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A Derivation of 62 for basic scenarios

A.1 Time-invariant exposure
A.1.1 CMD

We assume a CS(o, p) response covariance structure, no missing data and constant exposure preva-
lence (i.e., pej = pe, V7 =0,...,7).
From model (1)) we have
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where s = % is the elapsed time between two consecutives measurements in units of the fixed total

follow-up time and
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If the response correlation structure is CS(o, p), then
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A.1.2 LDD
We assume a CS(o, p) response covariance structure, no missing data and constant exposure preva-

lence (i.e., pej = pe, V7 =0,...,7).
From model , we have
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If the response covariance structure is CS(o, p), then
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A.2 Time-varying exposure

A.21 CMD
We assume a CS(o, p) response covariance structure, no missing data and constant prevalence of the
exposure (pe; = pe, Vj =0,...,7). We consider a general exposure covariance matrix with elements
: Var(Ei;) = pe(1 — pe) j=k
) 7]{: _ i e e 3 -
E[J ] { aejk = COV(Eija Ezk) = pejkpe(l - pe) y J 7& k

where p., = Cor(E;;, Ei) is correlation between the j-th and the k-th exposure measurements,
assumed to be common to all participants.
From model (T]), we have
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and agjk is the [j, k|-th element of the covariance matrix of exposure X .
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If the response covariance structure is CS(o, p), then
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where sum() and Tr() denote the sum of the elements and the trace of a matrix respectively.
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A.2.2 LDD

We assume a CS(o, p) response covariance structure, no missing data and constant exposure preva-
lence (i.e., pe; = pe, V7 =0,...,7r). We consider a CS structure for exposure covariance matrix:

EE[] ]{f] _ { Var(EU) = pe(l _pe) ) .] =k
’ 0, = Cov(Eij, Bir) = pepe(l —pe) , j#k
where p. = Cor(E;;, Ey) is the common correlation of the exposure, also the intraclass correlation

of exposure.
From model (), we have
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where
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We are interested in the [4,4]-th element of (Ex [X/S71X,])™" which is
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B Adapting the cost function for dropout

We considered monotone dropout , i.e., that losing one individual measurement implies losing all
the subsequent measurements of that individual. We assumed that there is no missing data at the first
measurement and that each subject that has not dropped out of the study at a given measurement
time had a probability m,, of dropout at the subsequent measurement. Thus, the probability and

cost of each of the » + 1 dropout pattern is

# of measurements  Probability Total
before the missing of the pattern cost
1 T c1
2 (1 = 7)o e (1+ %)
3 (1 — 7)) mm a(1+2)
j I Y (I
r (1—7mp) e (14 %)
r+1 (1 —my)" o (14Z)

and then the expected value of the total cost for N participants is

E(Cost)

where

NCl
NCl 1+
NCl 1+

NCl ].—f—

Tm +7Tmri(1 — ) + (1= 7m)"
(1—7m)[1— (1= m) 11 + 7 (r

Z

-1

=1

1))]

Tk

Tk

(1—m)[1 = (1~ Wm)r]}

K

vy =1—(1—m,)"

a [[1 = (1= )Y/ 70 — 1}]

is the proportion of subjects lost at the end of follow-up.
In addition, as expected, if there is no possibility of missing data, then

lim E(Cost)

T, —

Ne¢p lim

Tm—0

Nec¢p lim

Tm—0

Ne¢p lim

T —0
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C Obtaining 7, under the CMD response pattern in the
basic scenario

Let rope be the value of r that minimizes the function

(k+7r)(1+4pr)

f(r, &, p, pe) = , C.1
5000 = G A=+ o1 = o) (e
withr € N, k > 1, p € (0,1) and p. € (0, 1].
C.1 Time-invariant exposure (p. = 1)
If p. =1, (C.1)) reduces to
5. p. pa) = (k+7)(1+pr)
T (L=p)(r+ 1)
and we can equivalently minimize the function
k+r)(1+pr
9g(r, K, p, pe) = Shdal ) (C.2)

r+1
If k =1, (C.2)) reduces to
g(r K, p,pe) =1+ pr
which is monotone increasing and then rqp = 0.

If k > 1, the minimum of (C.2)) is allocated at rp = —1 + 4 /%(I{ — 1) which is greater than 0 if
K>
Then for time-invariant exposure:

0 , k<
B YA 1R

In general, ry is irrational. In that case, rop Will be [ro] or [ro] + 1 ([-] is the integer part function),
depending on which provides a lower value of g(r, , p, pe). Our R package take this correction into
account.

— —
[~
A °

C.2 Time-varying exposure (0 < p. < 1)

The form of (C.1)) changes depending on the values of k, p and p.. Hence, we consider different
scenarios.

C.2.1 Caserk=1

e If Kk =1 and p. = p, (C.1) reduces to the constant f(r,k,p, pe) = l%p, independent of r and
hence, for simplicity of the study design, we fix rqp = 0.

15



o If k=1 and p. # p, (C.1)) reduces to

1+pr
T? Ii? ) e -
frs 5. 2e) L—p+p(l—pe)r
and
Of(r, 5, pspe) _ p(pe — p)
or [1—p+p(1—pe)r]?

so f(r, Kk, p, pe) is monotone increasing if p. > p and monotone decreasing if p. < p, for all
positive value of r. Thus, rop = 0 if pe > p and rop, = +00 if pe < p.

