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SI Text
In SI Text, we provide the details of the theory that nearly
quantitatively explains the complex kinetic pathways in the step-
ping dynamics of myosin V (MyoV). Because this SI Text is long,
containing technical details of the calculations, we begin with
a collection of the most important equations, which were used to
make the predictions described in the main text. The subsequent
sections describe the details leading to these equations.

1. Summary of Key Equations for MyoV Dynamics
First Passage and Binding.
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Kinetic Pathway Probabilities.
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Average Step Shape.
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Mean Run Length and Velocity.
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Equilibrium End-Point Probability Distribution.
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Stall Force.
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2. First Passage Times, Binding Probabilities, and
Experimental Observables
Mean First Passage Time to a Target Site. After the detachment of
one of the MyoV heads from the polar actin tracks, there are two
potential actin target sites where the head could rebind, at posi-
tions r± = ±Δẑ (Fig. 1B). The axis ẑ is oriented from the minus
to plus end of the actin filament, so we denote r+ and r− as the
forward and backward target sites, respectively. Before dealing
with the full complexity of the diffusive search and binding for
multiple targets (with binding probabilities dependent on the
head chemical state), we solve a simpler problem: What is the
mean first passage time for the free end of MyoV to reach a
sphere of radius a around one of the target sites, for example, r+ ?
(The derivation below will hold analogously for r−, with the +
superscripts and subscripts replaced by −.)
Let ffpðr; r′; tÞ be the distribution of first passage times for the

free end to go from an initial position r to some final position r′.
Using the renewal approach (1), the first passage time distribu-
tion can be related to the Green’s function Gðr; r′; tÞ describing
the probability of diffusing from r to r′ in time t. Choose a final
position on a sphere of radius a around the target site r+, so that
r′= r+ + aê, where ê is any unit vector. The renewal approach
relates ffp and G through the integral equation

G
�
r; r+ + aê; t

�
=
Z t

0

dt′
Z

a2dê′  ffp
�
r; r+ + aê′; t′

�

×G
�
r+ + aê′; r+ + aê; t− t′

�
:

[S1]

The physical meaning of the equation above is that the Green’s
function for going from r to a particular point r+ + aê on the
target sphere consists of paths that make first passage at some
point r+ + aê′ on the target sphere at time t′≤ t and then diffuse
from r+ + aê′ to r+ + aê in time t− t′. Because Eq. S1 is difficult
to solve analytically, we make three simplifications, motivated
by the observation that the capture radius a is small compared
with all other length scales in the problem: (i) we approximately
average over all final positions on the target sphere, replacing
r+ + aê with r+ on both sides of Eq. S1; (ii) we assume
f ðr; r+ + aê′; t′Þ does not vary appreciably with ê′ so that it can
be replaced by f+fpðr; t′Þ=4πa2, where f+fpðr; t′Þ is the first passage
time distribution for reaching any point on a target sphere of radius
a around r+, starting from r; and (iii) the Green’s function on the
right-hand side of Eq. S1 will not depend significantly on the spe-
cific unit vector ê′ defining the starting position, so we replace ê′ in
the argument of the Green’s function by a fixed unit vector ẑ. With
these approximations, Eq. S1 becomes

Gðr; r+; tÞ≈
Z t

0

dt′ f+fp
�
r; t′
�
G
�
r+ + aẑ; r+; t− t′

�
: [S2]

The above renewal equation can be solved by Laplace-transform-
ing both sides to yield
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~f+fpðr; sÞ≈
~Gðr; r+; sÞ

~G
�
r++ aẑ; r+; s

�; [S3]

where ~f+fp and ~G are Laplace-transformed functions. For exam-
ple, ~Gðr; r′; sÞ=

R∞
0 dt  e−stGðr; r′; tÞ, and a similar equation holds

for ~f+fp. The derivative of ~f with respect to s at s= 0 is related to
the mean first-passage time t+fpðrÞ to arrive at the target sphere of
radius a around r+:

−
∂
∂s
~f+fpðr; sÞ

				
s=0

=
Z∞
0

dt  t  f+fpðr; tÞ= t+fpðrÞ: [S4]

We can simplify Eq. S3 by taking advantage of time scale sep-
aration in the system. For t � tr, the relaxation time of the two-
legged polymer, the Green’s function for going from an initial to
a final position approaches the equilibrium probability distribution
of finding the free end at the final position, Gðr; r′; tÞ→Pðr′Þ as
t→∞. In Laplace space, this implies that the Green’s function can
be decomposed into two contributions:

~Gðr; r′; sÞ≈
Ztr
0

dt  e−stGðr; r′; tÞ+
�
s−1 − tr

�
Pðr′Þ
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�
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�
Pðr′Þ:

[S5]

For ~Gðr; r+; sÞ in the numerator of Eq. S3, we assume the initial r
is not in the immediate vicinity of the target r+ (which is gener-
ally the case for a MyoV diffusive search), so the time to reach
the target will be much larger than the relaxation time tr. Hence,
~G0ðr; r+; sÞ will be negligible, because Gðr; r+; tÞ is near zero on
the time scale t< tr. Thus, we can approximate the numerator of
Eq. S3 as

~Gðr; r+; sÞ≈
�
s−1 − tr

�
Pðr+Þ: [S6]

For the denominator of Eq. S3, ~Gðr+ + aẑ; r+; sÞ, the situation is
more complicated, because the initial and final positions are
separated by a small distance a; hence, there will be contribu-
tions to ~G0 at short times. In the limit a→ 0, the paths between
r+ + aẑ and r+ involve only a fast microscopic rearrangement of
the free end, without significant configurational changes in the
rest of the structure. If we model the free end as a particle with
diffusion constant D, the Green’s function in the short time limit
can be approximated as (1)

