD model), α = 0.05. In each scenario, the value of the β of interest
was set to that value which provides an expected power according to our formulas of 0.8. The number
of simulations per scenario was 500.

E.3 Results

Empirical power (CI95%)
πM λ = 0.5 λ = 0.8 λ = 1 (MCAR)
0.1 0.79 (0.75, 0.82) 0.81 (0.77, 0.84) 0.80 (0.77, 0.84)
0.3 0.82 (0.79, 0.86) 0.79 (0.76, 0.83) 0.80 (0.77, 0.83)
0.6 0.79 (0.76, 0.83) 0.80 (0.77, 0.84) 0.77 (0.73, 0.81)

Table E.1: CMD model: Empirical power when expected power was 0.8.

Empirical power (CI95%)
πM λ = 0.5 λ = 0.8 λ = 1 (MCAR)
0.1 0.82 (0.79, 0.86) 0.76 (0.72, 0.80) 0.82 (0.78, 0.85)
0.3 0.77 (0.73, 0.80) 0.80 (0.77, 0.84) 0.78 (0.74, 0.81)
0.6 0.77 (0.73, 0.80) 0.79 (0.76, 0.83) 0.80 (0.77, 0.84)

Table E.2: LDD model: Empirical power when expected power was 0.8.

Results of the simulation study are shown in Table E.1 (CMD model) and Table E.2 (LDD model).
Any scenario showed significant differences in terms of power when comparing the empirical values
with the expected one.
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F Effect of a time-varying exposure prevalence on the re-

sults, in the basic scenarios

Table F.1: Effect of time-varying exposure prevalence on ropt for the CMD response pattern and CS(ρ)
covariance structure of the response, no missingness and CS(ρe) exposure covariance structure.
Exploration was performed for r 6 30 and for all combinations of the parameters ρe = 0.3, 0.8,
ρ = 0.2, 0.8, κ = 1, 2, 5, 8, p̄e = 0.1, 0.3, 0.5 and per/pe0 = 1/20, 1, 21 (i.e., γ = −0.95, 0, 20,
respectively). Numbers in the body of the table correspond to ropt.

ρe = 0.3 ρe = 0.8
ρ = 0.2 ρ = 0.8 ρ = 0.2 ρ = 0.8

per/p0 p̄e κ = 1 κ > 2 κ > 1 κ = 1 κ = 2 κ = 5 κ = 8 κ = 1 κ > 2

0.1 0 30 30 0 0 7 17 1 30
1/20 0.3 0 30 30 0 0 8 16 0 30

0.5 30 30 30 4 5 10 19 6 30

1 ? 0 30 30 0 2 6 11 6 30

0.1 2 30 30 1 2 7 17 1 30
21 0.3 8 30 30 2 3 8 16 2 30

0.5 30 30 30 4 5 10 19 6 30
?: ropt does not depend on p̄e if the prevalence of exposure is constant.
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G Simulation study for the effect of confounding

G.1 Simulation study 1

A simulation study was performed in order to explore the impact of confounding. Scenarios ex-
plored corresponded to all combinations of the values of the parameters: ρe = 0.2, 0.8; N =
50, 200, 500, 2000; and r = 1 (only for CMD), 2 (only for LDD), 8, 20. Each of these scenarios was
explored for five confounding patterns and for a number of confounders from 0 to 6. Thus, a total
of 840 scenarios were explored. The remaining parameters were fixed at the values: σ2 = 1, θ = 0,
ρ = 0.5, α = 0.05, pe = 0.3 and πM = 0. The β’s of the model were fixed at 0.5 times the value of
the β of interest. The value of the β of interest was obtained according to our formulas in order to
achieve a power of 0.9

The simulation study was performed according to the following steps:

1. Up to 6 simulated confounders were considered, in the following order:

Z1j ∼ N(0, 1), j = 0, . . . , r, with corr(Z1j, Z1k) = ρ1 for k 6= j,

Z2j ∼ Bernoulli(p2), j = 0, . . . , r, with corr(Z2j, Z2k) = ρ2 for k 6= j,

Z3j ∼ N(0, 1), j = 0, . . . , r, with corr(Z3j, Z3k) = ρ3 for k 6= j,

Z4j ∼ Bernoulli(p4), j = 0, . . . , r, with corr(Z4j, Z4k) = ρ4 for k 6= j,

Z5j ∼ N(0, 1), j = 0, . . . , r, with corr(Z5j, Z5k) = ρ5 for k 6= j,

Z6j ∼ Bernoulli(p6), j = 0, . . . , r, with corr(Z6j, Z6k) = ρ6 for k 6= j,

and assuming independence across the Zmj. pm was set to 0.2, ∀m = 2, 4, 6, and ρm was set to
0.5 ∀m = 1, 2, . . . , 6.