C.2.2 Caserk>1
o If p. = p, (C.1) reduces to

r+K
f(T7/€,P7Pe):m
and of( ) .
Ty Ky Py Pe _ R = o
or B (1—p)(r+1)2<0 vr# -1

so f(r, K, p, pe) is monotone decreasing and 7., = +00.
o If p. # p, there are still several different structures of f(r, k, p, pe), related to the parameter

1—
= ——L 50,

p(l - pe)
— If Kk =k*>1and p. # p, (C.1) reduces to

« pr+1
TP, K, KY) =
fripm i) = o+ )
and of( . .
rp, R, R —p
————————————————————e | T — _1
or p(1—pe)(r+1)2 <0 vr# ’

so f(r) is monotone decreasing and 7oy, = +00.

— If k> 1, k # k* and p. # p (the general, most common case), (C.1]) can be writen as

, o K (R +pr)
f(T,p,Ii,li)—l_p TS (C.3)

and

Of(rip.r k") K [p(s" = k) = (L= p)]r® + 2(pr* — K)r + [(K* — k) — kK" (1 = p)]
or 1—p (r+1)2(r + k*)? ’
(C.4)

so solving



is equivalent to solving the equation

o — 1) — (1= p))r* + 2(pw" — )r + [(5" — ) —wi*(1 = p)) 0. (C.5)
If p(k* — k) — (1 — p) is equal to zero (equivalently, k = %), then
of (r; p, K, K¥) 2r + r*(k 4+ 1) R
GINLEMY ) (e K1
or ) ey <0 T ELA L

and rop; = +00.
We consider now p(k* — k) — (1 — p) # 0. The discriminant of (C.5)) can be writen as

A =41 =p)(r=1)(k = &)1 = pr7)

and the sign of A is equal to the sign of (k — k*)(1 — pr*). Since k # k* and pr* # 1
(consequence of p. # p), A can’t be zero. Now, we analyze all the sign combinations of
(k — r*) and (1 — pK*) :
x 1 — pr* < 0 (equivalently, p. > p) and k > K*:
In this case, A < 0 and hence f(r) is monotone Vr ¢ {—x*,—1}. Then, since from

(€4,

ostrpnet) | _ (K=K TR —p)
o =0 (1—p)s* ’

r) 1S monotone decreasing Vr —k*,—1} and ryy = +o00.
g p

x 1 — pr* > 0 (equivalently, p. < p) and Kk < K*:
In this case, A < 0 and hence f(r) is monotone Vr ¢ {—x*, —1}. Then, since from
oz}

RHp(r* — k) = (1 = p)]

r—-+00 or r—-+o0 (1—p)r?

Y

f(r) is monotone decreasing Vr ¢ {—x*, —1}, and then 7, = 400, because p(k* —
k) — (1 = p) < 0 as shown by the following:

l—pr*>0=1—pr*>p(l — k)= p(k*— k) — (1 —p) <O0.

x 1 — pr* > 0 (equivalently, p. < p) and k > K*:
In this case, A > 0 and the two solutions of (C.5)) are

. :E\/TZ—(K—,OI{*)
(= p) (s — k)

whose denominator is positive and then r, > r_. Further, since k > x*, then r_ < 0.

From (C),
02 (r;p.i.*) =F VA
o= (L= p)(re +1)2(re + £%)?
and there is a local minimum at r_ < 0 and a local maximum at r so f(r) is
monotone decreasing for all » > r,.. We can show that r; < 0 and then f(r) is

(C.6)
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decreasing in [0, +00) S0 ropy = +00. To show that 7, < 0, we only need to prove
that the numerator of r is negative:

VA o) = SO D I — (i)

)
2
V(1= p)( = 1)(k — pr*) (1 = pr*) = (k — pr*)
V(1= p)(5 = prt) (5 — pr*) (1 = pr*) — (k — pK”)
)
)

<
<

”;?

— o) [V = )T = pr) — 1]
< (k—pr")[1—=1]=0.

x 1 — pr* < 0 (equivalently, p. > p) and Kk < Kk*:
In this case, A > 0 and the two solutions of (C.5)) can be writen as

i\/TE + (pK* — R)
(I =p) = p(r* = k)
and, by (C.6|), there is a local minimum at r_ < 0 and a local maximum at r, so f(r)
is monotone decreasing for all » > r,. But now the denominator of (C.7) can be both

positive and negative, so we will consider these two possibilities.
If the denominator of ((C.7)) is positive, then ro > r_ and k* < Kk + % SO

(C.7)

r+ =

VA

Y2t (=) = V== D = AR — 1)+ o = s

< \/(1—/))(%—1) (%) (pe=p)+pe+1l—p—n

= V=pP(r -1+ (1 -p)(1-k)
= (-1 = (1= p(k—1) =0

and then r; < 0 so f(r) is monotone decreasing for all positive r and 7, = +00.