G
�
r++ aẑ; r+; t

�
≈ ð4πDtÞ−3=2 exp

�
−a2=ð4DtÞ

�
: [S7]

Substituting Eq. S7 into the integral for ~G0, we get an expres-
sion for the denominator:
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�
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[S8]

where ta = a2=D is a microscopic time scale describing how long it
takes a particle of diffusivity D to move a distance a. The second
approximation in Eq. S8 assumes ta � tr, which is justified by a sim-
ple calculation: Let us set D=Dh, where Dh = 5:7× 10−7cm2=s
is the diffusion constant of the MyoV head, as derived from
the Protein Data Bank structure 1W8J (2) using the program

HYDROPRO (3). For a= 1 nm, the resulting microscopic time
scale is ta = 18 ns, which is significantly smaller than the relaxation
time tr ∼Oð1 μsÞ of the entire structure (estimates of tr are pro-
vided in the next subsection).
Using Eqs. S6 and S8 in Eq. S3, and then evaluating the de-

rivative in Eq. S4, we obtain the final approximate expression for
the mean first passage time:

t+fp =
1

4πaDhPðr+Þ
: [S9]

We have dropped the r dependence in the notation for t+fpðrÞ,
because the first passage time result is independent of the initial
position r. This reflects the underlying assumption that the con-
figurational relaxation time tr � t+fp, so the free end loses mem-
ory of its initial position during the long diffusive search. An
analogous result holds for the mean first passage time t−fp to the
backward target site, with r+ replaced by r− in Eq. S9. A result
similar in spirit to Eq. S9 but without the benefit of derivation was
conjectured earlier (4).
To validate the approximation underlying Eq. S7, we per-

formed Brownian dynamics simulations on a bead-spring semi-
flexible polymer model of two-legged MyoV (further details are
provided in SI Text, Relaxation Times). By generating many in-
dividual trajectories of the detached polymer end point diffusing
a small distance a from r+ to some point r+ + aê, we numerically
reconstruct the corresponding Green’s function (Fig. S1). The
excellent fit of the assumed form in Eq. S7 for several values of
a to the numerical results justifies the approximation.

Relaxation Times. To estimate the relaxation time tr of the two-
legged MyoV structure, we performed Brownian dynamics (5)
simulations of a bead-spring semiflexible polymer model. Each
leg consists of 17 beads of diameter d= 2 nm, with an additional
bead at the flexible joint between the legs. The beads are con-
nected through harmonic springs of stiffness 200 kBT/nm

2, where
kB is Boltzmann’s constant, and T is temperature. Each leg
has a bending elasticity described by a persistence length
lp = 50− 400 nm. Initially, the end beads are fixed at the two
binding sites. The end tangent of the leading leg (the unit vector
oriented between the centers of the first two beads) is subject to
a harmonic constraint of strength kBTνc along ûc (at an angle of
θc = 608 from the actin filament), with νc = 50− 180. The joint
between the legs is subject to a backward load force of F. The
beads are coupled hydrodynamically through the Rotne–Prager
tensor (6), and their positions evolve in time numerically according
to the Langevin equation. Each simulation lasts 12 μs, where both
end beads are bound during the first 2.4 μs and the trailing leg end
bead is allowed to diffuse freely during the remaining time. By
averaging a large number of individual simulations (1,000–1,250
runs for each distinct parameter set of lp and νc), we can extract
the mean relaxation time tr for the z-axis position of the trailing leg
end bead to reach equilibrium after detachment.
Fig. S2 shows the resulting values of tr for νc = 50 and νc = 180,

with A plotting tr as a function of lp and B plotting tr as a function
of backward load force F at lp = 310 nm. In the absence of load,
tr ≈ 5 μs for both values of νc over the entire plotted range of lp
(corresponding to the semiflexible regime lp >L). Because re-
laxation of MyoV requires a rotational reorientation of a stiff,
two-legged structure (with each leg of contour length L= 35 nm),
we expect that tr should fall in the range between the rotational
diffusion time trodðLÞ of a rigid rod of contour length L and
trodð2LÞ, the time for a rigid rod of length 2L. Analytically, trodðLÞ
can be approximated as follows (7):

trodðLÞ=
πηL3

3 lnðL=2dÞ; [S10]
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where η is the viscosity of water. The resulting rotational dif-
fusion times trodðLÞ≈ 2:2 μs and trodð2LÞ≈ 13:3 μs are marked
as black dashed lines in Fig. S2A, which establishes that
trodðLÞ< tr < trodð2LÞ. A more precise analytical comparison can
be made with the rotational diffusion time tw of a structure con-
sisting of two rigid rods of L connected by a flexible hinge, which
has been estimated by Wegener (8):

twðLÞ≈ 1:79
πηL3

lnð2L=dÞ: [S11]

The resulting value, twðLÞ= 4:6 μs, which is marked as a red
dashed line in Fig. S2A, is in good agreement with the simulation
results. With a load force F applied to MyoV, the equilibrium
position of the end point after detachment is shifted closer to the
initial binding site. As a result, the relaxation times become
shorter, as seen in Fig. S2B. In all cases, tr is at least two orders
of magnitude smaller than the typical first passage times to the
binding site, which is consistent with the approximation used to
derive Eq. S9.

