Supporting Information

Schaer et al. 10.1073/pnas.1311016110

SI Materials and Methods

Field Sampling. Bats were captured in a broad range of habitats, including ravine forest, submontane grassland, submontane forest, evergreen lowland forest, and savannas during the dry season between November and December 2006 in Côte d'Ivoire, in December 2008 in Guinea (Convention on International Trade in Endangered Species Exportation permits 449 and 450), and between November and December 2010 in Liberia (Permit no. AMD/030/053-11) (Fig. 1, Fig. S1, and Table S2). Different types of mist nets were used at ground and canopy level. We took forearm length (in millimeter) and body mass (in grams) of all individuals, as well as standard measurements of voucher specimens (head and body, tail, ear, hind foot, tibia). Reproductive status, age class, and sex (1) were additionally recorded. All techniques used for capture and preservation complied with standard methods for measuring and monitoring mammal diversity (2). For field identification of bat species, a number of identification keys were used, mainly Rosevear (3) and Hayman and Hill (4). Taxonomy follows Simmons (5) and Nesi (6) except for Miniopterus villiersi and Pipistrellus aff. grandidieri. Koopman (7) lists *M. villiersi* as a subspecies of *Miniopterus schreibersii*, but genetic results indicate cryptic diversity (8) and West African populations probably represent a distinct species. The West African Pipistrellus aff. grandidieri might represent a yet undescribed species (9).

Blood samples were obtained from a puncture of either the antebrachial or interfemoral vein. Blood sampling followed approved animal care and protocols (1). Our study adhered to the guidelines of the American Society of Mammalogists for the use of wild mammals in research (1, 2). For morphological identification of the parasites, thin blood smears were prepared. Wing punches were collected from each captured individual using the nonlethal method after Worthington Wilmer and Barratt (10) and stored in 90% (vol/vol) ethanol. Wing punches, blood dots on filter paper, or an aliquot of the blood smear sample were used for subsequent molecular analysis. The majority of captured bats were released at the field sites, and only few voucher specimens were collected to document species occurrences and verify identifications. These specimens are deposited in the Zoological Museum A. Koenig (specimens from Guinea) and the research collection of J. Fahr (Liberia and Côte d'Ivoire).

Microscopy. Thin blood smears were fixed in 100% (vol/vol) methanol and stained with the Romanowsky–Giemsa staining and examined for blood parasites via light microscopy at a magnification of $1,000\times$ for a minimum of 15 min. Examinations were repeated at least once to minimize false-negative records. The entire slide was scanned for asexual and sexual blood stages. Pictures of infected erythrocytes were processed using the SPOT Imaging Solutions software or Imaging for Windows. Parasitemias were recorded for each infected bat (Table S1) as follows. For each slide, an average number of erythrocytes per field was calculated by counting total erythrocytes observed in two fields and dividing by 2. Then, the number of parasites was counted across 40 fields of the slide or until one parasite cell was observed. Parasitemia is given as number of parasites per total estimated erythrocyte number. All positive samples were used for further genetic work.

DNA Extraction, Amplification, and Sequencing. All positive samples were subjected to parasite genotyping. A representative portion of the blood smear-negative samples was screened via PCR for confirmation. DNA was extracted from dried blood dots, wing

punches, or blood that was scraped off the blood smear slides using the DNeasy extraction kit (Qiagen). The protocol for animal tissues was performed following the manufacturer's protocol with minor modifications. Samples were eluted in 50-µL buffer AE. PCR was performed using illustra* PuRe Taq Ready-To-Go PCR beads (GE Health Sciences), 2 µL of genomic DNA as template, and 1 µL of 10 mM of each primer. Because of the diversity of the taxa being studied, many novel primers were designed for this project and multiple combinations were tried to obtain optimal sequence reads. Occasionally, nested PCRs were performed, following previously published protocols (11, 12). All primers are listed in Table S3. PCR fragments were sequenced in both directions using BigDye v3.0 (Applied Biosystems) using the manufacturer's protocol and the original sequencing primers, and run on an ABI3730xl sequencer. Sequences included 1,823 nt of mitochondrial DNA [986 nt of the cytochrome b (cytb) and 837 nt of the cytochrome oxidase I (cox1) genes], 576 nt of the apicoplast caseinolytic protease (clpc) gene, and 523 nt of the nuclear elongation factor 2 (ef2a) gene. For chiropteran Plasmodium samples, additional sequences included 900 nt of Actin1 (act1), 619 nt of Actin2 (act2), 211 nt of adenylosuccinate lyase (asl), 667 nt of cysteine proteinase (cyspro), 596 nt of dihydrofolate reductase/thymidylate synthase (dhfr/ts), 356 nt of histone H2A, 460 nt of inosine monophosphate-dehydrogenase (InMPDH), 464 nt of ookinete surface protein (P25), and 454 nt of poly-ubiquitin (UBI).

SI Results

Parasite Classification. *Plasmodium voltaicum.* The growing gametocyte features a nucleus that is surrounded by a clear more transparent zone and pigment granules are visible in the cytoplasm (Fig. 3A and Fig. S3A). Other characteristics include: (i)the typical location of the nucleus at the margin of the parasite, (ii) a weaker staining of the microgametocyte cytoplasm compared with the macrogametocyte, (iii) an ambiguous boundary of the microgametocyte nucleus that occupies a large area of the parasite, and (iv) enlargement of erythrocytes that are occupied by mature gametocytes.

Plasmodium cyclopsi. Thin and fragile young ring forms were found in infected blood, with a vacuole limited by a narrow border of cytoplasm and a relatively large nucleus, resembling the description by Landau and Chabaud (13) (Fig. 3*A*). Schizonts are very compact, with small dense nuclei and a mass of granules that occasionally contain a large grain of black pigment. There were usually eight nuclei, although occasionally only six nuclei (Fig. S3*B*).

Polychromophilus. The parasite blood stages of *Polychromophilus* sp. are limited to gametocytes. When mature, these gametocytes fill the erythrocyte completely and cause a slight enlargement and a round or often oval-shaped form of the host cell with fine yellow-brown pigment grains scattered in the cytoplasm. The macrogametocyte features purple-blue-stained cytoplasm and a small distinct nucleus that is placed eccentrically and stains pink (Fig. 3B and Fig. S3C).

Nycteria. Only sexual stages were found in the blood, almost exclusively representing growing gametocytes. When immature, the gametocytes possess an oval shape (Fig. 3C and Fig. S3D and E). Later, gametocytes adopt a spherical shape, and the brown pigment granules become scattered in the cytoplasm or are assembled in small groups. The growing forms feature a diffuse nucleus area, which only becomes homogeneous after maturity. Garnham and Heisch (14) described a well-condensed nucleus in fully mature gametocytes. However, we did not observe fully

mature stages in our samples. Thus, it was difficult to distinguish the sexes of the gametocytes without the characteristic staining of these stages (14). The gametocytes found in Rhinolophus alcyone and Rhinolophus landeri resemble each other to a high degree. Both are oval-shaped parasites and contain several darkstained granules, but no definite nucleus area. The cytoplasm does not appear amoeboid, and the parasite does not fill the entire erythrocyte. Hence, the host-cell margin remains detectable, even at the mature gametocyte stage, and the outline of the parasite membrane is clearly visible. The main morphological diagnostic features for species of Nycteria are the size and shape of the schizonts (15). Because in the present study only blood stages were available for morphological comparisons, parasites could not be classified further to the species level. We assigned the parasites found in R. alcyone and R. landeri to the genus Nycteria on the basis of the morphology of the gametocytes and due to their grouping as a distinct clade outside the Hepatocystis, Plasmodium, and Polychromophilus clades.