If the denominator of is negative, then ry < r_ and K* > Kk + ?. In this case,
the sign of r_ is not constant. For example, if we have p = 0.55 and p, = 0.80, if
k = 1.3, the local mininum is at r— ~ —0.24 so 7o, = 0 while if x = 2.6, the local
minimum is at 7_ ~ 4.08 s0 7op = 4 or ropy = 5. Then

r —max [0 V(L= p)(k—1)(k* — k) (pr* — 1) — pr* + &
’ p(w* — k) — (L= p) |

*

N i e e .
(1 7) <O0if F S e

In addition, it can be shown that

and thus,
0 i < e
Topt = \/ (1=p)(k—1)(K* —k) (pK* —1)—pK*+k otherwise
p(k*—r)—(1—p) ’
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C.3 Summary results for the CMD response pattern
The results are summarized in Table

Table C.1: Optimal total number of measurements under the CMD response pattern in the basic scenario.

Time-varying exposure (p. < 1)

Pe K Optimal total number
of measurements
Pe = p 1 1
Pe > P K < Ko 1
K € (Ko, Ke) 1+
other combinations of (k, p, pe) +o0
where:
- 1-p . pe(1=p)
RO = Topri=p 0 e '™ pi=p)
_ r=lop(re=1)+4/(1=p) (ke—1) (k=1 [1—p+p(rc—K)]
o= p(re—r)

Time-invariant exposure (p. = 1)

K Optimal total number
of measurements
1
K < 1Tp 1
Otherwise 2k — 1)
P
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D Obtaining 7., under the LDD response pattern in the
basic scenario

Let rope be the value of r that minimizes the function

r(r+r)(pr+1)
r+ 1)[pper2 + [20 + pe + 3(1 - p)pe(l - pe)]T + 2[1 + (2 o p)(l - pe)]]’

f(?“, /{’pvpe) = (

withr € N, k > 1, p € (0,1) and p. € (0, 1].

D.1 Time-invariant exposure (p. = 1)

If p = 1, reduces to
_r(r+k)
Hrm) = e e+ 2) (b2)

which does not depend on p.
o If k=1o0r k=2, (D.2) reduces to

r

e ==

and

of(r,k) 3—kK
o (r+3—r)

so f(r, k) is monotone increasing and rqp, = 1.

o If k ¢ {1,2},

5 >0 Vré{-2-1}

Of(r,k)  (B3—r)r* +4r+2k
or  (r+1)2(r+2)? (D-3)

so solving
Of(r, k)
or

=0
is equivalent to solving the equation
(3—k)r*+4r + 2k = 0. (D.4)

— If Kk =3,
of(r,x) 4r + 2K

or  (r+1)2(r+2)2
so f(r, k) is monotone increasing and rop, = 1.

— If k # 3, the solution of (D.4)) is

ry = 2t \/2?()/{__%1)(% — 2). (D.5)

>0 Vr>0
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If K < 2 the discriminant of (D.5]) is negative and hence f(r, ) is monotone. And, since

from (D.3) % is positive at r = 0, f(r, k) is monotone increasing and 7o = 1.
If K > 2, both values of (D.5)) are real.

If k € (2,3), from (D.5]) we have

—2++/2(k — 1)(k — 2) _ —2+v2-2-1 _
3—kK 3—K

ro<ry= 0,

so f(r, k) is monotone increasing for non negative r and hence rqp = 1.

If Kk >3, r, <0andr_ > 0 so we only need to analize r_. By differentiating (D.3]) and
given that 74 is solution of (D.4)), we have

B j:2\/2(fi —1)(k —2)

r=r4 N (Ti + 1)2(7’i + 2)2

9% (ryk)
or?

(D.6)

which is negative for » = r_, so f(r,x) has a local maximum at r» = r_ and f(r, k) is
increasing for 0 < r < r_ and decreasing for r > r_. On the other hand, it can easily
be shown that r_ is decreasing in & for x > 3 and that lim,_. . 7— = v/2, so r_ > 1 for
all k > 3. Hence, ropy = 1 if f(r = 1,k) < lim, 4o f(r, k) (equivalently, from (D.2), to
k < 5) and rop, = +00 otherwise.

In summary, for a time-invariant exposure:

- 1, k<5
P 400, K>5

D.2 Time-varying exposure (p, < 1)
D.21 Casek =1
In this case, (D.1]) reduces to:

ripr+1)
pper? + 20 + pe + 3(L = p)pe(1 — pe)lr +2[1 4+ (2 — p)(1 — pe)]

f(rim, p,pe) = (D.7)

Note that since all three coefficients in the polynomial of degree 2 in r in the denominator of f(r)
are positive, f(r; K, p, pe) is continuous for all positive .