Binding Probabilities.WhenMyoV is in the waiting state, with both
heads bound to ADP and strongly associated with actin, we can
have one of two scenarios for initiating a diffusive search: (I) ADP
is released from the trailing head (TH) and quickly replaced by
ATP, leading to the dissociation of the TH from actin, in which
this detachment through ADP release/ATP binding has a overall
rate of t−1d1 , and (II) less frequently, the leading head (LH) de-
taches without ADP release, which occurs at a rate of t−1d2 � t−1d1 .
The gating parameter g= td2=td1 � 1 describes the probabilities
of the two scenarios occurring, which are gð1+gÞ−1 for I and
ð1+gÞ−1 for II.
Let us consider scenario I, which can lead either to a forward

step if the TH rebinds to r+ or to a trailing foot stomp if the TH
binds to r−. Denote the probabilities of these two binding events
as Pf and PTs. For the TH to bind to actin, three conditions must
be fulfilled:

i) The TH must hydrolyze ATP, which occurs at a hydrolysis
rate of t−1h .

ii) Subsequently, the TH must reach the capture radius a of one
of the binding sites. For r+, it reaches the capture radius with
a rate of ðt+fp Þ

−1 and then binds. For r−, it reaches the capture
radius with a rate of ðt−fpÞ

−1, but binding will only occur with
probability b, reflecting the penalty for wrong head orienta-
tion after the recovery stroke. Thus, the effective rate of
capture at the backward site is bðt−fpÞ

−1 with b � 1 (Table 1).
iii) During the entire diffusive search, the LH must not detach

from actin or the entire MyoV structure will dissociate from
the filament and the run is terminated. The detachment rate,
assumed to be ATP-independent, is given by t−1d1 .

Requirements i and ii by themselves, and the assumption that
individual events are Poisson-distributed, lead to probability dis-
tributions f ±TbðtÞ for the TH binding time to the r± target sites:

f+TbðtÞ=
Z t

0

dt′  t−1h e−t′=th
�
t+fp
�−1e−ðt−t′Þ

h�
t+fp

�−1
+b
�
t−fp

�−1i

=
e−t=th − e−tð1+bαÞ=t

+
fp

thð1+ bαÞ− t+fp
;

[S12]

f−TbðtÞ=
Z t

0

dt′  t−1h e−t′=thb
�
t−fp
�−1e−ðt−t′Þ

h�
t+fp

�−1
+b
�
t−fp

�−1i

= bαf+TbðtÞ;

[S13]

where α= t+fp=t
−
fp. The integrals in Eq. S12 are convolutions of the

probability that hydrolysis occurs at some time t′ and the prob-
ability of subsequent capture at a target site after a time interval
t− t′. The average time to bind, tTb, is the same for both sites:

tTb =

Z ∞

0
dt′  t′f+Tb

�
t′
�

Z ∞

0
dt′  f+Tb

�
t′
� =

Z ∞

0
dt′  t′f−Tb

�
t′
�

Z ∞

0
dt′  f−Tb

�
t′
� = th +

t+fp
1+ bα

: [S14]

Using Eq. S12, it is straightforward to incorporate requirement
iii and derive the probabilities Pf and PTs :

Pf =
g

1+ g

Z∞
0

dt  e−t=td1 f+TbðtÞ=
g

1+ g
t2d1

ð1+ bαÞðtd1 + thÞðtd1 + tTb − thÞ
:

[S15]

PTs =
g

1+ g

Z∞
0

dt  e−t=td1 f−TbðtÞ= bαPf : [S16]

In scenario II, ATP hydrolysis is not required for rebinding,
because the detached LH retains ADP and is in a state that can
strongly associatewith actin.Theheadorientation is now favorable
for binding to the backward site, so the binding penalty b exists for
r+ instead of r−. The free LH can bind to r+, a leading foot stomp
with probability PLs, or it can bind to r−, a backward step with
probability Pb. The LH analogs to Eqs. S12–S16 can
be obtained from these equations by the substitutions th = 0,
bðt−fpÞ

−1 → ðt−fpÞ
−1, and ðt+fp Þ

−1 → bðt+fp Þ
−1. The results are

f+LbðtÞ= b
�
t+fp
�−1e−tðb+αÞ=t+fp ; [S17]

f−LbðtÞ= b−1α f+LbðtÞ; [S18]

tLb =
t+fp

b+ α
; [S19]

PLs =
1

1+ g
btd1

ðb+ αÞðtd1 + tLbÞ
; [S20]

Pb = b−1αPLs: [S21]

The final kinetic pathway, termination by complete dissociation
from actin, occurs when the diffusive search in any of the four path-
ways above cannot be completed before the bound leg detaches.
The termination probability is Pt = 1−Pf −PTs −PLs −Pb.
From Eqs. S15, S16, S20, and S21, one can derive the pathway

probability ratios shown in Eq. 4. The results for the ratios have
been simplified under the assumption that td1 � tLb; tTb, which is
generally valid.