Hepatocystis. Blood stages of *Hepatocystis* spp. are limited to gametocyte stages and hemozoin was present in all infected erythrocytes (Fig. 3D and Fig. S3 *F–O*). In the majority of cases, the infectious stages found in the blood smears were fully mature gametocytes. The youngest forms were very small red-staining chromatin dots, as described by Desowitz (16) from *Hepatocystis*

- 1. Kunz TH, Parsons S (2009) Ecological and Behavioral Methods for the Study of Bats, eds Kunz TH, Parsons S (Johns Hopkins Univ Pr, Baltimore), 2nd Ed.
- Sikes RS, Gannon WL (2011) Animal Care and Use, Committee of the ASM, 2011. J Mammal 92:235–253.
- Rosevear DR (1965) The Bats of West Africa [Trustees of the British Museum (Natural History), London].
- Hayman RW, Hill JE (1971) The Mammals of Africa, an Identification Manual, eds Meester J, Setzer HW (Smithsonian Institution, Washington), pp 1–73.
- Simmons NB (2005) Mammal Species of the World: A Taxonomic and Geographic Reference, 3rd, eds Wilson D, Reeder DM (Johns Hopkins Univ Press, Baltimore), pp 312–529.
- Nesi N, et al. (2013) Molecular systematics and phylogeography of the tribe Myonycterini (Mammalia, Pteropodidae) inferred from mitochondrial and nuclear markers. *Mol Phylogenet Evol* 66(1):126–137.
- Koopman KF (1965) Status of forms described or recorded by J.A. Allen in "The American Museum Congo Expedition Collection of Bats.". American Museum Novitiates no. 2219, eds Koopman KF, Allen JA, Lang H, Chapin JP (American Museum of Natural History, New York), pp 1–34.
- Appleton BR, McKenzie JA, Christidis L (2004) Molecular systematics and biogeography of the bent-wing bat complex *Miniopterus schreibersii* (Kuhl, 1817) (Chiroptera:Vespertilionidae). *Mol Phylogenet Evol* 31(2):431–439.

in monkeys. The more developed stages showed a solid nucleus and cytoplasm and appeared as rings resembling those of Plasmodium (Fig. 3D). The sexually dimorphic micro- and macrogametocytes were distinguished after Giemsa staining. The microgametocytes featured pale brown cytoplasm with evenly distributed hemozoin granulae. The nucleus consisted of a large portion that stained light red, and a smaller part within staining dense dark red. No granules were visible in the nuclear zone. The macrogametocytes, in contrast, stained blue, with a red staining nucleus of much smaller size in comparison with the nucleus of the microgametocyte. Pigment granules were dispersed in the whole cytoplasm. The appearance and size of the digestive vacuoles differed from total absence (Fig. S3G) to small size (Fig. S3 F, I, and J) and to vacuoles, which almost filled two quarter of the parasite (Fig. S3 M and N). Deformations of the host cells were common, resulting in amoeboid cell forms (Fig. S3 K and L). The morphology of the parasites isolated in the present study from Epomops buettikoferi, Nanonycteris veldkampii, Micropteropus pusillus, and Epomophorus gambianus is consistent with Hepatocystis epomophori (15). We note that the sequences of Hepatocystis species isolated from Myonycteris leptodon in Liberia display minor phylogenetic distances to the "H. epomophori" group and might therefore represent a distinct species.

- Monadjem A, Fahr J (2007) A Rapid Biological Assessment of North Loma, Gola and Grebo National Forests, Liberia, eds Hoke P, Demey R, Peal A (Conservation International, Arlington, VA), pp 47–58 and 101–106.
- Worthington Wilmer J, Barratt E (1996) A non-lethal method of tissue sampling for genetic studies of chiropterans. Bat Research News 37(1):1–3.
- Perkins SL, Sarkar IN, Carter R (2007) The phylogeny of rodent malaria parasites: simultaneous analysis across three genomes. *Infect Genet Evol* 7(1):74–83.
- Perkins SL, Austin CC (2009) Four new species of *Plasmodium* from New Guinea lizards: Integrating morphology and molecules. J Parasitol 95(2):424–433.
- Landau II, Chabaud AG (1978) [Description of P. cyclopsi n. sp. a parasite of the microchiropteran bat Hipposideros cyclops in Gabon (author's transl)]. Ann Parasitol Hum Comp 53(3):247–253.
- Garnham PCC, Heisch RB (1953) On a new blood parasite of insectivorous bats. Trans R Soc Trop Med Hyg 47(5):357–363.
- Garnham PCC (1966) Malaria Parasites and Other Haemosporidia (Blackwell Scientific, Oxford).
- Desowitz R (1970) Observations on the Heptocystis of the White-Cheeked Gibbon (Hylobates concolor). J Parasitol 56(3):444–446.

Fig. S1. Prevalences of hemosporidian genera across collecting sites. The pie charts for each country show the numbers of bat individuals that are infected with the respective hemosporidian parasite genus.

Fig. 52. Maximum-likelihood phylogeny of bat hemosporidian parasites in broad context of previously published sequences. Maximum-likelihood phylogeny of novel isolates of West African bat malaria parasites (black type) within context of large set of previously published taxa (gray type). Phylogeny was constructed with partitioned analysis of mitochondrial (*cytb, cox1*), apicoplast (*clpc*), and nuclear (*ef2a*) genes, rooted with *Leucocytozoon* taxa. Bootstrap support values \geq 90% on key clades indicated with a dot.

Plasmodium voltaicum (ex Myonycteris angolensis)

Hepatocystis sp. (ex Epomophorus gambianus)

Hepatocystis sp.

κ

(ex Myonycteris leptodon)

Hepatocystis sp. (ex Epomophorus gambianus)

Hepatocystis sp. (ex Myonycteris leptodon)

Polychromophilus sp.

Hepatocystis sp.

н

(ex Hypsignathus monstrosus)

C

(ex Neoromicia capensis)

Nycteria sp. (ex Rhinolophus alcyone)

Hepatocystis sp. (ex Epomops buettikoferi)

Hepatocystis sp. (ex Myonycteris leptodon)

Nycteria sp. (ex Rhinolophus alcyone)

Hepatocystis sp. (ex Nanonycteris veldkampii)

Hepatocystis sp. (ex Myonycteris leptodon)

Fig. S3. Representative micrographs from Giemsa-stained blood films of infected Chiroptera. The parasite genus/species and the associated hosts are listed above the respective pictures. Sizes of erythrocytes of bats vary between 5 and 6.4 μm in diameter. Gametocytes slightly enlarge the host cells up to about 7 μm. (*A*) Growing gametocyte of *Plasmodium voltaicum*. (*B*) *Plasmodium cyclopsi* schizont including six nuclei. (*C*) Mature gametocyte stage of *Polychromophilus*, causing a round or oval-shaped form of the erythrocyte with yellow-brown pigment grains scattered in the cytoplasm. (*D* and *E*) Growing gametocytes of *Nycteria*. Note the rounded gametocytes that are not fully grown yet and the coarse grained hemozoin. (*F*, *H–J*) Male microgametocytes of *Hepatocystis* sp. Note the double-infected erythrocyte in picture *L*. (*M* and *N*) Ring stages of *Hepatocystis* sp. Ring stages resemble *Plasmodium* ring stages, but show a larger nucleus. Micrographs were taken at 1,000× magnification.

Fig. S4. Bat Plasmodium in context of 18 rodent Plasmodium lineages. Thirteen-gene maximum-likelihood phylogeny for the bat Plasmodium taxa from this study and rodent Plasmodium species, subspecies, and strains, including two Plasmodium berghei, five Plasmodium yoelii, four Plasmodium chabaudi, and seven Plasmodium vinckei lineages. Bootstrap support values above nodes and Bayesian posterior probability values are below nodes.