2. Exposure E was simulated as a multivariate correlated Bernoulli random variable with param-
eters pe and ρe.

3. Each of the binary confounders Zmj,∀m = 2, 4, 6, was simulated from the logistic model

log

(
P (Zm = 1)

P (Zm = 0)

)
= α0m + E log φm,

where φm is the odds ratio of E associated to Zm, and α0m was fixed from the constraint
E(Zm) = pm.

4. Each of the normal confounders Zmj,∀m = 1, 3, 5, was simulated from the normal distribution

Zm ∼ N(µm = E log φm, σm = 1),

where φm is the odds ratio of E associated to an one unit increase of Zm.

5. The value of the β of interest was obtained according to our formulas in order to achieve a
power of 0.9.
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6. Multivariate normal response was simulated with mean equal to the simulated linear predictor
based on models (1) and (2), including the first q confounders, with q between 0 and 6. The
response covariance structure was DEX(σ, θ, ρ).

Five confounding scenarios were considered for the association between the confounders and
both the exposure and the response. These scenarios are described in Table G.1.

Confounding OR between Effect of

scenario Zmj and Xj, φm Zmj on Yj, βZm

†

Constant strength
1. Weak 1.5 0.5
2. Moderate 2.0 1.0
3. Strong 2.5 1.5

Diminish strength
4. Moderate 3.0→ 1.5‡ 2.0→ 0.5
5. Strong 4.0→ 1.5‡ 3.0→ 0.5

†: In units of the β of interest.
‡: Linearly decreasing with the number of confounders.

Table G.1: Confounding scenarios.

7. Then, the model was fitted to the simulated data and the p-value for the significance of the β
of interest (F -test) was stored.

8. Steps 1 to 7 were iterated 1000 times.

9. The empirical power was obtained as the fraction of times that p-value 6 α. Point estimate
and percentiles 2.5 and 97.5 were stored.

10. Steps 1 to 9 were performed for all combinations of q = 0, . . . , 6, the five confounding scenarios
and the explored values for ρe, N , and r.

11. A total of 840 scenarios were explored.

Results under the CMD response pattern are showed in Figures G.1 and G.1 in scenarios with
ρe = 0.2 and ρe = 0.8, respectively. Under the LDD response pattern, results are shown in Figures
G.3 to ??.

G.2 Simulation study 2

In addition, we performed another simulation study in order to explore the potential effect of con-
founding on the optimal combination of N and r. We explored 8 scenarios, combining the values
of ρe (0.2 and 0.8), the ratio of costs between the first measurement and the subsequent ones, κ
(2 and 5 under the model (1); 2 and 10 under the model (2)) and the confounding strength of the
confounders (“constant weak” and “constant strong”). For each scenario, the values of N and r were
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fixed at the optimal values according to our formulas when minimizing the cost of the study while
achieving a power of 0.9. Then, the empirical optimal combination of N and r was fixed as that
combination which provided the maximum empirical power without exceeding the minimum cost
mentioned above. Empirical results were assessed by including 4 confounders and simulating 1000
datasets for each scenario. Results showed an impact of confounding on the study design only for
higher values of ρe and κ. Thus, under the LDD model, discrepancies were observed only for ρe = 0.8
and κ = 10, with empirical ropt = 13 and Nopt = 80 when expecting ropt = 20 and Nopt = 62. Under
the CMD model, similar results were obtained, which are detailed in Table G.2.

Table G.2: Impact of confounding on the optimal combination of number of repeated measurements and
number of participants under the CMD response pattern.

ρe κ Confounding (ropt, Nopt)
strength† Expected Empirical

0.2 2 Weak (18, 7) (15, 8)
Strong (13, 9)

5 Weak (18, 7) (18, 7)
Strong (18, 7)

0.8 2 Weak (1, 126) (2, 94)
Strong (1, 126)

5 Weak (20, 21) (11, 32)
Strong (11, 32)

† See Table G.1.
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H R package usage

In this section, we illustrate the usage of the R package optimalAllocation with some examples,
including the reproduction of the results showed in the section 5 of the manuscript. The package can
be downloaded at http://www.creal.cat/xbasagana/software.html.

