Supplementary Materials for Prior Effective Sample Size in
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by Satoshi Morita, Peter F. Thall and Peter Miiller

Evaluation of the ESS for Special CIHMs

The following provides computational details for the evaluation of the ESS for each
of the three examples of widely used CIHMs. The first CIHM is given briefly in Sec-
tion 5. We write Be(a, ), Bin(n, 0), Ga(a, 8), IG(«, 3), Exp(6), N(u, %), MVN(u, X),
and Inv-x?(v, s) for the beta, binomial, gamma, inverse gamma, exponential, normal,
multivariate normal, and scaled inverse-x? distributions. In the sequel, we will write
“my —my — f7, with specific distributions substituted, to denote a CIHM with hyperprior

Ty, prior m; and sampling model f.
1. Normal/Inverse x?-Normal-Normal Model (Section 5)

Case 1: ESS of w5 given prior variance 7>

Let I denote the K x K unit identity and J the K x K matrix with all ones. The target

prior is specified analytically as
067" ~MVN (uy, I+ 75T),

where p, denotes a K x 1 vector with all entries 4. The e-information prior is
as given in Section 3.2. First, m (0 | 0,c) is specified as 0 ~ iid. N(ji,c32) so
that 7o has the same mean as the level 1 prior m; but the inflated variance. Then,
Ti20(0 | @;,7°, ¢) is specified as @ ~ MVN (py, ¢7°I+7,J), by marginalizing m o with
respect to the level 2 hyperprior i | jiy, 75 ~ N(ug,7;). Note that Corrg,,, (0, 0k)

39



_ Tq%/(C:YZ + TQ%) #+ Corry,, (0, Op) = Tg/wz + Tq%) In this setting, —Hy,,(01) =
-1

(&QI+T£J)_1 and —Hm,M(ém,?M) ~ ("—21> , where m = M/K and 6,5 denotes

m
2

a vector of the prior mean of 6 under 7y, 612 = fty. Letting r = denote the intra-

i
Vs
class correlation (ICC) under the model assumed here, —H,,(812) = (I + 7'5.])71 =
(7 +75) {(1 = )T+ rJ}] ~!. The inverse matrix and determinant of (1 — 7)I +rJ are

respectively given as

1ir{1_m~]} and {1—|-(K_1)7«}(1_70)K71.

_ -1
We have approximated —Hx,, , (012, Yar) by (%I) , because all elements of —H,,
the minus second derivative matrix of log(m2), are negligible due to the large positive

value ¢. By computing Ay (M, m, 7, ), the ESS is found to be

o? 1—r 17K
ESS1,0 | ¢;) = = | ————— K. S1
In this setting where 79 is specified as a multivariate normal distribution, all elements

of —H.

12,0 are negligible. However, this does not always occur in other settings.

Case 1: ESS of w5 with random 2.

Allowing 4* to be random, one may obtain a closed form of m15(0 | @;,¢s2) in the
following three steps. First, the distribution of (0 | fz,7%) X m2(37* | ¢52) marginalized
with respect to 52 is a multivariate ¢ distribution with v, of degree of freedom and K x K

scale matrix S = SyI. Second, we approximate this multivariate ¢ distribution with a K-

. . . . . ~ . . . v,
variate normal distribution having mean vector & and variance-covariance matrix szs,

denoted by MVN(f, V:iQS). Third, we marginalize this with respect to mo(ii | ¢;),

fi| by, 75 ~ N(pg, 73), over ji. Denoting the prior mean of * under (5% | @52) by s

= Zz—fg, this yields the multivariate normal target prior m12(6 | @;, ¢s2),
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The e-information priors are specified as 1, o(8 | fi, 72, ¢), 8 | ji, 372, ¢ ~ [ 11—, N(0k | ji, ¢7?),
and T12,0(0 | ¢z, 9s2,¢), 0| ¢4, 052,¢ ~ MVN (u¢, cpusel + T;J) . As in the previous sec-
tion, computing Ay (M, m, 7o, T ), gives the ESS