Parasite genus	Host species	Date collected*	Code'	Sex	Age⁺	Parasitemia (%)
Polychromophilus	Miniopterus villiersi	12 Dec 2008	G-3-2	F	Adult	0.03
		12 Dec 2008	G-3-3	М	Adult	< 0.001
		13 Dec 2008	G-3-1	F	Adult	< 0.001
	Neoromicia capensis	12 Dec 2008	G-3-1	М	Adult	< 0.001
_, ,,	Pipistrellus aff. grandidieri	12 Dec 2008	G-3-1	F	Adult	0.02
Plasmodium	Hipposideros cyclops	21 Nov 2010	L-4-2	F	Adult	0.007
		21 Nov 2010	L-4-1	M	Adult	0.008
		01 Dec 2010	L-1-1	M	Adult	+
	Myonycteris angolensis	04 Dec 2008	G-I-I		Adult	< 0.001
		10 Dec 2008	G-5-1	F	Adult	< 0.001
Nuctoria	Phinalaphus alsuana	14 Dec 2008	G-3-1	F	Adult Adult	< 0.001
Nyclena	Rhinolophus alcyone	14 Dec 2008	C-9-1		Adult	0.05
Henatocystis	Enomonhorus gambianus	14 Dec 2008	G_/L_1	F	Auun Subadult/iuvenile	< 0.001
repatocystis	Epomons buettikoferi	19 Nov 2006	C-13-1	F		1.0
	Epomops Buettikoren	19 Nov 2006	C-12-1	F	Adult	1.0
		27 Nov 2008	1-3-1	M	Subadult/iuvenile	0 02
		18 Dec 2008	G-4-2	F	Adult	0.09
		19 Dec 2008	G-4-3	F	Adult (lactating)	< 0.001
		19 Dec 2008	G-4-1	F	Adult (lactating)	0.4
		12 Nov 2010	L-2-1	Ē	Adult	< 0.001
	Hvpsianathus monstrosus	14 Nov 2006	C-5-1	F	Subadult/iuvenile	< 0.001
	57-5	19 Nov 2006	C-12-1	F	Adult (lactating)	+
		23 Nov 2006	C-8-1	F	Subadult/juvenile	< 0.001
		19 Nov 2010	L-2-1	М	Adult	0.04
		23 Nov 2010	L-4-1	F	Adult	< 0.001
	Micropteropus pusillus	03 Dec 2008	G-1-8	F	Adult (lactating)	< 0.001
		03 Dec 2008	G-1-4	F	Subadult/juvenile	0.3
		03 Dec 2008	G-1-9	М	Adult	0.06
		03 Dec 2008	G-1-7	F	Adult	0.6
		03 Dec 2008	G-1-11	F	Adult	< 0.001
		03 Dec 2008	G-1-12	F	Adult	0.03
		03 Dec 2008	G-1-1	М	Adult	0.01
		03 Dec 2008	G-1-13	F	Adult (lactating)	< 0.001
		03 Dec 2008	G-1-3	F	Adult	0.01
		03 Dec 2008	G-1-6	М	Adult	0.1
		03 Dec 2008	G-1-10	F	Adult	< 0.001
		03 Dec 2008	G-1-14	F	Adult	+
		03 Dec 2008	G-1-2	F	Adult (lactating)	< 0.001
		04 Dec 2008	G-1-15	F	Adult	0.08
		04 Dec 2008	G-1-16	F	Adult (lactating)	0.02
		04 Dec 2008	G-1-1/	F	Adult	< 0.001
(1		04 Dec 2008	G-1-5	M	Adult	0.07
Hepatocystis	Micropteropus pusillus	06 Dec 2008	G-2-4	F	Adult	+
		06 Dec 2008	G-2-1	F	Adult	0.04
		06 Dec 2008	G-2-2	F	Adult	0.06
		06 Dec 2008	G-2-3		Adult Adult	0.06
		06 Dec 2008	G-2-5	, r	Adult	0.02
		00 Dec 2008	G-2-0		Adult	0.05
		08 Dec 2008	G-5-7	IVI E	Adult	0.01
		09 Dec 2008	6-5-8	, E	Adult (lactating)	< 0.001
		09 Dec 2008	G-5-9	F	Adult (lactating)	0.001
		09 Dec 2008	G-5-2	, F	Adult (lactating)	0.02
		09 Dec 2008	G-5-3	, F	Adult (lactating)	< 0.001
		09 Dec 2008	G-5-1	M	Adult	0.03
		09 Dec 2008	G-5-6	F	Adult (lactating)	< 0.05
		10 Dec 2008	G-5-10	, M	Adult	0.2
		10 Dec 2008	G-5-11	F	Adult	0.05
		10 Dec 2008	G-5-12	, F	Adult	< 0.001
		10 Dec 2008	G-5-4	F	Adult	0.05
		13 Dec 2008	G-3-4	F	Adult (lactating)	< 0.001
		13 Dec 2008	G-3-1	F	Adult (lactating)	< 0.001
				•		

Table S1. Parasitemia, sex, and age of parasite-positive individuals

PNAS

PNAS

Table S1. Cont.

PNAS PNAS

Parasite genus	Host species	Date collected*	$Code^\dagger$	Sex	Age [‡]	Parasitemia (%) [§]
		13 Dec 2008	G-3-3	М	Adult	0.02
		14 Dec 2008	G-3-2	F	Adult	0.01
		18 Dec 2008	G-4-6	F	Subadult/juvenile	< 0.001
		18 Dec 2008	G-4-7	F	Adult	< 0.001
		18 Dec 2008	G-4-8	М	Adult	+
		18 Dec 2008	G-4-9	М	Adult	< 0.001
		18 Dec 2008	G-4-10	F	Adult (lactating)	< 0.001
		18 Dec 2008	G-4-2	F	Subadult/juvenile	0.02
		18 Dec 2008	G-4-11	F	Adult	0.05
		18 Dec 2008	G-4-12	F	Subadult/juvenile	0.04
		18 Dec 2008	G-4-13	F	Subadult/juvenile	0.02
		18 Dec 2008	G-4-14	F	Adult	< 0.001
		18 Dec 2008	G-4-15	М	Adult	< 0.001
		18 Dec 2008	G-4-16	F	Adult (lactating)	0.02
		18 Dec 2008	G-4-17	F	Adult	0.06
		18 Dec 2008	G-4-4	F	Adult	0.05
		18 Dec 2008	G-4-18	М	Adult	0.05
		18 Dec 2008	G-4-1	F	Adult (lactating)	< 0.001
		18 Dec 2008	G-4-19	F	Adult 5,	< 0.001
		18 Dec 2008	G-4-5	F	Adult (lactating)	0.05
		19 Dec 2008	G-4-20	М	Adult	0.07
		19 Dec 2008	G-4-21	F	Subadult/iuvenile	< 0.001
		19 Dec 2008	G-4-22	F	Adult (lactating)	0.01
		19 Dec 2008	G-4-23	F	Adult (lactating)	< 0.001
	Micropteropus pusillus	19 Dec 2008	G-4-24	F	Adult (lactating)	0.01
		19 Dec 2008	G-4-3	F	Adult (lactating)	< 0.001
		19 Dec 2008	G-4-25	F	Subadult/iuvenile	0.01
		19 Dec 2008	G-4-26	F	Subadult/iuvenile	< 0.001
		19 Dec 2008	G-4-27	F	Adult (lactating)	< 0.001
		19 Dec 2008	G-4-1	M	Adult	0.06
		19 Dec 2008	G-1-18	F	Subadult/iuvenile	< 0.001
	Myonycteris lentodon	08 Nov 2006	C-4-1	, F	Δdult	0.04
	wyonyciens ieptodom	08 Nov 2006	C-4-7	M	Adult	0.04 +
		08 Nov 2006	C-4-3	M	Adult	0,002
		18 Nov 2006	C-13-1	F	Adult	< 0.002
		18 Nov 2006	C- 13-7	F	Adult	< 0.001 _
		22 Nov 2006	C-8-1	, E	Subadult/iuwonilo	
		22 Nov 2000	C-0-1	, M	Adult	- - 0.001
		22 Nov 2006	C-7-7	101	Adult	< 0.001
		18 Nov 2000	1-2-1	E	Adult (prognant)	+ < 0.001
		22 Nov 2010	L-Z-1	1		0.001
		22 NOV 2010	1-2-1	лл М	Subadult/iuwonilo	0.05
	Nanapystaris valdkampii	10 Nov 2010	C 2 1	5		0.5
	Nanonyclens veidkampii	10 NOV 2000	C-2-1		Auun Subadult/innonila	+
		22 NOV 2000	C-0-2	IVI M		< 0.001
		23 NOV 2000	C-0-1	IVI E		< 0.001
		24 NOV 2006	C-/-I	r r	Adult	+
		01 Dec 2006			Adult	< 0.001
		01 Dec 2010	L-1-1	IVI	Adult	< 0.001

*All bats were captured between dusk (5:30 PM) and late night (3:00 AM).