H.1 Some examples

H.1.1 Study 1. Maximizing power

Suppose we are interested in maximizing the power of a longitudinal study assuming the CMD
response pattern without exceeding a budget of 40 monetary units, where the monetary unit is the
cost of the first measurement. The cost of the first measurement is κ = 3 times the cost of the
subsequent ones. The response covariance structure is DEX(σ = 1, ρ = 0.7, θ = 0.5). The exposure
intraclass correlation is ρe = 0.2. The expected proportion of dropout at the end of the study is
πM = 0.2. The exposure prevalence is assumed to increase linearly from pe0 = 0.2 at the first
measurement to per = 0.3 at the last measurement. The effect size to be detected is β = −0.3 and
the significance level is fixed at α = 0.05. The maximum number of repeated measurements allowed
is rmax = 20. Thus, we can perform the study calculations and store the results in the object study1:

> library(optimalAllocation)

> study1 <- OA(target = "maxPower", pattern = "CMD", rMax = 20, theta = 0.5,

+ rho = 0.7, sigma = 1, rhoe = 0.2, pe0 = 0.2, per = 0.3, piM = 0.2,

+ kappa = 3, budget = 40, c1 = 1, beta = -0.3, alpha = 0.05)

>

> study1

Results subject to r not greater than 20:

-----------------------------------------------------

Optimal total number of measurements (r+1): 20

Optimal number of participants (N) : 6

Maximized power : 0.9670238

Thus, the optimal is to perform a longitudinal study with Nopt = 6 participants and taking
ropt + 1 = 20 measurements. The maximized power of such study is 0.97.

Further information can be obtained from the function plot(). For instance, Figure H.1 is the
output of plot(study1) and shows that the optimal strategy is to take as many measurements
as possible. Further results, including the estimated standard error of β, can be obtained with
summary(study1).

H.1.2 Study 2. Particular case: Cost of a cross-sectional study

Suppose we are interested in finding the cost of a cross-sectional study achieving a power of at least
0.9 to detect an effect size β = −0.3 with a significance level α = 0.05. The cost of the unique
measurement per participant is c1 = 25 monetary units. The proportion of exposed is assumed to be
0.3 and the residual variance is estimated in σ = 1. Thus, the study calculations are:
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> study2 <- OA(target = "minCost", pattern = "CMD", rMax = 0, sigma = 1,

+ pe0 = 0.3, reqPower = 0.9, c1 = 25, beta = -0.3, alpha = 0.05)

> study2

Results subject to a cross-sectional design:

-----------------------------------------------------

Number of participants (N): 556

Cost : 13900

Thus, the required number of participants is N = 556 and the total cost is 13,900 monetary units.

H.2 Obtaining results in section 5

As another example of the package usage, we reproduce here results in the section 5 of the manuscript.
In that example, ρe = 0.13 and the constant exposure prevalence was pe0 = per = 0.37 for vacuum
cleaning, and ρe = 0.60 and pe0 = per = 0.17 for using air freshener sprays. The dropout fraction
at the end of the study was πM = 0.28. The residual variance and the response covariance damping
parameter were taken from the study and set to σ2 = 0.43 and θ = 0.12, respectively. We used low
(0.3) and high (0.7) values for ρ. The hypothesized effect was fixed at a difference of 10% in the
expected mean value of the response between exposed and non exposed assuming the CMD response
pattern (i.e., β̃ = −0.39). The objective was to minimize the total cost of the study fixing a minimum
required power of 0.9. The first measurement was assumed to be 2 times more expensive than each of
the subsequent ones (i.e., κ = 2). We constrained the maximum number of repeated measurements
to 20. All calculations were performed fixing a significance level α = 0.05.

Then, results in Table 5 (section 5 of the manuscript) can be reproduced with the following code:

> # Creating scenarios:

>

> Table4 <- expand.grid(Exposure = c("Vacuuming", "Air freshener sprays"),

+ rho = c(0.3, 0.7))

> Table4$pe0 <- 0.37

> Table4$pe0[Table4$Exposure == "Air freshener sprays"] <- 0.17

> Table4$per <- Table4$pe0

> Table4$rhoe <- 0.13

> Table4$rhoe[Table4$Exposure == "Air freshener sprays"] <- 0.60

> Table4$TimeVaryingExposure <- TRUE

> Table42 <- Table4

> Table42$TimeVaryingExposure <- FALSE

> Table42$rhoe <- 1

> Table4 <- rbind(Table4, Table42)

> Table4$r <- NA

> Table4$N <- NA

> Table4$cost <- NA

>

> # Sorting as in Table 4:

> ord <- order(Table4$Exposure, Table4$rho, 1 - Table4$TimeVaryingExposure)
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> Table4 <- Table4[ord, ]

> rownames(Table4) <- NULL

>

> Table4

Exposure rho pe0 per rhoe TimeVaryingExposure r N cost

1 Vacuuming 0.3 0.37 0.37 0.13 TRUE NA NA NA

2 Vacuuming 0.3 0.37 0.37 1.00 FALSE NA NA NA

3 Vacuuming 0.7 0.37 0.37 0.13 TRUE NA NA NA

4 Vacuuming 0.7 0.37 0.37 1.00 FALSE NA NA NA

5 Air freshener sprays 0.3 0.17 0.17 0.60 TRUE NA NA NA

6 Air freshener sprays 0.3 0.17 0.17 1.00 FALSE NA NA NA

7 Air freshener sprays 0.7 0.17 0.17 0.60 TRUE NA NA NA

8 Air freshener sprays 0.7 0.17 0.17 1.00 FALSE NA NA NA

>

> # Optimal allocation calculations

> # for all scenarios:

>

> studies <- list()

>

> for (i in 1:nrow(Table4))

+ {

+ studies[[i]] <- OA(target = "minCost", pattern = "CMD", rMax = 20,

+ theta = 0.12, rho = Table4$rho[i], sigma = sqrt(0.43),

+ rhoe = Table4$rhoe[i], pe0 = Table4$pe0[i],

+ per = Table4$per[i], piM = 0.28, kappa = 2,

+ reqPower = 0.9, c1 = 1, beta = -0.39, alpha = 0.05)

+ Table4$r[i] <- studies[[i]]$ropt

+ Table4$N[i] <- studies[[i]]$Nopt

+ Table4$cost[i] <- round(studies[[i]]$minCost, 1)

+ }

>

> # Results:

>

> Table4[, -c(3:5)]

Exposure rho TimeVaryingExposure r N cost

1 Vacuuming 0.3 TRUE 18 6 51.6

2 Vacuuming 0.3 FALSE 1 92 125.1

3 Vacuuming 0.7 TRUE 15 3 22.0

4 Vacuuming 0.7 FALSE 0 128 128.0

5 Air freshener sprays 0.3 TRUE 20 17 160.7

6 Air freshener sprays 0.3 FALSE 1 152 206.7

7 Air freshener sprays 0.7 TRUE 19 8 72.2

8 Air freshener sprays 0.7 FALSE 0 211 211.0

In order to explore the effect of departures of the value of r from the value of ropt, we can create
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the Figure H.2 using the following code:

> par(las=1, mfrow=c(2, 2))

> for (i in c(1,3,5,7))

> {

> plot(studies[[i]])

> mtext(text= paste(Table4$Exposure[i], "\n", "rho > = ", Table4$rho[i], sep = ""),

+ side = 3)

> }

Figure H.2 shows how, for large values of r, the investigator can increase the number of partici-
pants in exchange for reducing the number of repeated measurements without a significant increase
of the cost.
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I Simulation study for the accuracy of the Wald test ap-

proximation

Our calculations are based on the Wald test. The F test or the t-test are more suitable than the
Wald test when the covariance matrix needs to be estimated from the data. In the F test, the
denominator degrees of freedom need to be estimated from the data in a non trivial way. The same
is true for the degrees of freedom needed in the t-test [1]. We consider this fact significantly hinders
the methodological development of the problem and therefore we have chosen the Wald test in small
samples. A simulation study was performed in order to evaluate the goodness of the approximation
of the F -test by the Wald test. In a simulation study, Manor and Zucker showed that the restricted
maximum likelihood (REML) approach with the Satterthwaite approximation for the degrees of
freedom for the test statistic gave Type I error rates close to the nominal level even in small samples
[2]. We assume this good performance also holds in terms of power, and thus compared the results of
this approach with the results of the Wald test. We considered the LDD response pattern. Scenarios
explored corresponded to all combinations of the values of the parameters: θ = 0; ρ = 0.2, 0.8;
ρe = 0.2, 0.7; pe = 0.2, 0.7; πM = 0, 0.2; N = 10, 20, 30, 50, 200; and r = 1, 8. The remaining
parameters were fixed at the values: σ2 = 4, α = 0.05, β0 = 1, βtime = −0.5 and βE0 = −0.5.