Also,
Of (ris,p,pe) _ pl2p+3(1 — p)pe(1 — pe)lr* + 4p[1 + (2 — p)(1 — pe)lr +2[1 + (2 — p)(1 — pe)]
or [pper® + [2p + pe + 3(1 = p)pe(1 — pe)|r + 2[1 + (2 — p)(1 — pe)]? D8)
Note now that all six coefficients in this rational function are positive. Hence, W is positive

for all positive r and thus f(r; &, p, pe) is monotone increasing for all positive 7, and 74, = 1.
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D.2.2 Casek >1

. ] _2p(2—p) 2p(2—p)
We consider two cases: p, = ?f)(kp[; and p, # ﬁ.
o Case p, = 237(12:;))) (which implies p < 1):
In this case, ignoring constant positive factors, (D.1]) reduces to
r(r+ k) 9—20p+ 11p* — 2p?
f(rs 6, p,pe) = : o= € (+2,+00) (D.9)
(r+1)(r+a) p(2—p)

_r_

If K =a, f(r;6,p,pe) = - ‘7 which is monotone increasing for all positive 7 and 7o, = 1.
We consider now x # «. Then
Af (r; K, p, pe) o (a+1—r)r*+2ar+ak

= D.10
or (r+1)%(r + a)? ( )
If K < a+1, then f(r;x,p, pe) is monotone increasing for all positive r, and 7op, = 1.
If kK > o+ 1, the roots of (D.10)) are
+ VA
ry = i where A =a(k—1)(k —a) > o (D.11)

k—(a+1)
which implies r_ < 0 and we only need to analyze r, where there is a local maximum since

-2V A
= < 0.
r=ri (re +1)%(ry +a)?

82f(r"%)pape)
or?

It can be shown that r, > 1 and then f(r;k, p, p.) is increasing for r € [1,r,) and decreasing
for r € (ry, +00). Thus, rop, = 1 if f(r = 11k, p, pe) < lim, o f(7;K, p, pe) (equivalently, if
k < 2a+ 1) and 74, = 400 otherwise.

Summarizing,
R . I, k<K (o o 18-38p 12197478
Pe 3(1—p) opt 400 , K> K" ’ p(2—p)
o Case p, 23’)((12__[)’))) (the most general and common case):

In this case, the analytical optimization of is practically impossible because it requires
solving a polynomial equation of degree 4 with complex expressions for their coefficients, which
depend on p, p. and k. Over a fine grid of values of the parameters p € (0,1), p. € (0,1) and
k € (1,10000), we found that rop, = 1 or rop = 400 always. Assuming that the value of rop

can be only 1 or +00, and since from (D.1)), f(r =1) = % and lim, o, f(r) = pie, we
have )

B 1, k<K .. 6(1—pe)[2+(1—p)pe]
fort { +o0o , K> K" ’ S (1+p)pe (D.12)
which is coherent with results in all the others cases analyzed in this section.
In addittion, since
OK* 12(1 — p? OK* 62+ (1 — p.)p?
R 120 -p0) ’ KT 62+ ( p2)p]<07
dp (1+p)pe Ipe (1+p)p?

k* decreases with both p and p..
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D.3 Summary results for the LDD response pattern

The results are summarized in Table . In general, we should take only one measurement if x is
not greater than the threshold W — 1, which decreases with both p and p..

Table D.1: Optimal total number of measurements under the LDD response pattern in the basic scenario.

Time-varying exposure (p. < 1)
Optimal total number

K
of measurements
62—(1—p)p2]
FS T 1 2
Otherwise 400

Time-invariant exposure (p. = 1)
Optimal total number

K
of measurements
K<9H 2
Otherwise 400
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E Simulation study for the effect of dropout

In this simulation study, we assumed that the probability of dropout of participant ¢ at measurement
j was my if the response at the measurement j — 1 was lower than its third quartile or w5 otherwise.
We explored 9 scenarios, obtained from all combinations of the overall dropout fraction (0.1, 0.3
and 0.6) and the ratio m /my (0.5, 0.8 and 1, corresponding this last value to missing completely at
random, MCAR).

E.1 Parameterization
E.1.1 Parameters
e 7, = P(Y; = missing)
e ) = P(loosing i-th participant)
e m = P(Y; = missing|Y;_; < Y}(fl)
o m = P(Y; = missing|Y;_; > Y](f)l)
. Y;.(f’)l is the p-quantile of Y;_1, i.e., P(Yj_1 < Y;-(f’)l) =p
o \:=m/m,.
e Input parameters: my, and A

e Simulation parameters: m; and m

E.1.2 Obtaining 7; and 7, as a function of 7y, and A
Assuming a monotone missing pattern,

7TM:1—(1—7Tm)T.

Also,
Tm = P(Y; = missing)
= P(Y; = missing|Y;_1 < V") P(Y;_1 < Y,7))
+ P(Y; = missing|Vj_; > V") P(Y;_; > Y,")
= mp+m(l—p)=ml - (1-Np
Thus,
1— (1 —mp)¥/r
Ny =
(a1, A ) 1—(1—\p (E.1)
From ([E.1f), must be
— 1/r
Ao Lom)
p
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E.2 Scenarios

We set some parameters to fixed values (most of them from the illustrative example in the paper):
N =43, r =14, 0 =0, p = 0.3, p. = 0.13, pep = per = 0.37, 02 = 043, p = 0.75, By = 1,
Brime = —0.5, B, = —0.5 (for LDD model), a = 0.05. In each scenario, the value of the [ of interest
was set to that value which provides an expected power according to our formulas of 0.8. The number
of simulations per scenario was 500.