[†]Coding of captured individuals is according to country (C, Cote divoire; G, Guinea; L, Liberia), the capture site (see Table S2) and the order of the same species at any given night.

^{*}Age was categorized into two groups, "adult" and "subadult/juvenile." Lactating/pregnant females are labeled in parenthesis. [§]Parasitemia was determined by microscopic enumeration of infected/ total erythrocytes in Giemsa-stained blood films. +, parasite-positive, but parasite-density uncertain because of suboptimal preservation of blood-film. All microscopically identified infected individuals were confirmed by PCR.

Table S2.	GPS coordinates of the	sampling locations

Country_site	Latitude	Longitude	Sampling date
C_1 – C_13	05°50′00.0′′N	07°21′00.0′′W	Nov–Dec 2006
G_1	08°33′07.0′′N	08°53′57.1′′W	Dec 2008
G_2	08°37′08.2′′N	08°37′08.2′′W	Dec 2008
G_3	08°33′26.5″N	08°55′16.5′′W	Dec 2008
G_4	08°35′35.7′′N	08°51′25.8′′W	Dec 2008
G_5	08°29′35.1′′N	08°53′48.2′′W	Dec 2008
L_1	05°39′08.3′′N	08°09′45.6′′W	Nov–Dec 2010
L_2	05°39′23.6′′N	08°11′10.8′′W	Nov–Dec 2010
L_3	05°41′53.7′′N	08°07′32.6′′W	Nov–Dec 2010
L_4	05°39′24.2′′N	08°11′26.0′′W	Nov–Dec 2010

C, Côte d'Ivoire; G, Guinea; L, Liberia. The country and site "code" corresponds with the codes in Fig. 2, and Figs. S2 and S4. The GPS coordinates (geographic reference) for each site are given in decimal degrees.

Table S3. Primer sequences

Primer name

AS PNAS

Cytb		
DW2/DW4	TAATGCCTAGACGTATTCCTGATTATCCAG	TGTTTGCTTGGGAGCTGTAATCATAATGTG
3932F/3932R	GGGTTATGTATTACCTTGGGGTC	GACCCCAAGGTAATACATAACCC
BatMalF3/BatHepR2	GGATTTAATGTAATGCCTAGACGT	AATGCTGTATCATACCCTAAAGGATT
BatMalF4/BatMalR5	AATCCTTTAGGGTATGATACAGC	ATGTTTGCTTGGGAGCTGTAATCAT
HepF3/HepR3	CTTACCTTGGGGACAAATGAGTTATT	CTCTAGCACCAAATGTCATTTTAAATTG
Cox1 [*]		
1989F/BMcox1R2	CCTGACATGGATGGATAATACTCG	GCTCCAATTGATAATACAAAATG
BMcox1F1/R1	TGGACATTATATCCTCCATTAAGTACATC	GCACCAATTGATAATACAAAATG
BMcox1F3/R3	TGGACATTATATCCACCTTTAAGTACATC	GCACCAATTGATAAAACAAAATG
BMcox1F4/R4	TGGACATTATATCCACCATTAAGTACATC	GCTCCAATAGATAAAACAAAATG
cox1F/R	CTATTTATGGTTTTCATTTTTATTTGGTA	AGGAATACGTCTAGGCATTACATTAAATCC
cox1inF/inR	ATGATATTTACARTTCAYGGWATTATTATG	GTATTTTCTCGTAATGTTTTACCAAAGAA
cox1midF/midR	TTATTCTGGTTTTTTGGTCATCCAG	CTGGATGACCAAAAAACCAGAATAA
Clpc		
clpcoutF/outR	GGTAAAACTGAATTAGCAAAAATATTA	GGACGAGCTCCATATAAAGGAT
clpcinF/ inR	TTAGCTAAACAATATTTGGTTCTG	GAGCTCCATATAAAGGATTATAAG
EF2		
EF2F1/R1	GTTCGTGAGATCATGAACAAAAC	CCTTGTAAACCAGAACCAAA
ACT1		
ACT1outF/outR	ATGGGTGACGAAGAAGTTCAAGC	TTAGAAGCATTTTCTGTGGACAATACTTGG
ACT1inF/inR	CAAGCTTTAGTTATTGATAATGG	CCCTTCCAGCCAAATCTAATCTCA
ACT2		
ACT2outF/outR	ATGCCAGAAGAATCAATAGC	TTAGAAGCACTTTCTGTGAACGATACTTGGG
ACT2inF/inR	CCAGCTATGTATGTTAGTATACAGG	CTTTAATTTTCATAGATGGCGG
ASL		
ASLoutF/outR	GSKAARTTTAATGGKGCTGTWGG	GGATTAAYTTTATGAGGCATTG
ASLinF/inR	GCTGATMAAAATRTTGATTGG	GAGGCATTGTACTACTWCC
CysPro		
CysPro_outF/outR	CAATGAAATGGTAGGTAAAAATGGT	CAATGAAATGGTAGGTAAAAATGGT
CysPro_inF/inR	GATTTTTCTAAGGAAGAATTTAATAG	TATTTTTTTATCAAACTGCTATCTAC
dhfr/ts		
dhfrF/R	CAAGATGATAGAACAGGTGTTGGTG	CCCAATACATGTATAAATTCAGCTG
H2A		
H2AoutF/outR	ATGTCAGCAAAAGGAAAAACCGG	TTAATAATCTTGGTTAGCTGTGGC
H2AinF/inR	GTCGCAAAAAGCTGTTAAGGG	GTGGCACCTGATTTTAATTGGG
InMPDH		
InMPDH_F/R	GCKTCTAAAAGHVAAAAYAAACAATTAATTGTWGG	RAATYBTTTATTATACATRGCYTCCATACTSCCCAT
P25		
P25outF/outR	CTTTTCATATACGCTTTCCTTGG	TTAAATGATATTTGAAAATATTAG
P25inF/inR	GGCTCAAATGAGTAACCATTTAG	GAACATGCTATATATTGAATGTG
UBI		
UBloutF/outR	ATGCAAATTTTTGTGAAAACATTAAC	TTAGCAACCTCCTCTTAATCTTAAAAC
UBlinF/inR	GGAAAAACTATAACTCTTG	ATGTAAGGTTGATTCTTTTTG

ACT1, Actin1; ACT2, Actin2; asl, adenylosuccinate lyase; clpc, caseinolytic protease; cox1, cytochrome oxidase l; cyspro, cysteine proteinase; Cytb, cytochrome b; dhfr/ts, dihydrofolate reductase/thymidylate synthase; ef2a, elongation factor 2; F, forward primer; H2A, histone H2A; in/mid, inner primer for nested PCR; InMPDH, Inosine monophosphate-dehydrogenase; out, outer primer for nested PCR; P25, ookinete surface protein; R, reverse primer; UBI, poly-ubiquitin. *Primers were used in different combinations of the available forward and reverse primers.