2

o 1—r /K
ESS1»(0 | ¢) = = (m) x K, (52)

7_2
: 5
where r is the ICC equal to e

Case 2: ESS of m

We apply Algorithm 2 described in Section 3.3 to ma(i | @;), in order to compute
Ay(M, 9, m9,), Using the marginal likelihood

K 2
I =, . O .
fuQwr | 1,7, 0%) = | | Nk | 2, o +5%)
k=1

where Yy = m '], Y, one may compute analytically —H,, (52) = 7'(;2 and simi-

larly _H7r2(§27yM,2) ~ K (%2 —Hla?)_ , where —H, (52) and _sz(gbyMz) denote
the minus second derivative of log{m(fi | @;)} and the minus second derivative of
log{ma,m (12 | ¢ﬁ,§M,2} at the prior mean of 6, respectively. Thus,

o? !
AZ(M, 7T2,7T2,0) = 7'4;2 — K (E +,U;y2> .

The ESS is obtained as

-1
0'2 A2

ESSz(ﬂ|¢)=—<1— ) ,
2 T;K

Te

under the restriction that 7'¢2) > K 'pz2. In the above derivation, —H,, (52, Ya2) has the
upper bound K u;zl, however large m becomes. This means that, given K, one cannot

increase the amount of information to learn about the overall effect by increasing the
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number of subjects in each subgroup, m. Rather one needs a larger number of subgroups
to learn more about the overall effect. The number of subgroups K should be sufficiently
large so that the amount of information given by the likelihood can exceed that of the
prior by increasing m. Otherwise, if the restriction is violated, 75 has excess information

and should be downweighted.

2. Gamma/Inverse Gamma-Gamma-Exponential Model

We next consider a gamma/inverse gamma-gamma-exponential model. This could
be used as an alternative hierarchical model for the multicenter randomized trial analysis
given in Section 2.3, assuming an exponential sampling model for the observed recurrence
times, as in (7) and focusing on only one treatment, say j = 2. In contrast with (7), we

complete the model with conjugate Gamma and inverse Gamma priors and hyperpriors:

Sampling model Yy 1,--+Yim |0 ~ Exp(f) indep. for all k
Priors Or | 1,y ~ Ga(7,5/p) ii.d. for all k
Hyperpriors floag By ~ 1G(ay,By)
7l ag, by ~  Galag, by).
The Ga(¥,7/f) prior has mean fi and variance */5. We will use ¢; = (a, fs) and
@; = (ag, bg) to denote the hyperparameters specific to the population mean and the
shape parameter, respectively. For case 1, where the goal is inference on 6, ..., 0k, we

derive the ESS both with and without fixed shape parameter ¥ at the second level.

Case 1, ESS with fixed 74: Assuming fixed 7, and using an approximation, the

evaluation of A; is possible in closed form as follows. The target prior is

ru®16,7) = { 0

}K 65;4’ (91 QK)ﬁl*l F (K’S/ + Oé¢)
PR ) K~ o )
)} T(ag) (a S O+ 6¢,) e
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where I'(-) denotes a gamma function. Specifying the e-information prior 5, with

m10(8 | 0,0),0| 0,7, c~ [Ti, Ga(6y | 2, 1), one may compute

c’?ch
~ y-1 (K75 + ag)7? P— m—1
—H,,(0p)=——1— — ——J d — Hy,, (01, N — I,
(612) 0 (5 + g — 12(00)? an (612, YVr) 01)?

where m = M/K and @, denotes a vector with entries the prior mean of 6y, ..., fx under

T2, which is 512 = ffgk 7T1(9k | /Nl,,:)/)ﬂ'g(/l | ¢ﬁ)d9kd/l = fﬂﬂ'g(ﬂ | ¢ﬁ)d/l = 5¢/(OZ¢— 1)
Note that the approximation for —H,,