E.3 Results

Empirical power (Clgs%)
v A=05 A=08 =1 (MCAR)
0.1 0.79 (0.75, 0.82) 0.81 (0.77, 0.84) _0.80 (0.7, 0.84)
0.3 0.82 (0.79, 0.86) 0.79 (0.76, 0.83)  0.80 (0.77, 0.83)
0.6 0.79 (0.76, 0.83) 0.80 (0.77, 0.84)  0.77 (0.73, 0.81)

Table E.1: CMD model: Empirical power when expected power was 0.8.

Empirical power (Clgs%)
T A=05 X=08  A=1(MCAR)
0.1 0.82 (0.79, 0.86) 0.76 (0.72, 0.80) 0.82 (0.78, 0.85)
0.3 0.77 (0.73,0.80) 0.80 (0.77, 0.84) 0.78 (0.74, 0.81)
0.6 0.77 (0.73,0.80) 0.79 (0.76, 0.83)  0.80 (0.77, 0.84)

Table E.2: LDD model: Empirical power when expected power was 0.8.

Results of the simulation study are shown in Table (CMD model) and Table (LDD model).
Any scenario showed significant differences in terms of power when comparing the empirical values
with the expected one.
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F Effect of a time-varying exposure prevalence on the re-
sults, in the basic scenarios

Table F.1: Effect of time-varying exposure prevalence on rop for the CMD response pattern and CS(p)
covariance structure of the response, no missingness and CS(p,) exposure covariance structure.
Exploration was performed for » < 30 and for all combinations of the parameters p. = 0.3,0.8,
p=0208, x =1,258, p. = 0.1,0.3,0.5 and pe,/peo = 1/20,1,21 (i.e., v = —0.95,0, 20,
respectively). Numbers in the body of the table correspond to ropt.

pe = 0.3 pe = 0.8
p=0.2 p=038 p=02 p=038
Der/Po De k=1 k=2 k=1 k=1 k=2 KkK=5 K=38 k=1 k=2

0.1 0 30 30 0 0 7 17 1 30

1/20 0.3 0 30 30 0 0 8 16 0 30
0.5 30 30 30 4 5 10 19 6 30

1 * 0 30 30 0 2 6 11 6 30
0.1 2 30 30 1 2 7 17 1 30

21 0.3 8 30 30 2 3 8 16 2 30
0.5 30 30 30 4 5 10 19 6 30

*: Topt does not depend on p, if the prevalence of exposure is constant.
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G Simulation study for the effect of confounding

G.1 Simulation study 1

A simulation study was performed in order to explore the impact of confounding. Scenarios ex-
plored corresponded to all combinations of the values of the parameters: p. = 0.2,0.8;, N =
50, 200, 500, 2000; and r = 1 (only for CMD), 2 (only for LDD), 8,20. Each of these scenarios was
explored for five confounding patterns and for a number of confounders from 0 to 6. Thus, a total
of 840 scenarios were explored. The remaining parameters were fixed at the values: 02 =1, = 0,
p=0.5, a =0.05 p. = 0.3 and 7y = 0. The (’s of the model were fixed at 0.5 times the value of
the 3 of interest. The value of the (8 of interest was obtained according to our formulas in order to
achieve a power of 0.9
The simulation study was performed according to the following steps:

1. Up to 6 simulated confounders were considered, in the following order:

Zy;j ~ N(0,1), j=0,...,r, with corr(Zy;, Z1y) = p1 for k # j,
Zyj ~ Bernoulli(ps), 7 =0,...,r, with corr(Zy;, Zox) = po for k # j,
Zs; ~ N(0,1), j=0,...,r, with corr(Zs;, Zs;) = ps for k # j,
Zyj ~ Bernoulli(ps), 7 =0,...,r, with corr(Zy;, Zs) = p4 for k # j,
Zs; ~ N(0,1), j7=0,...,r, with corr(Zs;, Zsx) = ps for k # j,
Zg; ~ Bernoulli(ps), j=0,...,r, with corr(Zs;, Ze) = pe for k # j,

and assuming independence across the Z,,;. p,, was set to 0.2, Vm = 2, 4,6, and p,, was set to
0.5Vm=1,2,...,6.

2. Exposure E was simulated as a multivariate correlated Bernoulli random variable with param-
eters p. and pe.

3. Each of the binary confounders Z,,;,Vm = 2,4, 6, was simulated from the logistic model

P(Zy=1)\ _
log (m) = aom + £ log dp,,

where ¢,, is the odds ratio of E associated to Z,,, and ay,, was fixed from the constraint
E(Z,) = pm.

4. Bach of the normal confounders Z,,;, Vm = 1, 3,5, was simulated from the normal distribution

Zim ~ Nty = Elog ¢y 00 = 1),

where ¢,, is the odds ratio of E/ associated to an one unit increase of Z,,.

5. The value of the [ of interest was obtained according to our formulas in order to achieve a
power of 0.9.
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10.

11

. Multivariate normal response was simulated with mean equal to the simulated linear predictor
based on models and , including the first ¢ confounders, with ¢ between 0 and 6. The
response covariance structure was DEX(a, 6, p).

Five confounding scenarios were considered for the association between the confounders and
both the exposure and the response. These scenarios are described in Table [G.T]

Confounding OR between Effect of
scenario Zyj and X;, ¢, Zppj On YJ-,,BZmT

Constant strength

1. Weak 1.5 0.5

2. Moderate 2.0 1.0

3. Strong 2.5 1.5
Diminish strength

4. Moderate 3.0 — 1.5 2.0—0.5

5. Strong 4.0 — 1.5% 3.0 =05

- In units of the 3 of interest.
t. Linearly decreasing with the number of confounders.