Table S4. GenBank accession numbers for cytb, cox1, clpc, and ef2a

		Abbroviation in Fig. 24		GenBank	accession nos	5.
Parasite	Host species	(and Fig. S2)	cytb	cox1	clpc	ef2a
Leucocytozoon						
L. fringillinarum	Piplio chlorurus	Leucocytozoon spp.	NC 012451	NC 012451	_	_
L. sp.	Buteo jamaicensis	Leucocytozoon sp. (2109)	EU254518	EU254563	EU254609	_
L. sp.	Accipiter brevipes	Leucocytozoon spp. (157)	EU254519	EU254564	EU254610	_
L. sp.	Buteo lineatus	Leucocytozoon sp. (2208)	EU254520	EU254565	EU254611	_
Haemoproteus						
H. columbae	Columba livia	Haemoproteus columbae(2111)	EU254548	_	EU254642	_
H. columbae	Columba livia	Haemoproteus columbae(2146)	EU254553	_	EU254652	_
Haemoproteus (Para	haemoproteus)					
H. belopolskyi	Sylvia curruca	Haemoproteus belopolskyi	DQ451408	EU254603	EU254657	_
H. coatneyi	Dendroica	Haemoproteus coatneyi	EU254550	EU254595	EU254648	—
	coronata					
H. turtur	Streptopelia	Haemoproteus turtur	DQ451425	EU254592	EU254644	_
	senegalensis					
Plasmodium						
Avian Plasmodium						
P. gallinaceum	Gallus gallus	Avian Plasmodium ssp.	AY099029	AB564275	AB649424	—
		P. gallinaceum				
P. relictum	Hemignathus	Avian Plasmodium ssp.	AY733090	AY733090	EU254633	—
	virens	P. relictum				
Saurian Plasmodium		Dia ana a dia mana a mana a hila ma			511254622	11107070
P. azuropniium	Anolis oculatus	Plasmodium azuropniium	EU254532	EU254575	EU254622	JN18/8/6
P. chiridanuae	Sceloporus jarrovi	Plasmodium chiricanuae	AY099061	KF049536	KF049558	
P. floridense	Anolis oculatus	Saurian Plasmodium ssp. P. floridense	EF0/9654	EFU/9654	EU254620	JN187874
P. giganteum	Agama agama	Plasmodium giganteum	AY099053	EU254577	EU254624	_
P. hispaniolae	Anolis distichus	Plasmodium hispaniolae	JN187902	JN187863	—	JN187881
P. lacertiliae	Emoia longicauda	Plasmodium lacertiliae	EU834709	EU834714	—	—
P. leucocytica	Anolis oculatus	Plasmodium leucocytica	EU254533	EU254576	EU254623	JN187877
P. mexicanum	Sceloporus	Saurian Plasmodium ssp./	EF079653	EF079653	EU254619	—
	occidentalis	P. mexicanum	51102 4702	511024744		
P. minuoviride	Prasinohema	Plasmodium minuoviride	EU834703	EU834/11	_	_
	prehensicauda					
Mammalian Plasmod	ium					
Primato Plasmodium	lum					
	Thailand macaquos	Plasmodium coatnovi	EU/00/07	AB25/1575	AP/71972	
P. concerne	Old World Monkovs	Plasmodium cunomolai	AE060616	AB334373	AB471872	_
P. falcinarum	Humans	Plasmodium falcinarum	DO6/28/5	M76611	DO6/28/6	AB023579
P fieldi	Old World Monkeys	Plasmodium fieldi	AB35/157/	AB35/157/	AB/7187/	AD023373
P. gaboni	Pan troglodytes	Plasmodium gaboni	FI895307	FI895307	HO842630	_
P. gonderi	Old World Monkeys	Plasmodium gonderi	AF069622	AR434918	ΔR471877	
P bylobati	Hylobates moloch	Plasmodium bylobati	AR354573	AB354573	ΔB471878	_
P inui	Old World Monkeys	Plasmodium inui	AF069617	AB354572	AB471879	_
P knowlesi	Old World Monkeys	Plasmodium knowlesi	AF069621	AY598141	AF348341	XM 002260326
P. malariae	Humans	Plasmodium malariae	AF069624	AB489193	AF348342	
P. ovale	Humans	Plasmodium ovale	AF069625	JF894415	AY634623	_
P. reichenowi	Pan troglodytes	Plasmodium reichenowi	AJ251941	AJ251941	EU560464	_
P. simiovale	Old World Monkeys	Plasmodium simiovale	AF069614	_	AB471881	_
P. simium	Alouatta fuscus	Plasmodium simium	AF069620	_	_	_
P. vivax	Humans	Plasmodium vivax	AF069619	AAY26841	AF348344	XM 001615828
P. sp.	Pan troglodytes	Ex. Chimp C1	HM235391	HM235391	HM235147	
P. sp.	Pan troglodytes	Ex. Chimp C2	HM235404	HM235400	HM235145	_
P. sp.	Pan troglodytes	Ex. Chimp_C3	HM235360	HM235360	HM235151	_
P. sp.	Gorilla gorilla	Ex. Gorilla_G1	HM235288	HM235308	HM235163	_
Р. sp.	Gorilla gorilla	Ex. Gorilla_G2	HM234984	HM235383	HM235148	_
P. sp.	Gorilla gorilla	Ex. Gorilla_G3	HM234998	HM235290	HM235154	_
P. sp.	Propithecus verreauxi	Ex. Propithecus	AY762079	_	_	_
·		verreauxi (Sifaka)				
Rodent Plasmodium						
P. atheruri	Atherurus africans	P. atheruri	AY099051	DQ414588	DQ417611	_

Table S4. Cont.