Average Step Shape.For comparison with the experiment of Dunn
and Spudich (9), we will consider the average step trajectory
hδzðtÞi of the TH along ẑ after detachment from actin, where
δzðtÞ≡ zðtÞ− zð0Þ and the initial position is the backward binding
site, zð0Þ= ẑ · r− = −Δ. In the ensemble of all possible trajecto-
ries at time t after detachment (with at least one head bound to
actin), there will be two subpopulations: those trajectories where
the TH is still unbound and those where the TH has bound
either to the backward site r− or to the forward site r+. In this
calculation, we ignore the small fraction of trajectories that lead
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to complete dissociation of the motor because these are not
counted as completed steps, and hence do not contribute to the
experimental measurement of hδzðtÞi. The fraction P ±

TbðtÞ of TH
trajectories that has bound to r± by time t is

P+
TbðtÞ=

Z t

0

dt′ f+Tb
�
t′
�

=
th
�
1− e−t=th

�
− t+fpð1+ bαÞ−1

�
1− e−tð1+bαÞ=t

+
fp

�
thð1+ bαÞ− t+fp

;

[S22]

P−
TbðtÞ=

Z t

0

dt′ f−Tb
�
t′
�
= bαP+

TbðtÞ; [S23]

where f ±TbðtÞ are the binding time distributions given by Eqs. S12
and S13. The expression for the average step is then

hδzðtÞi= ðμz +ΔÞ
�
1−P+

TbðtÞ−P−
TbðtÞ

��
1− e−t=tr

�
+ 2ΔP+

TbðtÞ:

[S24]

The first term in Eq. S24 reflects the relaxation of the unbound
subpopulation over a characteristic time tr to the average posi-
tion of the free end along the ẑ axis, μz = hẑ · ri, where r is the
end-to-end vector of MyoV, and the average is taken over the
equilibrium configurations of a two-legged polymer with one leg
bound to the actin filament and the other leg free. As described
in the next section, this average can be exactly derived and is
related to the structural parameters of the system: the leg con-
tour length L, the persistence length lp, the strength of the end-
tangent constraint νc at the bound end, and the angle of the
constraint direction θc relative to the ẑ axis. The full expression
for μz is

μz = lp
�
1− e−L=lp

��
coth νc − ν−1c

�
cos θc: [S25]

For those interested in the derivation, μz = μexactk cos θc, where
μexactk is given by Eq. S38 below. The value of the polymer re-
laxation time is tr ≈ 5 μs, as discussed above. The second term in
Eq. S24 is the contribution of trajectories that have bound to r+,
and hence covered a distance of δz= 2Δ along the filament axis.
Trajectories binding to the initial site r− have δz= 0, and so do
not appear in Eq. S24.

Run Length and Velocity. If the termination probability during each
diffusive search is Pt = 1−Pf −PTs −PLs −Pb, then the mean
number of searches during a run is

P∞
n=1nð1−PtÞn−1Pt = 1=Pt.

The fraction of the searches within a run that leads to forward
steps is Pf=ð1−PtÞ, and the fraction that leads to backward steps
is Pb=ð1−PtÞ. The mean run length, assuming step size Δ, is
given by

zrun =
Δ
�
Pf −Pb

�
Ptð1−PtÞ

≈
Δtd1

�
αðg− 1Þ+ b

�
g− α2

��
ðb+ αÞð1+ bαÞðtLb + gtTbÞ

; [S26]

where we have used the pathway probabilities from Eqs. S15, S16,
S20, and S21 in the limit td1 � tLb; tTb.
The mean velocity is vrun = zrun=trun, where trun is the aver-

age run time. To calculate the latter, we note that the mean
waiting period (when both heads are bound to actin) is
td1td2=ðtd1 + td2Þ= gtd1=ð1+ gÞ, whereas the mean binding times
for the TH/LH are tTb (Eq. S14) and tLb (Eq. S19), respectively.
Then, trun for td1 � tLb;   tTb is given by

trun =
Pf +PTs

Ptð1−PtÞ

�
g

1+ g
td1 + tTb

�
+

Pb +PLs

Ptð1−PtÞ

�
g

1+ g
td1 + tLb

�

≈
gt2d1

tLb + gtTb
;

[S27]

where the first term is the contribution of steps involving TH
detachment and the second term is the contribution of those in-
volving LH detachment. The resulting expression for vrun is

vrun =
zrun
trun

≈
Δ
td1

�
1

1+ bα
−

α

gðb+ αÞ

�
: [S28]

Eqs. S26–S28 are reproduced as Eq. 9.

3. Equilibrium Probability of Myosin End-Point Fluctuations
The equilibrium probability PðrÞ of finding the MyoV free end
at position r (Fig. S3), needed to calculate t+fp in Eq. S9, can be
obtained from calculating the end-to-end vector probabilities of
the bound leg, PbðrbÞ, and the free leg, Pf ðrf Þ. Because r is the
sum of the end-to-end vectors of the legs, r= rb + rf , PðrÞ can be
written as a convolution of the two leg probabilities:

PðrÞ=
Z

drb

Z
drf PbðrbÞPf

�
rf
�
δ
�
r− rb − rf

�
: [S29]

Each leg is an inextensible semiflexible polymer of contour length
L and persistence length lp (10), and one end of the bound leg is
fixed at the origin r= 0. The bound leg has two energetic con-
tributions not present for the free leg: (i) the tangent vector of
the bound leg at the origin, û0, is subject to a harmonic con-
straint with energy Hc = 1

2 kBTνcðû0 − ûcÞ2, where νc and ûc are
the strength and direction of the angle constraint, respectively
(v̂ denotes a unit vector, meaning jv̂j= 1), and (ii) a load force F
is applied at the other end of the bound leg, where it joins the
free leg. The force is oriented at an angle θF clockwise from the
−ẑ axis, as shown in Fig. S3. The axis ẑ is oriented from the minus
to plus end of the actin filament. Both of these energetic con-
tributions will lead to an overall tension in the bound leg that has
to be accounted for in calculating the probability PbðrbÞ. In the
following subsections, we present approximate analytical expres-
sions for the leg probabilities Pf ðrf Þ and PbðrbÞ, justifying them
by comparison with exact results for the first and second mo-
ments of the equilibrium probabilities. In the final subsection, we
take the individual leg results and use Eq. S29 to derive a com-
plete analytical expression for PðrÞ, which is needed to calculate
the first passage times (Eq. S9).