Table G.1: Confounding scenarios.

Then, the model was fitted to the simulated data and the p-value for the significance of the (8
of interest (F-test) was stored.

Steps 1 to 7 were iterated 1000 times.

. The empirical power was obtained as the fraction of times that p-value < «a. Point estimate
and percentiles 2.5 and 97.5 were stored.

Steps 1 to 9 were performed for all combinations of ¢ =0, ..., 6, the five confounding scenarios
and the explored values for p., NV, and r.

. A total of 840 scenarios were explored.

Results under the CMD response pattern are showed in Figures and in scenarios with
pe = 0.2 and p, = 0.8, respectively. Under the LDD response pattern, results are shown in Figures

to 77.

G.2 Simulation study 2

In addition, we performed another simulation study in order to explore the potential effect of con-
founding on the optimal combination of N and r. We explored 8 scenarios, combining the values
of p. (0.2 and 0.8), the ratio of costs between the first measurement and the subsequent ones, &
(2 and 5 under the model ; 2 and 10 under the model ) and the confounding strength of the
confounders (“constant weak” and “constant strong”). For each scenario, the values of N and r were
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fixed at the optimal values according to our formulas when minimizing the cost of the study while
achieving a power of 0.9. Then, the empirical optimal combination of N and r was fixed as that
combination which provided the maximum empirical power without exceeding the minimum cost
mentioned above. Empirical results were assessed by including 4 confounders and simulating 1000
datasets for each scenario. Results showed an impact of confounding on the study design only for
higher values of p. and . Thus, under the LDD model, discrepancies were observed only for p, = 0.8
and k = 10, with empirical 7.,y = 13 and N, = 80 when expecting rop, = 20 and Nop = 62. Under
the CMD model, similar results were obtained, which are detailed in Table [G.2]

Table G.2: Impact of confounding on the optimal combination of number of repeated measurements and
number of participants under the CMD response pattern.

pe Kk Confounding (Topts Nopt)
strengtht Expected Empirical
0.2 2 Weak (18, 7) (15, 8)
Strong (13, 9)
5 Weak (18, 7) (18, 7)
Strong (18, 7)
08 2 Weak (1, 126) (2, 94)
Strong (1, 126)
5 Weak (20,21) (11, 32)
Strong (11, 32)

T See Table [G.1]

30



H R package usage

In this section, we illustrate the usage of the R package optimalAllocation with some examples,
including the reproduction of the results showed in the section |5{of the manuscript. The package can
be downloaded at http://www.creal.cat/xbasagana/software.html.

H.1 Some examples
H.1.1 Study 1. Maximizing power

Suppose we are interested in maximizing the power of a longitudinal study assuming the CMD
response pattern without exceeding a budget of 40 monetary units, where the monetary unit is the
cost of the first measurement. The cost of the first measurement is k = 3 times the cost of the
subsequent ones. The response covariance structure is DEX(o = 1,p = 0.7,0 = 0.5). The exposure
intraclass correlation is p, = 0.2. The expected proportion of dropout at the end of the study is
7wy = 0.2, The exposure prevalence is assumed to increase linearly from p., = 0.2 at the first
measurement to p., = 0.3 at the last measurement. The effect size to be detected is § = —0.3 and
the significance level is fixed at a = 0.05. The maximum number of repeated measurements allowed
is "max = 20. Thus, we can perform the study calculations and store the results in the object study1:

> library(optimalAllocation)

> studyl <- OA(target = "maxPower", pattern = "CMD", rMax = 20, theta = 0.5,

+ rho = 0.7, sigma = 1, rhoe = 0.2, pe0 = 0.2, per = 0.3, piM = 0.2,
+ kappa = 3, budget = 40, cl1 = 1, beta = -0.3, alpha = 0.05)

>

> studyl

Results subject to r not greater than 20:
Optimal total number of measurements (r+1): 20
Optimal number of participants (N) : 6
Maximized power : 0.9670238

Thus, the optimal is to perform a longitudinal study with N, = 6 participants and taking
Topt T 1 = 20 measurements. The maximized power of such study is 0.97.

Further information can be obtained from the function plot (). For instance, Figure is the
output of plot(studyl) and shows that the optimal strategy is to take as many measurements
as possible. Further results, including the estimated standard error of 3, can be obtained with
summary (studyl).

H.1.2 Study 2. Particular case: Cost of a cross-sectional study

Suppose we are interested in finding the cost of a cross-sectional study achieving a power of at least
0.9 to detect an effect size § = —0.3 with a significance level @« = 0.05. The cost of the unique
measurement per participant is ¢; = 25 monetary units. The proportion of exposed is assumed to be
0.3 and the residual variance is estimated in o = 1. Thus, the study calculations are:
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> study2 <- OA(target = "minCost", pattern = "CMD", rMax = O, sigma = 1,
+ pe0 = 0.3, reqPower = 0.9, cl = 25, beta = -0.3, alpha = 0.05)
> study?2
Results subject to a cross-sectional design:
Number of participants (N): 556
Cost : 13900

Thus, the required number of participants is N = 556 and the total cost is 13,900 monetary units.

