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1 Derivation of the quadrupolar expression of the emission pattern

In this supporting information, we derive the analytic expression for the electric field radiated by the emitter-

particle system that includes electric and magnetic contributions up to quadrupole order. This expression is

derived from a Multipole T-matrix theory which can be systematically extended to any multipole order, and

the expressions are rendered more compact by introducing the following abbreviations:

eiϕ ≡ exp(−ikr̂ · r1) = exp(−ikd sin θ cosφ). (1a)

Kc ≡
1

4πε0εh
k2 , Kr ≡

eikr

r
, K ≡ KrKc =

eikrk2

4πε0εhr
(1b)

where r̂ indicates the far-field observation direction, and εh the relative dielectric constant of the host material.

The vector r1 = dx̂ indicates the position vector of the center of the particle with respect to the emitter,

while eiϕ is the far-field phase shift associated with this separation. The constant Kc is associated with unit

conversions, while Kr describes far-field spatial dependence.

The far-fields produced by the different dipoles (electric dipolar emitter, induced electric and magnetic

dipoles excited in the particle) can be respectively cast:

Eff
0 (r, θ, φ) = p0K sin θêθ (2a)

Eff
d,e(r, θ, φ) = p1Ke

iϕ sin θêθ (2b)

Eff
d,m(r, θ, φ) = m1Ke

iϕn0

c
(cosφêθ − cos θ sinφêφ) (2c)

where p0 is the emitter dipole moment while p1 and m1 are the induced electric and magnetic moments of the

spherical particle.
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The expressions generated by T-matrix theory can be rendered more physically transparent by introducing

dimensionless “polarizabilities”, α̃
e(m)
n defined in terms of their respective T-matrix coefficients, t

e(m)
n (cf. ref.[1]):

α̃en ≡
αen

4πan+2
≡ 3

2i(ka)n+2
ten , α̃mn ≡

αmn
4πan+2

≡ 3

2i(ka)n+2
tmn (3)

The ordinary (dimensioned) “polarizabilities”, α
e(m)
n , are defined here such that electric dipole polarizability,

αe1, is in accord with its conventional definition of p1 = ε0εhα
e
1E. This choice provides a clear definition of

multipole polarizability, but since there is no universally accepted convention for higher orders, care must be

taken when comparing our multipole polarizability with those found in other works.

With our definitions, the induced dipole moments can be compactly expressed:

p1 = p0γ
e
1α̃

e
1 , γe1 ≡ eikd(k2d2 + ikd− 1)(a/d)3 (4a)

m1 = p0γ
m
1 α̃

m
1 c/n0 , γm1 ≡ eikd(k2d2 + ikd)(a/d)3 (4b)

where γe,m
1 are dimensionless coupling coefficients between the dipole emitter and the electric/magnetic induced

dipole.

The fields produced by both induced quadrupoles can be derived following the method detailed in [1]. One

finds therein that the field coefficient of a electric dipole emitter along the z axis is expressed f , is fn=1,m=0 =

−2i
√

2πp0Kc/
√

3. The coupling between an electric dipole emitter and the quadrupoles of the scatterer is then

determined by the nonzero coefficients of the irregular translation-addition coefficients between the scatterer

and the source [2]:

A2,−1,1,0(kd, π/2, π) = −A2,1,1,0(kd, π/2, π)

= −
√

15
exp(ikd)(k3d3 + 3ik2d2 − 6kd− 6i)

2
√

2(kd)4
(5a)

B2,−2,1,0(kd, π/2, π) = −B2,2,1,0(kd, π/2, π)

=
√

15
exp(ikd)(k2d2 + 3ikd− 3)

2
√

2(kd)3
(5b)

(the other A2,m,1,0(kd, π/2, π) and B2,m,1,0(kd, π/2, π) being null).

The induced electric and magnetic quadrupole fields in this notation are then:

Eff
Q,e,0 ≡ lim

r→∞

[
A2,−1,1,0(kd, π/2, π)N2,−1(r, θ, φ) +A2,1,1,0(kd, π/2, π)N2,1(r, θ, φ)

]
te2f1,0 (6a)

Eff
Q,m,0 ≡ lim

r→∞

[
B2,−2,1,0(kd, π/2, π)M2,−2(r, θ, φ) +B2,2,1,0(kd, π/2, π)M2,2(r, θ, φ)

]
tm2 f1,0 (6b)

where the vector partial waves Nn,m and Mn,m are also found in Ref.[1]. Invoking the analytical expressions for

the A and B coefficients[2], and the dimensionless polarizabilities of Eq.(3), these far fields are simply expressed:

Eff
Q,e,0 =KQe

(
cos 2θ cosφêθ − cos θ sinφêφ

)
(7a)

Eff
Q,m,0 =KQm

(
sin θ cos 2φêθ −

sin 2θ sin 2φ

2
êφ

)
, (7b)
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where we introduced electric and magnetic “quadrupole” moments, Qe and Qm, respectively defined:

Qe ≡ p0γ
e
2α̃

e
2 , γe2 ≡ −

5

3
(k3d3 + 3ik2d2 − 6kd− 6i)

(a
d

)4

eikd (8a)

Qm ≡ p0γ
m
2 α̃

m
2 , γm2 ≡

5

3
(k3d3 + 3ik2d2 − 3kd)

(a
d

)4

eikd (8b)

We caution the reader however that different normalizations of the quadrupole moments exist in the literature

and that our choice was motivated for reasons of notational simplicity.

Just like for the dipoles, the quadrupoles are centered at r1, and must be multiplied by the far-field phase

shift:

Eff
Q,e(r, θ, φ) = KeiϕQe

(
cos 2θ cosφêθ − cos θ sinφêφ

)
(9a)

Eff
Q,m(r, θ, φ) = KeiϕQm

(
sin θ cos 2φêθ −

sin 2θ sin 2φ

2
êφ

)
(9b)

The total, normalized far-field irradiance (with respect to the maximum electric dipole emitter far-field

irradiance) can then be cast:

I(θ, φ) =
1

p2
0K

2

∣∣Eff
0 + Eff

d,e + Eff
d,m + Eff

Q,e + Eff
Q,m

∣∣2
=

∣∣∣∣ (sin θ(1 + eiϕγe1α̃
e
1) + eiϕ

(
γm1 α̃

m
1 cosφ+ γe2α̃

e
2 cos 2θ cosφ+ γm2 α̃

m
2 sin θ cos 2φ

))
êθ

−
(

cos θ sinφ(γm1 α̃
m
1 + γe2α̃

e
2) +

1

2
γm2 α̃

m
2 sin 2θ sin 2φ

)
eiϕêφ

∣∣∣∣2 (10)

which leads to Eq.(1) of the main text.

References

[1] Stout, B., Devilez, A., Rolly, B., and Bonod, N. J. Opt. Soc. Am. B 28 (5), 1213–1223 (2011).

[2] Stout, B., Auger, J.-C., and Lafait, J. J. Mod. Opt. 49 (13), 2129–2152 (2002).

3