Equilibrium End-to-End Probability of the Free Leg.We start with the
simpler case of the free leg, which is not under tension. There is
no exact closed form analytical expression for the end-to-end
vector probability Pf ðrf Þ of a semiflexible polymer [although the
moments of the probability distribution are known analytically
(10, 11), as illustrated below]. Mean field theory, however, pro-
vides an excellent approximation of the distribution (12):

Pf
�
rf
�
=Af ξ

−9=2
f exp

 
−
3κ
4ξf

!
; [S30]

where κ=L=lp and ξf = 1− r2f =L
2, and Af is a normalization con-

stant. The end-to-end vector rf can be specified by the polar and
azimuthal angles θf and ϕf , as well as by the dimensionless radial
variable ξf , which can only take on values between 0 and 1 for an
inextensible polymer, because rf ≤L. In this coordinate system,
the normalization condition for the probability is
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1=
L3

2

Z1
0

dξf
�
1− ξf

�1=2 Zπ
0

dθf

Z2π
0

dϕf Pf
�
rf
�
: [S31]

The normalization constant Af is given by

Af =
9
ffiffiffi
3

p
e3κ=4κ7=2

8π3=2L3ð3κ2 + 12κ+ 20Þ: [S32]

In the stiff limit of large persistence length ðκ→ 0Þ, the probability
in Eq. S30 goes to a delta function at rf =L, as is appropriate for
a rigid rod ofL. In the opposite limit of flexible chains ðκ→∞Þ, the
probability goes to a Gaussian centered at r= 0. Throughout the
entire range of κ, the second moment of the probability distribution,
hr2f i= 2L2ð3κ+ 10Þ=ð3κ2 + 12κ+ 20Þ, is within 1% of the exact re-
sult hr2f iexact = 2L2κ−2ðκ− 1+ e−κÞ (10, 11). (The first moment hrf i
is trivially equal to zero in both the exact and approximate cases
because of the radial symmetry of the distribution.) The approxi-
mation of Eq. S30 thus captures the physical features of the stiff and
flexible limits and is reasonably accurate for our purposes.

Equilibrium End-to-End Probability of the Bound Leg at Zero Load.
We first consider the bound leg in the absence of load on the joint
ðF = 0Þ. Our expression for PbðrbÞ should reduce to the free leg
probability of Eq. S30 in the limit of zero constraint strength
νc = 0. For νc ≠ 0, we assume the effect of the end-tangent con-
straint can be approximated by the following ansatz:

PbðrbÞ=Abξ
−9=2
b exp

�
−
3κ
4ξb

+ T   ûc · r̂b

�
; [S33]

where ξb = 1− r2b=L
2, Ab is a normalization constant, and T is an

unknown function of νc to be determined later, satisfying T = 0
at νc = 0. Eq. S33 is identical in form to Eq. S30, except for the
additional T term in the exponential, which acts as an effective
tension along ûc due to the end-tangent constraint. The normal-
ization constant Ab is given by

Ab =Af
T

sinh T : [S34]

We choose T so that the first and second moments of the proba-
bility distribution of Eq. S33 closely agree with the exact values for
a semiflexible polymer under a harmonic end-tangent constraint.
Because the analytical expressions for these exact values are not
available in the literature, we derive them in the following way. We
start by noting that the bound leg end-to-end vector rb =

R L
0 dsûðsÞ,

where ûðsÞ= drðsÞ=ds is the tangent vector at position s along the
bound leg chain contour rðsÞ, 0≤ s≤L. The tangent vectors for an
inextensible chain all have unit length. The equilibrium statistics of
ûðsÞ for a semiflexible polymer are governed by the Green’s func-
tion Gðû; û′; s− s′Þ, which describes the probability that a chain
with tangent vector ûðsÞ= û will have tangent vector ûðs′Þ=u′ at
some position s′≥ s. This Green’s function has an exact spherical
harmonic expansion of the form (11)

G
�
û; û′; s− s′

�
=
X
l;m

e−
lðl+1Þ
2lp

ðs′−sÞY *
lm

�
û
�
Ylm
�
û′
�
: [S35]

For the initial tangent vector û0 ≡ ûð0Þ at s= 0, where the bound
leg is attached to the actin, the harmonic constraint leads to a
probability distribution Pcðû0Þ given by

Pc
�
û0
�
=

νc
2πð1− e−2νcÞ exp

�
−
νc
2
�
û0 − ûc

�2�

=
ffiffiffiffiffiffiffi
πνc
2

r
1

sinh νc

X
l;m

Il+1=2ðνcÞY *
lm

�
ûc
�
Ylm
�
û0
�
:

[S36]

In the first line, the prefactor in front of the exponential is a nor-
malization constant. In the second line, we have rewritten the
exponential in a spherical harmonic expansion (13) involving
modified spherical Bessel functions of the first kind IνðxÞ. This
form will facilitate carrying out the moment integrals below.
Let t̂ be one of the three orthogonal unit vectors ûc, v̂c, or ŵc,

as defined in Fig. S3. These axes, with ûc being the constraint
direction, are the easiest to work with for moment calculations.
Using the definitions of Gðû; û′; s− s′Þ and Pcðû0Þ above, the
first- and second-order moments with respect to one of the axes t̂
can be written as