H.2 Obtaining results in section

As another example of the package usage, we reproduce here results in the section [5 of the manuscript.
In that example, p. = 0.13 and the constant exposure prevalence was p.g = pe, = 0.37 for vacuum
cleaning, and p. = 0.60 and p.g = pe, = 0.17 for using air freshener sprays. The dropout fraction
at the end of the study was 7, = 0.28. The residual variance and the response covariance damping
parameter were taken from the study and set to 0? = 0.43 and 6 = 0.12, respectively. We used low
(0.3) and high (0.7) values for p. The hypothesized effect was fixed at a difference of 10% in the
expected mean value of the response between exposed and non exposed assuming the CMD response
pattern (i.e., B = —0.39). The objective was to minimize the total cost of the study fixing a minimum
required power of 0.9. The first measurement was assumed to be 2 times more expensive than each of
the subsequent ones (i.e., kK = 2). We constrained the maximum number of repeated measurements
to 20. All calculations were performed fixing a significance level a = 0.05.

Then, results in Table [5| (section [5| of the manuscript) can be reproduced with the following code:

# Creating scenarios:

>

>

> Table4 <- expand.grid(Exposure = c("Vacuuming", "Air freshener sprays"),
+ rho = ¢(0.3, 0.7))

> Table4$pe0 <- 0.37

> Table4$peO[Tabled4$Exposure == "Air freshener sprays"] <- 0.17

> Tabled$per <- Tabled$pel

> Tabled4$rhoe <- 0.13

> Tabled$rhoe[Tabled$Exposure == "Air freshener sprays"] <- 0.60

> Table4$TimeVaryingExposure <- TRUE

> Table42 <- Table4

> Table42$TimeVaryingExposure <- FALSE

> Table42$rhoe <- 1

> Table4 <- rbind(Table4, Table42)

> Tabled4$r <- NA

> Tabled4$N <- NA

> Tabled4$cost <- NA

>
>
>

# Sorting as in Table 4:
ord <- order(Table4$Exposure, Table4$rho, 1 - Table4$TimeVaryingExposure)
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Table4 <- Table4[ord, ]
rownames (Table4) <- NULL
Table4d
Exposure rho peO per rhoe TimeVaryingExposure r N cost
Vacuuming 0.3 0.37 0.37 0.13 TRUE NA NA NA
Vacuuming 0.3 0.37 0.37 1.00 FALSE NA NA NA
Vacuuming 0.7 0.37 0.37 0.13 TRUE NA NA NA
Vacuuming 0.7 0.37 0.37 1.00 FALSE NA NA NA
Air freshener sprays 0.3 0.17 0.17 0.60 TRUE NA NA NA
Air freshener sprays 0.3 0.17 0.17 1.00 FALSE NA NA NA
Air freshener sprays 0.7 0.17 0.17 0.60 TRUE NA NA  NA
Air freshener sprays 0.7 0.17 0.17 1.00 FALSE NA NA NA

# Optimal allocation calculations
# for all scenarios:

studies <- 1list()

for (i in 1:nrow(Table4))

{

studies[[i]] <- OA(target = "minCost", pattern = "CMD", rMax = 20,
theta = 0.12, rho = Tabled4$rho[i], sigma = sqrt(0.43),
rhoe = Table4$rhoe[i], pe0 = Tabled$peO[i],
per = Tabled4$per[i], piM = 0.28, kappa = 2,
reqPower = 0.9, cl = 1, beta = -0.39, alpha = 0.05)

Table4$r[i] <- studies[[i]]$ropt

Table4$N[i] <- studies[[i]]$Nopt

Tabled4$cost[i] <- round(studies[[i]]$minCost, 1)

}

# Results:

Tabled[, -c(3:5)]

Exposure rho TimeVaryingExposure r N cost
Vacuuming 0.3 TRUE 18 6 b51.
Vacuuming FALSE 1 92 125.
Vacuuming TRUE 15 3 22.
Vacuuming FALSE 0 128 128.

TRUE 20 17 160.
FALSE 1 152 206.
TRUE 19 8 T72.
FALSE 0 211 211.

Air freshener sprays
Air freshener sprays
Air freshener sprays
Air freshener sprays

O O O O O O O o
NN W W NN W
ONNNOO -, O

In order to explore the effect of departures of the value of r from the value of 7., we can create
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the Figure [H.2| using the following code:

> par(las=1, mfrow=c(2, 2))
> for (i in ¢(1,3,5,7))

> A

> plot(studies[[il])

> mtext(text= paste(Table4$Exposure[i], "\n", "rho > = ", Tabled4$rho[i], sep = ""),
+ side = 3)

> }

Figure shows how, for large values of r, the investigator can increase the number of partici-
pants in exchange for reducing the number of repeated measurements without a significant increase
of the cost.
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I Simulation study for the accuracy of the Wald test ap-
proximation