Al(M, Ty, o, 71'170) gives the ESSIQ(0 | ¢ﬁ)
The left-hand half of Table S1 summarizes the ESS values computed for ¥ = 20,

(612, Y1) is valid because ¢ is large. Computing

5, and 2 and several fixed values of oy and 4, when K = 5. In the context of a
non-hierarchical model, that is, under a gamma-exponential model with fixed values
of i and 7, the ESS of a gamma prior is ¥ (MTM, Section 5, Example 2). Thus, for
K = 5 independent priors the ESS should be 100. Table S1 shows how the values of
ESS12(0 | ¢;) adjust for the dependence in the hierarchical model.

We evaluate p = corr(6y, 0 | ¢5,7) numerically in this example by sampling (6, 0)
pairs from 75. Given 4, as p — 0 the K subgroups become independent and ESS;5(8 |
¢ﬁ) — K x 7, shown numerically in the fourth row of Table S1. As expected, the
ESS becomes equivalent to the sum of the ESS values for K independent models. The
ESS values are determined by oy, 7, and K, not 34. In contrast, as p — 1, the ESS
becomes smaller, also shown by Table S1. Because ), is canceled out in computing

Ay (M, 7y, ma,m1), By does not affect the ESS in this example.

Case 1, ESS with random §: When 7 is random, it is no longer possible to obtain
closed form expressions for m15(8 | ¢;, @5), and we apply the numerical methods described
above. Similarly, one may obtain the e-information prior 9o with 7 o(8 | 9, c), 0| i,75,c

~ I, Ga(8y, | %, %) The prior mean @5, may be specified analytically as a vector with
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K elements 015 = Bs/(ay — 1).

The right hand side of Table S1 shows the resulting ESS values for several choices of
¢; and ¢5 when K=5. We use the same values for ¢; = (ag, 35) as those used in the
previous section, and ¢-=(ay, by) is set equal to (200,10), (50,10), and (20,10) so that
Er, (7] #5) = 20, 5, and 2, respectively, which are the same as the fixed values of 7 used
in the previous section. Here, E,(7 | @5) denotes the prior mean of 4 under m»(7 | ¢5).
ESS values are obtained similarly as in the previous section. This is reasonable, given the
similarity of the formulas (S1) and (S2) found in the normal/inverse y?-normal-normal

example.

Case 2: Using Algorithm 2 given in Section 3.3, we compute Ay(M, w9, m2y) first by

specifying the e-information priors as mo(fi | @, ¢), [i | @, Bg,c ~ IG(2 4+ ¢, af“il),

and o0 (7 | @5,¢), 7 | ag, by, ¢ ~ Ga(=2 %) The diagonal (1,1) and (2,2) elements of

c’ c

the information matrix of 7r2(9 | ¢), which respectively correspond to m(ji | ¢;) and
T (Y | @5), are specified as —H, (6)D) = —m%—;ﬂ) + 2[%5 and —H,, ()2 = (% D The

diagonal elements of the information matrix of 7r2,M(5 | @, Vir2) are found to be

A N 3+Cil 2 m_|_fy 2/'Lm? _i_;)'/
_HM,M (07 yM,2)(1’1) =TT 5 + 6¢1 - + Z : )
o (e {2 (Y + /7)Y
and
_Hﬂ' 6 y (2’2) — % _
2,M( 7yM,2) fS/Q 2:4 fY+Z_1

DP *?m?‘i”z},

fmY s+ (EmY s +7)

where Yo = E(Y}; | 52) The marginal likelihood f1 (Vs | i1,7) is analytically specified

as

fiOm | i,7) = L(m+9)~ {(«y/ﬂ)& }K

[T, (o0, Yii +3/m)™ 7 L T()
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Identlfylng 52 - Eﬂ'z (é | ¢) = (afil’ i)a thena Computing A? (Ma 7T277T2,0)7 ESS? (/l | ¢/])
and ESSy(7 | ¢5) may be obtained.