		Abbroviation in Fig. 2.4		GenBank	accession nos	•
Parasite	Host species	(and Fig. S2)	cytb	cox1	clpc	ef2a
P. berghei (Anka)	Grammomys surdaster*	Plasmodium berghei (Anka)	DQ414645	DQ414589	DQ417612	_
P. berghei (NK65)	G. surdaster*	P. berghei NK65	DQ414646	DQ414590	DQ417613	_
P. chabaudi adami (408XZ)	Thamnomys rutilans [†]	P. chabaudi adami 408XZ	DQ414647	DQ414591	DQ417614	_
P. chabaudi	T. rutilans [†]	P. chabaudi adami 556KA	DQ414648	DQ414592	DQ417615	_
P. chabaudi	T. rutilans [†]	Plasmodium chabaudi (AS)	DQ414649	DQ414593	DQ417616	XM_736543
P. chabaudi (AS) P. chabaudi	T. rutilans [†]	P. chabaudi chabaudi CB	AY099050	DQ414594	DQ417617	_
P. vinckei brucochwatti	Praomys tullbergi	P. vinckei brucechwatti	DQ414652	DQ414597	DQ417620	—
P. vinckei lentum (19477)	T. rutilans [†]	P. vinckei lentum 194ZZ	DQ414653	DQ414598	DQ417621	_
P. vinckei lentum (408XZ)	T. rutilans [†]	P. vinckei lentum 408XZ	DQ414654	DQ414599	DQ417622	_
P. vinckei	T. rutilans [†]	P. vinckei petteri BS	DQ414655	DQ414600	DQ417623	_
P. vinckei petteri (CB)	T. rutilans [†]	P. vinckei petteri CR	DQ414656	DQ414601	DQ417624	—
P. vinckei vinckei (VIBA CyPI)	G. surdaster*	Plasmodium vinckei (VIBA CyPI)	DQ414651	DQ414596	DQ417619	—
P vinckei ("FL")	Thamnomys sp	P vinckei Fl	DO414650	DO414595	DO417618	_
P voelii voelii (17X)	T rutilans [†]	P. voelii voelii 17X	AV099051	DQ414555	DQ417678	_
P. yoolii yoolii (77)	T. rutilans [†]	Plasmodium voolii (22v)	DO414660	DQ414005	DQ417620	
P. yoolii (EL)	T. rutilans [†]	P voolii El	DQ414657	DQ414602	DQ417630	
P. yoeni (EL)		P. yoelli EL	DQ414657	DQ414602	DQ417625	_
P. yoelli killicki	T. rutilans	P. yoelii Kiilicki 193L	DQ414658	DQ414603	DQ417626	_
P. yoelli nigeriensis	1. rutilans	P. yoelli nigeriensis N67	DQ414659	DQ414604	DQ417627	_
Bat Plasmodium						
P. cyclopsi	Hipposideros cyclops	Ex. Hipposideros cyclops (L-1-1)	KF159/10	KF159788	KF159635	KF159729
P. cyclopsi	Hipposideros cyclops	Ex. Hipposideros cyclops (L-4-1)	KF159674	KF159789	KF159630	KF159/28
P. cyclopsi	Hipposideros cyclops	Ex. Hipposideros cyclops (L-4-2)	KF159716	KF159791	KF159637	F
P. voltaicum	Myonycteris angolensis	Ex. Myonycteris angolensis (G-1-1)	KF159671	KF159792	KF159648	F
P. voltaicum	Myonycteris angolensis	Ex. Myonycteris angolensis (G-3-1)	F	F	KF159634	F
P. voltaicum	Myonycteris angolensis	Ex. Myonycteris angolensis (G-5-1)	KF159692	KF159793	F	F
Hepatocystis Primate Hepatocystis						
Hep. sp.	Cercopithecus cephus	Ex. Cercopithecus cephus (Gabon/GAB_1)	JF923760	—	—	—
<i>Hep.</i> sp.	Cercopithecus cephus	Ex. Cercopithecus cephus (Gabon/GAB_2)	JF923758	—	—	—
Hep. sp.	Cercopithecus nictitans	Ex. Cercopithecus nictitans (Cambodia)1	JQ070884	—	—	—
Hep. sp.	Cercopithecus nictitans	Ex. Cercopithecus nictitans (CAM_2)	JQ070893	—	—	—
Hep. sp.	Cercopithecus nictitans	Ex. Cercopithecus nictitans (CAM_3)	JQ070872	—	—	_
Hep. sp.	Cercopithecus nictitans	Ex. Cercopithecus nictitans (CAM_4)	JQ070903	—	—	_
Hep. sp.	Cercopithecus nictitans	Ex. Cercopithecus nictitans (CAM_5)	JQ070940	_	_	_
Hep. sp.	Cercopithecus nictitans	Ex. Cercopithecus nictitans (CAM_6)	JQ070922	—	—	—
<i>Hep.</i> sp.	Cercopithecus nictitans	Ex. Cercopithecus nictitans (CAM_7)	JQ070892	—	—	—
Hep. sp.	Cercopithecus nictitans	Ex. Cercopithecus nictitans (CAM_8)	JQ070926	—	—	—
Hep. sp.	Cercopithecus nictitans	Ex. Cercopithecus nictitans (CAM_9)	JQ070897	—	—	_
Hep. sp.	Cercopithecus nictitans	Ex. Cercopithecus nictitans (CAM_10)	JQ070925	—	—	_

Table S4. Cont.

		Abbroviation in Fig. 24		GenBank	accession nos	5.
Parasite	Host species	(and Fig. S2)	cytb	cox1	clpc	ef2a
Hep. sp.	Macaca sp.	Ex. Macaca sp. (MYA_1)	GU930064	_	_	_
Hep. sp.	Macaca sp.	Ex. Macaca sp. (THA_1)	GU930051	_	_	_
Hep. sp.	Macaca sp.	Ex. Macaca sp. (THA_2)	EU400409	_	_	_
Hep. sp.	Macaca sp.	Ex. Macaca sp. (THA_3)	GU930042	_	_	_
Hep. sp.	Mandrillus sphinx	Ex. Mandrillus sphinx (Gabon/GAB 1)	JF923759	_	—	—
Hep, sp.	Miopithecus talapoin	Ex. Miopithecus talapoin (GAB 2)	JF923757	_	_	_
Hep. sp.	Papio nubensis	Ex. Papio nubensis (Ethionia/ETH_1)	AF069626	—	—	—
Bat Henatocystis						
Hep. sp.	Cynopterus brachyotis	Ex. Cynopterus brachyotis (Singapore/SIN_1)	EU254526	EU254569	EU254616	—
Hep. sp.	Cynopterus brachyotis	Ex. Cynopterus brachyotis (Singapore/SIN_2)	AY099030	—	—	—
Hep. sp.	Cynopterus horsfieldii	Ex. Cynopterus horsfieldii (Borneo/BOR 1)	DQ396527	—	—	—
Hep. sp.	Cynopterus horsfieldii	Ex. Cynopterus horsfieldii (Borneo/BOR 2)	DQ396528	—	—	—
Hep. sp.	Epomophorus gambianus	Ex. Epomophorus gambianus (G-4-1)	KF159695	F	F	F
Hep. sp.	Epomops buettikoferi	Ex. Epomops buettikoferi (G-4-1)	KF159701	KF159768	KF159636	F
Hep. sp.	Epomops buettikoferi	Ex. Epomops buettikoferi (G-4-2)	KF159706	KF159779	KF159612	KF159757
Hep. sp.	Epomops buettikoferi	Ex. Epomops buettikoferi (G-4-3)	KF159703	KF159790	F	F
Hep. sp.	Epomops buettikoferi	Ex. Epomops buettikoferi (C-13-1)	KF188067	F	F	F
Hep. sp.	Epomops buettikoferi	Ex. Epomops buettikoferi (L-2-1)	KF159694	KF159798	F	F
Hep. sp.	Epomops buettikoferi	Ex. Epomops buettikoferi (L-4-1)	F	F	F	KF159741
Hep. sp.	Hipposideros larvatus	Ex. Hipposideros larvatus (CAM_1)	EF179356	_	_	_
Hep. sp.	Hypsignathus monstrosus	Ex. Hypsignathus monstrosus (L-2-1)	KF159689	KF159799	F	KF159734
Hep. sp.	Hypsignathus monstrosus	Ex. Hypsignathus monstrosus (L-4-1)	KF159712	F	KF159647	F
Hep. sp.	Micropteropus pusillus	Ex. Micropteropus pusillus (G-1-1)	KF159691	KF159800	KF159614	F
Hep. sp.	Micropteropus pusillus	Ex. Micropteropus pusillus (G-1-2)	KF159688	KF159758	KF159621	F
Hep. sp.	Micropteropus pusillus	Ex. Micropteropus pusillus (G-1-3)	KF188068	KF188070	F	KF188072
Hep. sp.	Micropteropus pusillus	Ex. Micropteropus pusillus (G-1-4)	KF159713	KF159759	KF159622	KF159738
Hep. sp.	Micropteropus pusillus	Ex. Micropteropus pusillus (G-1-5)	KF159677	KF159760	KF159620	KF159736
Hep. sp.	Micropteropus pusillus	Ex. Micropteropus pusillus (G-1-6)	KF159718	KF159761	KF159613	KF159722
Hep. sp.	Micropteropus pusillus	Ex. Micropteropus pusillus (G-1-7)	KF159719	KF159762	F	KF159725
Hep. sp.	Micropteropus pusillus	Ex. Micropteropus pusillus (G-1-8)	KF159686	KF159763	KF159646	KF159727
Hep. sp.	Micropteropus pusillus	Ex. Micropteropus pusillus (G-1-9)	KF159702	KF159764	KF159643	KF159745
Hep. sp.	Micropteropus pusillus	Ex. Micropteropus pusillus (G-1-10)	KF159683	KF159801	KF159623	KF159744
Hep. sp.	Micropteropus pusillus	Ex. Micropteropus pusillus (G-1-11)	KF159682	KF159802	KF159632	KF159732
Hep. sp.	Micropteropus pusillus	Ex. Micropteropus pusillus (G-1-12)	KF159711	KF159803	KF159624	KF159743
Hep. sp.	Micropteropus pusillus	Ex. Micropteropus pusillus (G-2-1)	KF159670	F	KF159619	KF159752
Hep. sp.	Micropteropus pusillus	Ex. Micropteropus pusillus (G-2-2)	KF159709	KF159765	KF159644	F
Hep. sp.	Micropteropus pusillus	Ex. Micropteropus pusillus (G-2-3)	KF159685	KF159766	KF159627	KF159747
Hep. sp.	Micropteropus pusillus	Ex. Micropteropus pusillus (G-2-4)	KF159708	KF159767	KF159638	KF159739
Hep. sp.	Micropteropus pusillus	Ex. Micropteropus pusillus (G-3-1)	KF159696	KF159769	KF159640	KF159724
Hep. sp.	Micropteropus pusillus	Ex. Micropteropus pusillus (G-3-2)	KF159669	KF159770	KF159617	KF159726
Hep. sp.	Micropteropus pusillus	Ex. Micropteropus pusillus (G-3-3)	KF159697	KF159771	KF159629	KF159737
Hep. sp.	Micropteropus pusillus	Ex. Micropteropus pusillus (G-4-1)	KF159679	KF159772	KF159615	F
Hep. sp.	Micropteropus pusillus	Ex. Micropteropus pusillus (G-4-2)	KF159693	KF159773	KF159645	KF159746
Hep. sp.	Micropteropus pusillus	Ex. Micropteropus pusillus (G-4-3)	KF159672	KF159774	KF159633	KF159730
Hep. sp.	Micropteropus pusillus	Ex. Micropteropus pusillus (G-4-4)	F	F	KF159628	F
Hep. sp.	Micropteropus pusillus	Ex. Micropteropus pusillus (G-4-5)	KF159704	KF159775	KF159618	KF159753
Hep. sp.	Micropteropus pusillus	Ex. Micropteropus pusillus (G-4-6)	F	F	F	KF159735
Hep. sp.	Micropteropus pusillus	Ex. Micropteropus pusillus (G-5-1)	KF159717	F	F	KF159748
Hep. sp.	Micropteropus pusillus	Ex. Micropteropus pusillus (G-5-2)	KF159676	KF159776	KF159626	F
Hep. sp.	Micropteropus pusillus	Ex. Micropteropus pusillus (G-5-3)	F	KF159777	KF159625	KF159721
Hep. sp.	Micropteropus pusillus	Ex. Micropteropus pusillus (G-5-4)	KF159680	KF159778	KF159641	KF159723
Hep. sp.	Micropteropus pusillus	Ex. Micropteropus pusillus (G-5-5)	KF159673	KF159780	F	KF159733
Hep. sp.	Micropteropus pusillus	Ex. Micropteropus pusillus (G-5-6)	KF159687	KF159781	KF159649	KF159756
	A A A A A A A A A A A A A A A A A A A					