D
t̂ · rb

E
exact

=

*ZL
0

ds  t̂ · ûðsÞ
+

exact

=
ZL
0

ds
Z

dû0

Z
dûPc

�
û0
�
G
�
û0; û′; s

�
  t̂ · û;

D�̂
t · rb

�2E
exact

=

*ZL
0

ds
ZL
0

ds′  t̂ · ûðsÞ̂t · û
�
s′
�+

exact

= 2
ZL
0

ds
ZL
s

ds′
Z

dû0

Z
dû
Z

dû′

  Pc
�
û0
�
G
�
û0; û; s

�
  t̂ · ûG

�
û; û′; s′− s

�̂
t · û′:

[S37]

By using Eqs. S35 and S36 and the properties of spherical
harmonics, the integrals in Eq. S37 can be carried out exactly
to yield the moments for any axis t̂. Let us define the average
end-to-end component parallel to the constraint direction,
μexactk ≡ hûc · rbiexact (the first moments along v̂c and ŵc are
zero). Similarly, define the parallel and perpendicular end-

to-end SDs, σexactk ≡
�


ðûc · rbÞ2
�
exact − hûc · rbi2exact

�1=2
and σexact⊥ ≡


ðv̂c · rbÞ2
�1=2
exact =



ðŵc · rbÞ2

�1=2
exact. The results for these three quan-

tities are

μexactk =Lκ−1ð1− kÞLðνcÞ;

σexactk =
Lκ−1

3

 
2
�
3κ+ k3 − 1

�
− 9ðk− 1Þ2L2ðνcÞ−

6ðk+ 2Þðk− 1Þ2LðνcÞ
νc

!1=2
;

σexact⊥ =
Lκ−1

3

�
6κ− k3 + 9k− 8+

3
�
k3 − 3k+ 2

�
LðνcÞ

νc

�1=2
;

[S38]

where k≡ expð−κÞ and LðνcÞ≡ coth νc − ν−1c is the Langevin
function.
The corresponding moments calculated from the probability

distribution in Eq. S33 are

μk =
LLðT Þffiffiffi

π
p �

9
4
κðκ+ 4Þ+ 15

�
 
3
ffiffiffi
π

p ð10− 3κÞ
2k3=4

erfc

ffiffiffiffiffi
3κ

p

2
+ 3

ffiffiffiffiffi
3κ

p
ðκ+ 5Þ

!
;

σk =Lκ−1
 
2κ2ð3κ+ 10ÞðT − 2LðT ÞÞ

ð3κðκ+ 4Þ+ 20ÞT −
μ2k
L2

!1=2
;

σ⊥ =Lκ−1
�
2κ2ð3κ+ 10ÞLðT Þ
ð3κðκ+ 4Þ+ 20ÞT

�1=2
:

[S39]

To determine T , we will set μk from Eq. S39 equal to μexactk from
Eq. S38. The resulting expression for T is
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T =L−1
ffiffiffi
π

p ð3κðκ+ 4Þ+ 20Þð1− kÞk3=4LðνcÞ

2κ
� ffiffiffi

π
p ð10− 3κÞerfc

� ffiffiffiffiffi
3κ

p

2

�
+ 2

ffiffiffiffiffi
3κ

p
ðκ+ 5Þk3=4

�
0
B@

1
CA:

[S40]

Because the inverse Langevin function L−1ðxÞ cannot be ex-
pressed analytically, for the purposes of evaluation, we use the
Padé approximation L−1ðxÞ≈ xð3− x2Þ=ð1− x2Þ (14). For the pa-
rameter regimes κ � 1 (large stiffness) and νc � 1 (strong end-
tangent constraint), relevant to MyoV dynamics, Eq. S40 can be
further simplified to yield

T ≈ 1+
20νc

20+ 7κνc
: [S41]

Eqs. S33, S34, and S41 completely describe the end-to-end vector
probability distribution for the bound leg at zero load. By con-
struction, the T of Eq. S41 leads to a μk that closely agrees with
the exact value μexactk from Eq. S38. In addition, the other mo-
ments are reproduced well by the approximate probability distri-
bution, as shown in Fig. S4. The exact and approximate values
differ by no more than 7% over the entire parameter range of lp
and νc. This range covers the most likely parameters for MyoV
dynamics, as discussed in the main text.

Equilibrium End-to-End Probability of the Bound Leg Under Load.
In the presence of a load force F, the probability distribution
in Eq. S33 is multiplied by a factor of expðβFrbF̂ · r̂bÞ=
expðβFLð1− ξbÞ1=2F̂ · r̂bÞ. In the stiff limit κ � 1, the main con-
tributions to the end-to-end vector probability are for ξb � 1,
because rb approaches L, the leg contour length. Thus, the
contribution of the load can be approximated as expðβFLF̂ · r̂bÞ.
With this approximation, the overall form of Eqs. S33 and S34 is
preserved under load, with the substitutions T → T ′ and ûc → û′c.
The probability distribution becomes

PbðrbÞ=Abξ
−9=2
b exp

�
−
3κ
4ξb

+ T ′  û′c · r̂b
�
; [S42]

Ab =Af
T ′

sinhT ′
; [S43]

where the new effective tension along the leg, written in terms of
its x̂ and ẑ components, is

T ′=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT ′xÞ2 + ðT ′zÞ2

q
;     T ′x = T sin θc + βFL sin θF ;