Our calculations are based on the Wald test. The F' test or the t-test are more suitable than the
Wald test when the covariance matrix needs to be estimated from the data. In the F' test, the
denominator degrees of freedom need to be estimated from the data in a non trivial way. The same
is true for the degrees of freedom needed in the t-test [1]. We consider this fact significantly hinders
the methodological development of the problem and therefore we have chosen the Wald test in small
samples. A simulation study was performed in order to evaluate the goodness of the approximation
of the F-test by the Wald test. In a simulation study, Manor and Zucker showed that the restricted
maximum likelihood (REML) approach with the Satterthwaite approximation for the degrees of
freedom for the test statistic gave Type I error rates close to the nominal level even in small samples
[2]. We assume this good performance also holds in terms of power, and thus compared the results of
this approach with the results of the Wald test. We considered the LDD response pattern. Scenarios
explored corresponded to all combinations of the values of the parameters: 8 = 0; p = 0.2,0.8;
pe = 0.2,0.7; p. = 0.2,0.7; myy = 0,0.2; N = 10,20, 30,50,200; and r = 1,8. The remaining
parameters were fixed at the values: 0% = 4, a = 0.05, 3y = 1, Btime = —0.5 and (g, = —0.5.
The simulation study was performed following these steps:

1. For each scenario, the design matrix was simulated according to the values of the parameters
Pe; Pes TM, N and r.

2. The value of the 3 of interest was obtained according to our formulas (based on the Wald test)
in order to achieve a power of 0.8.

3. Multivariate normal response was simulated according to the simulated linear predictor based
on the model.

4. The model was fitted to the simulated data and the p-values for both the F-test with the
Satterthwaite approximation for the degrees of freedom and the Wald test for the significance
of the ( of interest were stored.

5. Steps 1 to 4 were iterated 500 times.

6. Both F-test with the Satterthwaite approximation and the Wald test empirical power were
obtained as the fraction of times that p-value < a.

7. A p-value for the significance of the difference in the empirical power between the F-test and
the Wald test was computed.

A total of 147 scenarios were explored. Results are shown in Figure [.Il For N from about 30
almost no impact of avoiding the Satterthwaite correction were found. For lower values of N, the
Wald approximation overestimates the power.
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J Simulation study for the impact of an unbalanced design

J.1 Simulations

Our methods allow for designs unbalanced with respect to exposure (through the parameter p.) and
unbalanced with respect to the number of time points (through modeling dropout). In addition, we
now examined the effect of subjects not having exactly the same vector of times through a simulation
study. In this study, we simulated individual time points for the measurements, not at equidistant
points t; = j/r,j = 0,1,...,r, with r the number of repeated measurements, but at points t;
normally distributed around ¢;. The dispersion of the simulated time points t; was controlled by the
parameter tg5 which is the ratio between the length of the 95% confidence interval for t’ and the gap
between two consecutive time points in the balanced design, 1/r. For instance, tg5 = 0 correspond
to a balanced design (i.e., t; = t;) tos = 3 means that 95% of individuals are measured at j-th
measurement in a time interval of length 3/r around ¢; = j/r. An usual situation is when tg5 = 1
which corresponds to the case when 95% of participants have been measured at j-th measurement
before any of them have been measured at (j + 1)-th measurement. In general, in this simulation
study each participant has a different follow-up duration.

For each model, CMD and LDD, 36 scenarios were explored. These scenarios correspond to all
combinations of the values of the parameters N = 50, 100, 200 and 500; » = 1, 4 and 8; and tg;
= 0.01, 1 and 3. The remaining parameters were fixed to the following values: p = 0.5, 02 = 1,
pe = 0.5, p. = 0.3, @ = 0.05. In each scenario, the § of interest was obtained as that value for which
our formulas provide a power value of 0.9. Then, the remaining coefficients in the model were fixed
at 0.50. In each scenario, the empirical power was assessed through 1000 simulations.

J.2 Results

Results, summarized in Figure [J.1] showed no impact of an unbalanced design under the model
for tgs < 1 while the empirical power decayed at around 0.85 for tg5 = 3 when the expected value

under our formulas was 0.9. For the model (2)), the empirical power was around 0.93 for tg5 = 1 and
around 0.95 for tg5 = 3.
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Figure G.1: Impact of confounding under CMD response pattern in scenarios with p, = 0.2. For each
confounding scenario, empirical mean and percentiles 2.5 and 97.5 were assessed using 1000
simulations.
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Figure G.2: Impact of confounding under CMD response pattern in scenarios with p, = 0.8. For each
confounding scenario, empirical mean and percentiles 2.5 and 97.5 were assessed using 1000
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Figure G.3: Impact of confounding under LDD response pattern in scenarios with p. = 0.2. For each
confounding scenario, empirical mean and percentiles 2.5 and 97.5 were assessed using 1000
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Figure G.4: Impact of confounding under LDD response pattern in scenarios with p. = 0.8. For each
confounding scenario, empirical mean and percentiles 2.5 and 97.5 were assessed using 1000
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Figure I.1: Empirical power under the F-test with Satterthwaite approximation for the degrees of freedom
and the Wald test, for the LDD response pattern. In each of the 147 scenarios, 500 simulations
were performed. Points (segments) in the plot area correspond to the mean (minimum and
maximum) empirical power between scenarios. In all scenarios, the expected power under our
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Figure J.1: Results of the simulation study for the impact of an unbalanced design.
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