The simulation study was performed following these steps:

1. For each scenario, the design matrix was simulated according to the values of the parameters
ρe, pe, πM , N and r.

2. The value of the β of interest was obtained according to our formulas (based on the Wald test)
in order to achieve a power of 0.8.

3. Multivariate normal response was simulated according to the simulated linear predictor based
on the model.

4. The model was fitted to the simulated data and the p-values for both the F -test with the
Satterthwaite approximation for the degrees of freedom and the Wald test for the significance
of the β of interest were stored.

5. Steps 1 to 4 were iterated 500 times.

6. Both F -test with the Satterthwaite approximation and the Wald test empirical power were
obtained as the fraction of times that p-value 6 α.

7. A p-value for the significance of the difference in the empirical power between the F -test and
the Wald test was computed.

A total of 147 scenarios were explored. Results are shown in Figure I.1. For N from about 30
almost no impact of avoiding the Satterthwaite correction were found. For lower values of N , the
Wald approximation overestimates the power.
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J Simulation study for the impact of an unbalanced design

J.1 Simulations

Our methods allow for designs unbalanced with respect to exposure (through the parameter pe) and
unbalanced with respect to the number of time points (through modeling dropout). In addition, we
now examined the effect of subjects not having exactly the same vector of times through a simulation
study. In this study, we simulated individual time points for the measurements, not at equidistant
points tj = j/r, j = 0, 1, . . . , r, with r the number of repeated measurements, but at points t′j
normally distributed around tj. The dispersion of the simulated time points t′j was controlled by the
parameter t95 which is the ratio between the length of the 95% confidence interval for t′j and the gap
between two consecutive time points in the balanced design, 1/r. For instance, t95 = 0 correspond
to a balanced design (i.e., t′j = tj) t95 = 3 means that 95% of individuals are measured at j-th
measurement in a time interval of length 3/r around tj = j/r. An usual situation is when t95 = 1
which corresponds to the case when 95% of participants have been measured at j-th measurement
before any of them have been measured at (j + 1)-th measurement. In general, in this simulation
study each participant has a different follow-up duration.

For each model, CMD and LDD, 36 scenarios were explored. These scenarios correspond to all
combinations of the values of the parameters N = 50, 100, 200 and 500; r = 1, 4 and 8; and t95

= 0.01, 1 and 3. The remaining parameters were fixed to the following values: ρ = 0.5, σ2 = 1,
ρe = 0.5, pe = 0.3, α = 0.05. In each scenario, the β of interest was obtained as that value for which
our formulas provide a power value of 0.9. Then, the remaining coefficients in the model were fixed
at 0.5β. In each scenario, the empirical power was assessed through 1000 simulations.

J.2 Results

Results, summarized in Figure J.1, showed no impact of an unbalanced design under the model (1)
for t95 6 1 while the empirical power decayed at around 0.85 for t95 = 3 when the expected value
under our formulas was 0.9. For the model (2), the empirical power was around 0.93 for t95 = 1 and
around 0.95 for t95 = 3.
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Figure G.1: Impact of confounding under CMD response pattern in scenarios with ρe = 0.2. For each
confounding scenario, empirical mean and percentiles 2.5 and 97.5 were assessed using 1000
simulations.

37



60

65

70

75

80

85

90

95

r = 1, N = 50

# confounders

P
ow

er
 (

%
)

0 1 2 3 4 5 6

●
●

●
●

●
●

●

●
● ●

● ●
●

●

●

●

●

●
●

● ●

●

●
●

● ●
●

●

●

●
●

●
●

● ●
●

●

●

●

●

Constant weak
Constant medium
Constant strong
Diminish moderate
Diminish strong 60

65

70

75

80

85

90

95

r = 8, N = 50

# confounders
P

ow
er

 (
%

)
0 1 2 3 4 5 6

● ●
●

● ●
●

●
●

●
●

●
● ● ●

●
●

●
● ●

● ●

●

●
●

● ● ●
●

●

●
●

●
●

●
●

●

●

●

●

●

Constant weak
Constant medium
Constant strong
Diminish moderate
Diminish strong 60

65

70

75

80

85

90

95

r = 20, N = 50

# confounders

P
ow

er
 (

%
)

0 1 2 3 4 5 6

●
● ● ●

●
●

●
●

● ●

●

●
●

●

●

●
●

● ● ●
●

●

●
●

●
●

●

●

●

● ●
●

● ● ●

●

●

●

●

●

Constant weak
Constant medium
Constant strong
Diminish moderate
Diminish strong

60

65

70

75

80

85

90

95

r = 1, N = 200

# confounders

P
ow

er
 (

%
)