When the goal is inference on the population mean parameter, the ESS is computed
for the hyperprior, mo(fi | @), of the population mean. The results are summarized in

Table S2 for several choices of ay and 3, with ay, = 5 and by = 1. Since the marginal
variance of ji is 53/(ag — 1)*(ag — 2), it follows that ESS, (i | ¢;) — 0 as ag — 2.

3. Beta/Gamma-Beta-Binomial Model

As a final example, we consider a hierarchical model for binary responses recorded
over different subpopulations, as in the sarcoma trial of Section 2.1. We assume a bino-
mial sampling model with sub-population specific success probabilities #;. In contrast
with (2.1), we complete the model with a conjugate Beta prior on the untransformed

probabilities 6y, - - - , Ok, and beta/gamma hyperpriors:

Sampling model Yy, | 0 ~ Bin(myg,0) indep. for all k
Prior O | £,7 ~ Be (f?é,’y(l — 5)) i.i.d. for all £
Hyperpriors £ | ag, Bp ~ Be(ay, fy)
¥ lag by~ Galag,by).
The beta prior is parameterized to have mean ¢ and variance £(1 — €) /(7 +1). For case
1, we compute the ESS for m5(0 | ¢z,¢5) where ¢z = (ay, 85), ¢5 = (ag, by), and for
case 2 we compute ESS, (€ | ¢:) and ESSy (7 | ¢5).

Case 1: Because a closed form of m5(8 | ¢z,¢5) cannot be obtained, we compute
—Hmz(éu) using the simulation-based approximation.We also obtain the e-information
prior w0 for m (0 | 0,¢), 0| £,7, ¢ ~ 1, Be(6y | %g, @) The prior mean 8y, is a

K-vector with all elements 0, = and the information matrix of f(Yy | ) is a

a2
ag+0Bs’
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m—Yk,m

= and all off-diagonal elements 0.

K x K matrix with k' diagonal element YZ—%’" +

Table S3 gives values of ESSi5(8 | ¢) for K = 5 subpopulations and several choices
of ag, By. We set (g, By) so that Er, (€ | ag,8s) = 2/3, and we set (ag,by) so that
Er (7 | ag,bs) = 20 or 5. Under a non-hierarchical Binomial/Beta model the prior
ESS is commonly reported as the sum of the Beta parameters, which in our case equals
7. Thus, the ESS for K independent subpopulations is K7. Note that, because 7 is
random in the above model, the prior mean of 4 under m (% | ag,by), Er, (7 | ag,by)
should be used here rather than 4. Table S3 shows the adjustment for dependence, which
substantially reduces K x Ey, (7 | ag, by). For example, if the above model were used for
a clinical trial similar to the sarcoma trial from Section 2.1, and the trial enrolled 100
patients, any of the first six prior choices in Table S3 would be unreasonably influential.

The plausibility of the reported prior ESS values in Table S3 may be evaluated by
considering a limiting case. Let p = corr(fg, 0 ) under m2. As p — 0, we expect the
prior ESS to match the prior ESS of K = 5 separate non-hierarchical Beta/Binomial
models, each with prior ESS equal to the sum of the Beta parameters. This is verified
by noting that, for smaller p, ESS;5(0 | ¢) is closer to K X E, (7 | ag, by) = 5x20 = 100
in rows 1 - 4 and 5x5 = 25 in rows 5 - 8 in Table S3.