Table S4. Cont.

PNAS PNAS

		Abbroviation in Fig. 24		GenBank	accession nos	5.
Parasite	Host species	(and Fig. S2)	cytb	cox1	clpc	ef2a
Hep. sp.	Myonycteris leptodon	Ex. Myonycteris leptodon (C-7-1)	KF188066	KF188069	F	KF188071
<i>Hep.</i> sp.	Myonycteris leptodon	Ex. Myonycteris leptodon (C-7-2)	F	KF159782	F	F
<i>Hep.</i> sp.	Myonycteris leptodon	Ex. Myonycteris leptodon (L-2-1)	KF159707	KF159783	F	KF159755
<i>Hep.</i> sp.	Myonycteris leptodon	Ex. Myonycteris leptodon (L-3-1)	KF159705	Ν	F	KF159754
<i>Hep.</i> sp.	Myonycteris leptodon	Ex. Myonycteris leptodon (L-4-1)	KF159678	KF159784	F	KF159750
<i>Hep.</i> sp.	Nanonycteris veldkampii	Ex. Nanonycteris veldkampii (C-8-1)	KF159684	KF159785	F	F
<i>Hep.</i> sp.	Nanonycteris veldkampii	Ex. Nanonycteris veldkampii (C-8-2)	KF159715	F	F	F
<i>Hep.</i> sp.	Nanonycteris veldkampii	Ex. Nanonycteris veldkampii (L-1-1)	KF159698	KF159786	KF159631	KF159749
Hep. sp.	Nanonycteris veldkampii	Ex. Nanonycteris veldkampii (Guinea/GUI_1)	EU254528	EU254571	EU254618	_
Hep. sp.	Nanonycteris veldkampii	Ex. Nanonycteris veldkampii (Guinea/GUI_2)	EU254527	EU254570	EU254617	_
Hep. sp.	Pteropus hypomelanus	Ex. Pteropus hypomelanus (Malaysia/MAL_1)	FJ168565	FJ168565	_	_
Hep. sp.	Pteropus vampyrus	Ex. Pteropus vampyrus (Borneo/BOR_1)	DQ396530	—	—	_
Hep. sp.	Pteropus vampyrus	Ex. Pteropus vampyrus (Borneo/BOR_2)	DQ396531	—	—	_
Polychromophilus						
Poly. melanipherus	Miniopterus schreibersii	Polychromophilus melanipherus (_3)	JN990708	JN990714	JN990720	—
Poly. melanipherus	Miniopterus schreibersii	Polychromophilus melanipherus (_4)	JN990709	JN990715	JN990721	—
Poly. melanipherus	Miniopterus schreibersii	Polychromophilus melanipherus (_5)	JN990710	JN990716	JN990722	—
Poly. melanipherus	Miniopterus schreibersii	Polychromophilus melanipherus (_6)	JN990711	JN990717	—	—
Poly. murinus	Myotis daubentonii	Polychromophilus murinus (_1)	HM05583	JN990718	JN990723	—
Poly. murinus	Myotis daubentonii	Polychromophilus murinus (_2)	HM05584	JN990719	JN990724	—
Poly. murinus	Myotis daubentonii	Polychromophilus murinus (_3)	HM05585	_	—	—
Poly. murinus	Myotis daubentonii	Polychromophilus murinus (_4)	HM05586	—	—	—
Poly. murinus	Myotis daubentonii	Polychromophilus murinus (_5)	HM05587	—	—	—
Poly. murinus	Myotis daubentonii	Polychromophilus murinus (_6)	HM05588	_	_	_
Poly. murinus	Myotis daubentonii	Ex. Myotis daubentoni_7	HM05589	_	—	—
Poly. sp.	Myotis goudoti	Ex. <i>Myotis goudoti</i> (Madagascar)	AY762072	_	—	—
Poly. sp.	Miniopterus manavi	Ex. Min_manavi (Madagascar) _MAD1	AY762070	_	_	_
Poly. sp.	Miniopterus manavi	Ex. Min_manavi (Madagascar) _MAD2	AY762071	_	_	_
Poly. sp.	Miniopterus manavi	Ex. Min_manavi (Madagascar) _MAD3	AY762074	_	_	_
Poly. sp.	Kerivoula hardwickii	Ex. Kerivoula hardwickii (Cambodia)_CAM1	EF179354	—	—	_
Poly. sp.	Miniopterus villiersi	Ex. Miniopterus villiersi (G-3-1)	KF159675	KF159794	F	F
Poly. sp.	Miniopterus villiersi	Ex. Miniopterus villiersi (G-3-2)	KF159699	KF159795	KF159616	KF159740
Poly. sp.	Miniopterus villiersi	Ex. Miniopterus villiersi (G-3-3)	KF159681	KF159796	KF159642	KF159731
Poly. sp.	Neoromicia capensis	Ex. Neoromicia capensis (G-3-1)	KF159700	F	F	F
Poly. sp.	Pipistrellus aff. grandidieri	Ex. Pipistrellus grandidieri (G-3-1)	KF159714	KF159797	KF159639	KF159742
Nycteria						
N. sp.	Rhinolophus alcyone	Ex. Rhinolophus alcyone (C-9-1)	KF159720	F	F	KF159751
N. sp.	Rhinolophus landeri	Ex. Rhinolophus landeri (G-3-1)	KF159690	KF159787	F	F
Haemosporida sp.	Megaderma spasma	Ex. <i>Megaderma spasma</i> (Cambodia)	EF179355	—	—	—