T ′z = T cos θc − βFL cos θF :
[S44]

The new effective tension direction is û′c = sin θ′cx̂+ cos θ′cẑ, which
is oriented at an angle θ′c from the ẑ axis:

θ′c = θc + tan−1
�

βFL sinðθc + θFÞ
T − βFL cosðθc + θFÞ

�
: [S45]

Combining the Individual Leg Probabilities to Find the Total End-
to-End Vector Probability Distribution. The final step in the
derivation of PðrÞ is to evaluate Eq. S29. Using Pf from Eq.
S30 and Pb from Eq. S42, the convolution integral in Eq. S29
has the form

In the second step, we have carried out the integration over
the free leg end-to-end vector rf, with the delta function
making the radial variable ξf = 1− r2f =L

2 a function of r and rb:

ξf = 1−
r2 + r2b − 2rrb cos θb

L2 ; [S47]

where θb is the angle between r and rb. Because we are inter-
ested in probabilities of finding the free end of MyoV along the
actin filament, let us confine the rest of the calculation to r= zẑ,
where −2L≤ z≤ 2L (because this is the maximum range that the
two-legged structure of total contour length 2L can access). The
unit vector r̂b can be represented in spherical coordinates by
the polar and azimuthal angles ðθb;ϕbÞ, and û′c can be repre-
sented by ðθ′c;ϕ′c = 0Þ. Thus,

û′c · r̂b = cos θb cos θ′c + cosϕb sin θb sin θ′c: [S48]

Writing the integration element in Eq. S46 as drb = r2bd cos θbdϕb,
we can carry out the integral over ϕb using Eq. S48. The result is

P
�
zẑ
�
= 2πAfAb

ZL
0

r2bdrb

Z1
−1

d cos θb   ξ
−9=2
f ξ−9=2b

             × exp
�
−
3κ
4ξf

−
3κ
4ξb

+ T ′z cos θb
�
· I0ðT ′x sin θbÞ;

[S49]

where I0ðxÞ is the zeroth-order modified Bessel function of the
first kind. To simplify the integration, we will change variables
from ðrb; cos θbÞ to ðξb; ξf Þ. From the definitions of ξb and ξf , and
from Eq. S47, the two sets of variables are related by

rb =L
ffiffiffiffiffiffiffiffiffiffiffiffi
1− ξb

p
;     cos θb =

z2 +L2
�
ξf − ξb

�
2zL

ffiffiffiffiffiffiffiffiffiffiffiffi
1− ξb

p ; [S50]

leading to a Jacobian determinant jdetJj=L2=ð4jzjð1− ξbÞÞ for
the change of variables. Using these relations, Eq. S49 becomes

P
�
zẑ
�
=
L4 πAfAb

2jzj

ZubðzÞ
0

dξb

Zuf ðz;ubÞ
0

dξf   ξ
−9=2
f ξ−9=2b

         · exp

 
−
3κ
4ξf

−
3κ
4ξb

+ T ′z
z2 +L2

�
ξf − ξb

�
2zL

ffiffiffiffiffiffiffiffiffiffiffiffi
1− ξb

p
!

         · I0 T ′x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

 
z2 +L2

�
ξf − ξb

�
2zL

ffiffiffiffiffiffiffiffiffiffiffiffi
1− ξb

p
!2

vuut
0
B@

1
CA;

[S51]

PðrÞ=AfAb

Z
drb

Z
drf   ξ

−9=2
f ξ−9=2b exp

 
−
3κ
4ξf

−
3κ
4ξb

+ T ′  û′c · r̂b

!
δ
�
r− rb − rf

�

=AfAb

Z
drb   ξ

−9=2
f ξ−9=2b exp

 
−
3κ
4ξf

−
3κ
4ξb

+ T ′  û′c · r̂b

!
:

[S46]
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where the upper limits of integration are given by

ubðzÞ=
2jzj
L

−
z2

L2;     uf ðz; ξbÞ= ξb +
2jzj

ffiffiffiffiffiffiffiffiffiffiffiffi
1− ξb

p
L

−
z2

L2: [S52]

In the stiff limit κ→ 0, the main contributions to the integral
come from ξb � 1 and ξf � 1. Additionally, the location of
the binding sites we consider, jzj= 36 nm, is comparable to the
leg contour length L= 35 nm. We can then approximately carry
out the integral in Eq. S51 by replacing the integration limits
ub → 1 and uf → 1, and by substituting

z2 +L2
�
ξf − ξb

�
2zL

ffiffiffiffiffiffiffiffiffiffiffiffi
1− ξb

p →
z
2L

: [S53]

With these approximations, the integral in Eq. S51 evaluates to

P
�
zẑ
�
≈
8πL4AfAb

729κ7jzj

 
20

ffiffiffiffiffi
3π

p
e3κ=4erfc

 ffiffiffiffiffi
3κ

p

2

!
+ 3

ffiffiffi
κ

p
ðκð3κ+ 10Þ+ 20Þ

!2

   · I0

 
T ′x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

z2

4L2

r !
e
1
2ðT

′z z
L −3κÞ:

[S54]

Upon substituting in Eq. S32 for Af and in Eq. S43 for Ab, and
upon expanding PðzẑÞ up to the second order in κ, we get the
final simplified form of the probability. The result evaluated at
z= ±Δ is given by Eq. 20:

Pðr± Þ≈
ð3κð7κ+ 20Þ+ 200ÞT ′
1; 600πL2Δ sinhT ′

I0

0
@T ′x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

Δ2

4L2

s 1
Ae±

T ′zΔ
2L : [S55]

Together with Eq. S41 for T and Eq. S44 for T ′, we now have
a complete analytical expression for the probability distribution of
the MyoV free end at any location along the actin filament axis.
An analogous approach can be used to find PðrÞ analytically

at any r and not just along ẑ. The resulting 3D probability
distribution allows us to generate sample diffusive trajectories
for the end-to-end vector r in various MyoV kinetic pathways,

as shown in Fig. S5. These are numerical solutions to the
Fokker–Planck equation (15) for diffusion along an energy
surface UðrÞ= − kBT logPðrÞ with head diffusivity Dh.