Case 2: ESS for the hyperprior on ¢&: Using Algorithm 2 given in Section 3.3,
we compute Ay(M, w9, map). The e-information priors are specified as 7r2,0(§: | ¢¢, 0),

£ | g, B, €~ Be(a—c‘", ﬁ—4’), and 7o (7 | @5, ¢), ¥ | ag, bg, c ~ Ga(%‘", %’) The diagonal (1,1)

c

and (2,2) elements of the information matrix of (8 | @), which respectively correspond

to m(€ | g¢) and w7 | §), are —H, (B)0) = 26 + 2ot and —H,, ()22 = (22,

and the marginal likelihood is

Yim [[2, (v +i—1) '

k=1
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The diagonal elements of the information matrix of 7r27M(§ | @9, Varo) are found to be

and

D D
~ . N 2 ~ T 2 5
i — 1) i =1 {:y(l — &) +i" — 1} i=1 (Y+i—=1)
where Y0 = E(Yim | 52) Given the prior means of the hyperparameters of 52 =

E,.,0]|¢) = (a¢°fﬁ¢, %), by computing Ag(M, 79, Ta,), ESSs of (€ | ¢;:) and ™2 (7 | @)

may be obtained.

In Table S4, we summarize ESS, (€ | ¢¢) for several choices of o, and 4 with ag = 20
and by = 10. We fix (a4, B,) such that B, (€ | ag, 85) = 5/6. Here, m(€ | b)), €] ag, By
~ Be(ay, ), may represent prior information on an overall effect for all K subgroups,
because E, (0 | £, 5) = £fork=1,..., K. Since the variance of £ under 7r2(§: | §z) is
Er, (€| g, Bs) {1 —E,, (€| ag, 5¢)} /(g + B+ 1), the ESS of my(€ | ¢;) increases with
ag + By.
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Table S1. ESS12(0 | ¢) values in case 1 for the gamma/inverse gamma-gamma-
exponential model, with and without fixed shape parameter v at the second level, with
bn = (ag,Bs) and ¢5 = (ay,by), for K = 5 subgroups. When 7 is not fived, ¥ =
B, (7 | ag, by).

m12(0 | @5,7), for 7 fied m12(0 | @ 5), for 7 not fized
¥ oas By p ESSw 4 ay By as by p  ESSp
20 100 100 0.168 86.6 20 100 100 200 10 0.168 87.3
20 50 50 0.290 79.1 20 50 50 200 10 0.289 79.9
20 15 15 0.586 60.6 20 15 15 200 10 0.587 61.4
5 100 100 0.048 239 5 100 100 50 10 0.046 24.9
5 50 50 0.092 229 5 50 50 50 10 0.091 234
5 15 15 0.263 19.2 5 15 15 50 10 0.262 19.7
2 2
2 2
2 2

20 20 0.094 89
10 10 0.181 4.5
6 6 0.281 29

20 20 20 10 0.090 9.5
10 10 20 10 0.174 4.1
6 6 20 10 0.278 0.3
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Table S2. ESS;(fi|cay, By) values in case 2 for the gamma/inverse gamma-gamma-
exponential model, for K = 5 subgroups, where ays and by denote the hyperparameters of

the hyperprior wo (7 | ag, by).

%) qu Qg b¢ ESSQ

20 3 5 1 0951

10 3 5 1 169
2.1 3 5 1 03

200 3 5 1 0.03
2000 3 5 1 0.003
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Table S3. ESS1»(0 | ¢z, ¢5) values in case 1 for the beta/gamma-beta-binomial model,
for K = 5. The mean values Er,(Y | ¢5) = 20 and 5 are obtained by setting the param-
eters of the hyperprior mao(7 | ¢5) to (ag,bs) = (200,10) and (50,10), respectively.

Er,(¥ | ag,by) ag By p  ESSp

20 40 20 0.259 82.3
20 20 10 0412 75.7
20 10 5 0.582 625
20 6 3 0.700 518
Y 40 20 0.090 244
5 20 10 0.165 21.8
Y 10 5 0.283 8.4
3 6 3 039% 3.5
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Table S4. ESS, (5 | vy, By) values in case 2 for the beta/gamma-beta-binomial model,

or K = 5, where ay and by are the hyperparameters of ma (v | ag, by).
¢ ¢ ¢ Yo

ay By ag by ESSy
50 10 20 10 25.2
20 4 20 10 4.8
5) 1 20 10 1.2

25 05 20 10 0.6
1.5 03 20 10 04
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