Samples/accession numbers in bold have been included in the analysis for both Fig. 2A and Fig. S2. F, failed to amplify. Sequences from this study are highlighted in red. A dash signifies the sequence is not available/not attempted to amplify. *Grammomys surdaster = Grammomys dolichurus. [†]Thamnomys rutilans = Grammomys poensis.

Table S5. Gé	anBank accessi	on numbers for addi	itional genes use	ed for bat and	rodent <i>Plasm</i> e	o <i>dium</i> taxa on	ly				
Plasmodium		Abbreviation in				GenBank	accession numbe	rs*			
species	Host species	Fig. 2B and Fig. 54	Actin-1	Actin-2	asl	cyspro	dhfr	H2A	HDAMNI	P25	UBI
P. falciparum	Humans	Plasmodium falciparum	XM_001350811	M22718	XM_001349541	XM_001348691	XM_001351443	M86865	XM_001352043	XM_001347551	XM_001350490
P. knowlesi	Old World Monkevs	Plasmodium knowlesi	XM_002262498	XM_002260836	XM_002257931	XM_002260255	XM_002258192	XM_002261462	XM_002258443	XM_002261792	XM_002260588
P. vivax	Humans	Plasmodium vivax	XM 001613936	XM 001616779	XM 001612942	XM 001615757	XM 001615032	XM 001616141	XM 001614690	XM 001608410	XM 001616541
P. atheruri	Atherurus	P. atheruri	I	I	I	DQ414607	DQ414626	I	I		
P. berghei	Grammomys	Plasmodium berghei	PBANKA_145930 [‡]	XM_675072	AF262049	DQ414608	DQ414627	PBANKA_111700 [§]	XM_673207	PBANKA_051500 [§]	PBANKA_061030 [§]
I	$surdaster^{\dagger}$	(P. berghei Anka)									
P. berghei (NK65)	G. surdaster [†]	P. berghei NK65	I	I	I	DQ414609	DQ414628	I	I	Ι	I
P. chabaudi	T. rutilans [‡]	P. chabaudi	Ι	Ι	Ι	DQ414610	DQ414629	Ι	I	Ι	Ι
adami (408X7)		adami 408XZ									
P. chabaudi	T. rutilans [‡]	P. chabaudi	I	I	I	DQ414611	DQ414630	I	I	Ι	I
adami (556K A)		<i>adami</i> 556KA									
Direherdi	30 monmedT	Discmodium	XMI 7205/2	EIDEA668	00414612	NEQUEIN	DOA14631	ANT ZACADA	XMN 72002/		
chabaudi	rutilans [‡]	chabaudi (AS)									
(AS)	+										
P. chabaudi chabaudi	T. rutilans [*]	P. chabaudi chabaudi CB	ļ	I	I	DQ414613	DQ414632		I		
(CB)											
P. vinckei	Praomys	P. vinckei	I	ļ	ļ	DQ414616	DQ414635			I	I
brucechwatti	tullbergi	brucechwatti									
P. vinckei	T. rutilans [‡]	P. vinckei	Ι	Ι	Ι	DQ414617	DQ414636	I	I	I	I
lentum		lentum 194ZZ									
(194ZZ) P vinchoi	T without	indexis				0111610	20201000				
r. viricker lentum	cilainul .	r. vinckei lentum 408X7		I	I	UQ4 140 10	100414001			I	
(408XZ)											
P. vinckei	T. rutilans [‡]	P. vinckei	Ι	I	I	DQ414619	DQ414638	Ι	Ι	I	Ι
petteri (BS)		petteri BS									
P. vinckei	T. rutilans ⁺	P. vinckei	I	I		DQ414620	DQ414639	I	I		I
petteri (CR)		petteri CR									
P. vinckei	G. surdaster ^{T}	P. vinckei	I	I	EU254667	DQ414615	DQ414634		I	I	I
vinckei (VIBA CvPI)		(VIBA CyPI)									
P. vinckei ("EL")	Thamnomys sp.	P. vinckei EL	I	I	I	DQ414621	DQ414633	I	I	I	I
P. yoelii	T. rutilans [†]	P. yoelii yoelii 17X		Ι	Ι	DQ414624	DQ414643	Ι	Ι	Ι	Ι
yoelli (17X) Pyoolii	T rutilans [‡]	Plasmodium	XM 725017	12027 MX	AFJ62050	DO414625	DO414644	XM 720384	XM 718689	XM 720005	DVVM 0611900
yoelii (33x)		yoelii (33x)									
P. yoelii ("EL")	T. rutilans [‡]	P. yoelii EL	Ι	Ι	Ι	DQ411462	DQ414640	Ι	Ι	Ι	Ι
P. yoelii killicki	T. rutilans [‡]	P. yoelii Killicki 193L			I	DQ421462	DQ414641		I	I	I

Table S5. Cont.

PNAS PNAS

Disconcilium		Abbraviation in				GenBank	accession numbei	rs*			
species	Hosts pecies	Fig. 2B and Fig. 54	Actin-1	Actin-2	lse	chsbro	dhfr	H2A	HDAMNI	P25	UBI
P. yoelii nigeriensis	T. rutilans [‡]	P. yoelii nigeriensis N67	I	I	I	DQ414623	DQ414642	I	I	I	
P. cyclopsi	Hipposideros cyclops	Ex. Hipposideros cyclops (L1-1)	KF159609	KF159650	u.	u.	Ľ	KF159658	Ľ	KF159663	KF159664
P. cyclopsi	Hipposideros cyclops	Ex. Hipposideros cyclops (L-4-1)	KF159610	KF159651	KF159653	KF159655	Ľ	KF159659	KF159661	u.	KF159665
P. cyclopsi	Hipposideros cyclops	Ex. Hipposideros cyclops (L-4-2)	KF159611	KF159652	u.	u.	Ľ	KF159660	Ľ	u.	KF159666
P. voltaicum	Myonycteris angolensis	Ex. Myonycteris angolensis (G-1-1)	L.	ш	KF159654	KF159656	KF159657	ш	KF159662	u.	u.

Samples/accession numbers in bold have been included in the analysis for both Fig. 2B and Fig. 54.

*Additional nine genes inlcuded in the analysis for Fig. 28 and Fig. 54 (accession numbers for cytochrome *b*; cytochrome *b*; cytochrome *b*; caseinolytic protease and elongation factor 2 are given in Table 54). ACT1, ACT2, Actin-2; *asl*, adenylosuccinate lyase; *cyspro* , cysteine proteinase; *dhfr*/ts, dihydrofolate reductase/thymidylate synthase; F, failed to amplify; H2A, histone H2A; *InMPDH*, Inosinmonophosphat-Dehydrogenase; *P25*, ookinete surface protein; *UBI*, poly-ubiquitin. Sequences from this study are highlighted in red. A dash represents sequence not available/not attempted.

[†]Grammomys surdaster = Grammomys dolichurus.

[‡]Thamnomys rutilans = Grammomys poensis. [§]PlasmoD.