4. Stall Force
Based on the earlier results for the step probabilities and first
passage times, one can derive a simple expression for the stall
force Fstall, defined by the condition that backward and forward
step probabilities are equal, Pf =Pb at F =Fstall. From Eqs. S15
and S21, the ratio of the two probabilities is

Pb

Pf
=
αð1+ bαÞðtd1 + thÞðtd1 + tTb − thÞ

gðb+ αÞtd1ðtd1 + tLbÞ
≈ g−1

αð1+ bαÞ
b+ α

: [S56]

The approximation in the second line is valid when td1 � tTb;   tLb,
which is typically the case.
Setting the right-hand side of Eq. S56 equal to 1, we can solve

for the value α= αstall at the stall force:

αstall =
g− 1+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg− 1Þ2 + 4gb2

q
2b

: [S57]

Using Eq. S9 for t±fp , Eq. S55 for the equilibrium free end prob-
ability Pðr± Þ, and the definition of T ′ from Eq. S44, we can
rewrite Eq. S57 as follows:

g− 1+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg− 1Þ2 + 4gb2

q
2b

= αstall =
Pðr−Þ
Pðr+ Þ

					
F=Fstall

= exp
�
−
ΔT
L

cos θc + βΔFstall cos θF

�
:

[S58]

This equation can be directly solved for Fstall, giving Eq. 10:

Fstall =
kBT
cos θF

0
@T
L
cos θc +

1
Δ
log

g− 1+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg− 1Þ2 + 4gb2

q
2b

1
A:

[S59]
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Fig. S1. Brownian dynamics simulation results (circles) for the Green’s functions of the end point of the two-legged MyoV structure, with νc = 184, lp = 310 nm,
and θc = 60∘. The plot shows 4πa2Gðr+,r+ + aê; tÞ as a function of time t, where Gðr+,r+ + aê; tÞ is the probability of diffusing a distance a from r+ to some point
r+ + aê, with jêj= 1. Results for three different values of a are displayed: a= 0:5 nm (red), a= 1 nm (green), and a=2 nm (blue). Error bars denote SE for the
simulation-derived values. For comparison, the solid curves represent the expression 4πa2ð4πDtÞ−3=2 expð−a2=ð4DtÞÞ, the right-hand side of Eq. S7 multiplied by
4πa2, with a best-fit value of D= 1:4± 0:1× 10−6 cm2=s.

Fig. S2. Relaxation times tr for the trailing end point of the two-legged MyoV structure to reach equilibrium after detachment, calculated from Brownian
dynamics simulations. Results are shown at two different strengths νc = 50,      180 of the bound leg power stroke constraint with θc = 60∘. (A) Relaxation times tr
at zero load as a function of leg persistence length lp. (B) Relaxation times tr at lp = 310 nm as a function of backward load force F. For comparison, three
analytically estimated rotational diffusion times are shown as horizontal dashed lines: trodðLÞ and trodð2LÞ (black) (Eq. S10) for a rigid rod of L and 2L, re-
spectively, and twðLÞ (red) (Eq. S11) for two rigid rods of L connected at a flexible hinge.

Fig. S3. Schematic diagram for the polymer model of MyoV, defining the free end-point vector r and the end-to-end vectors for the free ðrf Þ and bound ðrbÞ
legs, respectively. The unit vector ûc is the direction of the end-tangent constraint on the bound leg, and together with the two orthogonal unit vectors v̂c and
ŵc it forms a set of axes tilted at an angle θc from the ðx̂,ŷ,ẑÞ axes, where ẑ is oriented along the actin filament.
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Fig. S4. First and second moments of the end-to-end vector distribution for the bound leg when F= 0 , measured in units of leg persistence length lp. The
exact values (solid lines) are given by Eq. S38, whereas the approximate values (dashed lines) are taken from Eq. S39, with T defined by Eq. S41. (A) Moments as
a function of persistence length lp for fixed constraint strength νc = 180. (B) Moments as a function of νc for fixed lp = 310 nm.

Fig. S5. Sample trajectories of the end-to-end vector r= ðx,y,zÞ for each of the four MyoV kinetic pathways, calculated from a numerical solution (15) to the
Fokker–Planck equation with head diffusivity Dh and an energy landscape UðrÞ= − kBT logPðrÞ, with PðrÞ given by Eq. S46. (Upper) Trajectories in terms of z
(the distance along actin) vs.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
, with colors from yellow to red denoting progress in time, are shown for each pathway. (Lower) Corresponding zðtÞ for

the trajectory, using the same color-coding, is shown. (Upper) Superimposed are contour lines of PðrÞ for probabilities 1,2, . . . ,5 ·10−4 nm−3 (light gray to dark
gray). The pathways in A and B are at F = 0 pN, whereas those in C and D are at F = 2 pN ; hence, the PðrÞ distribution in the latter cases is shifted in the −ẑ
direction.
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