0 1 2 3 4 5 6

● ●
●

● ●
●

●

● ●
●

●
●

● ●

●
●

●

●

●
●

●

●

●
●

● ●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

Constant weak
Constant medium
Constant strong
Diminish moderate
Diminish strong 60

65

70

75

80

85

90

95

r = 8, N = 200

# confounders

P
ow

er
 (

%
)

0 1 2 3 4 5 6

● ●
● ●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

● ●

● ●
●

● ●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

Constant weak
Constant medium
Constant strong
Diminish moderate
Diminish strong 60

65

70

75

80

85

90

95

r = 20, N = 200

# confounders
P

ow
er

 (
%

)

0 1 2 3 4 5 6

●
●

●
●

●
● ● ● ●

●
●

●

● ● ●

● ●
●

●

●
● ●

●
● ●

●
●

●

● ● ●
●

●

●

●

●

●

Constant weak
Constant medium
Constant strong
Diminish moderate
Diminish strong

60

65

70

75

80

85

90

95

r = 1, N = 500

# confounders

P
ow

er
 (

%
)

0 1 2 3 4 5 6

● ●

●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

● ●

● ●

●
●

●
●

● ● ●

●

● ●

●
●

●
●

●

●

●

●

●

Constant weak
Constant medium
Constant strong
Diminish moderate
Diminish strong 60

65

70

75

80

85

90

95

r = 8, N = 500

# confounders

P
ow

er
 (

%
)

0 1 2 3 4 5 6

●

● ●
●

●

●

●

●

● ●
●

●
●

●

●
●

● ● ●
● ●

● ●
●

●
●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

Constant weak
Constant medium
Constant strong
Diminish moderate
Diminish strong 60

65

70

75

80

85

90

95

r = 20, N = 500

# confounders

P
ow

er
 (

%
)

0 1 2 3 4 5 6

●
●

●
●

●

●
●

●
● ● ●

●
●

●
● ●

●
●

●

●
●

●

●
● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

Constant weak
Constant medium
Constant strong
Diminish moderate
Diminish strong

60

65

70

75

80

85

90

95

r = 1, N = 2000

# confounders

P
ow

er
 (

%
)

0 1 2 3 4 5 6

● ●
●

●
●

● ●
●

●
●

● ●

●
●

●

●
●

●
●

● ●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

Constant weak
Constant medium
Constant strong
Diminish moderate
Diminish strong 60

65

70

75

80

85

90

95

r = 8, N = 2000

# confounders

P
ow

er
 (

%
)

0 1 2 3 4 5 6

●
● ●

● ●
●

●

●

●
●

● ●
●

●

●
●

●

●
●

●

●

●
●

●
●

●

●
●

●

● ●
●

● ●
●

●

●

●

●

●

Constant weak
Constant medium
Constant strong
Diminish moderate
Diminish strong 60

65

70

75

80

85

90

95

r = 20, N = 2000

# confounders

P
ow

er
 (

%
)

0 1 2 3 4 5 6

● ●
●

●
●

● ●
●

● ●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

●
●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

Constant weak
Constant medium
Constant strong
Diminish moderate
Diminish strong

ρe = 0.8

Figure G.2: Impact of confounding under CMD response pattern in scenarios with ρe = 0.8. For each
confounding scenario, empirical mean and percentiles 2.5 and 97.5 were assessed using 1000
simulations.
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Figure G.3: Impact of confounding under LDD response pattern in scenarios with ρe = 0.2. For each
confounding scenario, empirical mean and percentiles 2.5 and 97.5 were assessed using 1000
simulations.
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Figure G.4: Impact of confounding under LDD response pattern in scenarios with ρe = 0.8. For each
confounding scenario, empirical mean and percentiles 2.5 and 97.5 were assessed using 1000
simulations.
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Figure H.1: Maximized power and number of participants (in brackets) as a function of the total number
of measurements per participant. The arrow points to the optimal allocation.
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Figure H.2: Minimized cost and number of participants (in brackets) as a function of the total number of
measurements per participant. The arrow points to the optimal allocation.
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Figure I.1: Empirical power under the F -test with Satterthwaite approximation for the degrees of freedom
and the Wald test, for the LDD response pattern. In each of the 147 scenarios, 500 simulations
were performed. Points (segments) in the plot area correspond to the mean (minimum and
maximum) empirical power between scenarios. In all scenarios, the expected power under our
formulas was 0.8.
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Figure J.1: Results of the simulation study for the impact of an unbalanced design.
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