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1. Model computation 

The model combines the kinetic scheme able to simulate the effects of changes in [Pi] on 

the force and ATPase rate of the isometric contraction (Linari et al., 2010) and the Huxley and 

Simmons model of the working stroke (Huxley & Simmons, 1971), which implies different 

conformations of the attached motors (black transitions in Figure 4A). In addition the model 

implies the possibility for individual myosin motors to slip between two consecutive actin 

monomers while they are at an intermediate stage of their biochemical and structural cycle (red 

transitions in Figure 4A). 

 M.ATP, M.ADP.Pi-AM.ADP.Pi, M*.ADP.Pi are detached states, AMi.ADP.Pi, 

AMi.ADP and AMi are states attached to an actin monomer (A) and A’Mi.ADP.Pi, A’Mi.ADP 

and A’Mi are states attached to the next actin monomer (A’) on the same strand shifted by 5.5 

nm farther from the centre of the sarcomere, with i varying from 1 to m according to the number 

of structural states assumed during the working stroke. The structural change underlying the 

working stroke is represented by (m-1) stepwise transitions each responsible for an axial 

movement z (Brunello et al., 2007). As detailed in previous work (Piazzesi & Lombardi, 1995; 

Woledge et al., 2009; Park-Holohan et al., 2012), the value of z is constrained by the stiffness of 

the myosin motor. Under the conditions of this work the average motor stiffness  is 1.2 pN nm
-1

 

(see (Linari et al., 2007)) and z is chosen 3.1 nm. Substantially similar results are obtained in a 

simulation where  is taken = 1.7 pN nm
-1

, according to the estimate obtained when the lattice 

dimension of the intact fibre is recovered by osmotic compression (Linari et al., 2007). Three 

steps of 3.1 nm are necessary to fit both the kinetic requirements necessary to simulate force and 

velocity transients following length and force steps respectively (Piazzesi et al., 2002; Woledge 

et al., 2009; Park-Holohan et al., 2012) and the mechanical and structural constraints of a 

maximum working stroke of 10 nm (Huxley & Simmons, 1971; Rayment et al., 1993). Thus 

there are four structural states of the attached motor (M1, M2, M3 and M4) and three transitions 

(M1→M2, M2→M3, M3→M4). 

The following assumptions integrate those reported in Piazzesi and Lombardi model 

(Piazzesi & Lombardi, 1995). A myosin head can attach in the AM1.ADP.Pi state to one actin 

site (A) for a range of positions  = 5.5 nm, from x = -2.75 to 2.75 nm (where x is the relative 

axial position between the myosin head and A, and is zero for the centre of distribution of 

attachments of the motors in the M1 state).  is the value x assumes within  (-2.75    2.75). 

Myosin heads are uniformly distributed along x so that, in isometric conditions, for each value of 

 the sum of all attached and detached heads is 1. The periodic boundary conditions are the same 

as those used in (Piazzesi & Lombardi, 1995) implying that (i) in isometric conditions at the two 
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extremities of  there are no attached myosin heads and the sum of detached states is 1; (ii) 

sliding in the shortening direction shifts the distribution of the attached heads to negative x 

values beyond . When a myosin head detaches, the time for the head to regain the original 

configuration is assumed to be very short (tens of microseconds). Provided that the rate of 

reverse reaction at the site of detachment is low with respect to the resetting time of the myosin 

head, all the heads detaching at a given x beyond  regain the position, within , given by  = x - 

p, where p (negative for shortening and positive for lengthening) is the number of times the 

attached head has exceeded one boundary in the same direction. During sliding the sum of the 

fractional occupancies of all states N() = 1 is given by the equation: 
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For any steady state mechanical condition (isometric contraction or steady shortening), the total 

flux of energy can be calculated from the flux between the states M.ATP and M.ADP.Pi-

AM.ADP.Pi (step 2) or M.ADP.Pi-AM.ADP.Pi and AM1.ADP.Pi (step 3) in the cycle (Figure 

4A). The free energy of hydrolysis of one molecule of MgATP (G
ATP

) can be expressed as: 

]][[

][
ln0

PiADP

ATP
kGG B

ATP   

where kB (=1.381*10
-23

 J K
-1

) is the Boltzmann constant,  (=285.15 K) is the absolute 

temperature andG0 is the standard free energy. G
ATP

 is assumed to be 100 zJ in the control 

condition (MgATP, 5 mM; free ADP, 30 µM and free Pi, 1 mM) ((Barclay et al., 2010) and 

references therein) and it reduces by rising [Pi]: addition of 10 mM Pi will lower the free energy 

by about 10 zJ (see Figure S1).

The equations expressing the x-dependence of the reaction rates are reported in Table S1. The 

distribution of myosin heads at any given time is calculated by numerical integration of the 

differential equations reported in Table S2. 

The free energy profile (G(x), Figures 4C and S1) of the various states are related to the forward 

ki(x) and reverse k-i(x) rate constants of the transition between neighbouring states k and l 

through the Gibbs equation: 

 Blkii kxGxGxkxk /))()(exp[()(/)( ] 
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One rate constant of the pair is calculated from the above equation after choosing the appropriate 

value for the other. 

The free energy profiles of the attached states are parabolic according to the assumption that the 

motor stiffness , the second order derivative of the energy, is constant. Two consecutive 

structural states of the motor attached to actin A in the same biochemical state have the free 

energy parabolas shifted on x by the step size (3.1 nm) and the difference in their free energy 

minima is 12 zJ independently of the biochemical state. Thus the total energy change associated 

to the three structural transitions (M1→M2, M2→M3 and M3→M4) while the motor is attached to 

the same actin monomer A is 36 zJ (Figure 4C). 

The biochemical step in the attached states, consists in a downward shift of the free energy 

parabolas for each given structural state: the drop in the free energy minimum induced by Pi 

release is 15.4 zJ in control solution (no added Pi) and 6 zJ in 10 mM Pi; the difference in free 

energy minimum induced by release of ADP in 5.1 zJ. The diagrams of the free energy profiles 

for the different biochemical states of the same structural state (M1, continuous lines and M4, 

dashed lines) without (black) and with 10 mm added Pi (green), are shown in Figure S1. 

 

Figure S1. Free energy diagrams of the myosin motor attached to the actin monomer A in the 

different biochemical states (from the thinnest to the thickest line, AM.ADP.Pi, AM.ADP and AM). 
Only two of the four structural states are shown for clarity, M1 (continuous lines) and M4 (dashed lines). 

The black lines are in the control solution (no added Pi) and the horizontal lines show the free energy of 

the detached states. The green lines show the effect of the addition of 10 mM Pi on the free energy level 

of the AM.ADP, AM and M.ATP states (the upward shift accounting for the reduction in G). 
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Slipping of M2 and M3 motors in either AM.ADP.Pi or AM.ADP state from the original actin 

monomer (A) to the next actin monomer (A’) is controlled by a transition possible in a narrow 

range of x values where the strain of the A-attached motor is near zero and the motor dwells 

between two possibilities, either to progress to the next structural state on the same actin, or to 

slip to A’ and then undergo the state re-equilibration promoted by the 5.5 nm increase in strain 

(Figures 4B and C).  

In isometric conditions the time step for integration (t) was 25 µs. The simulation started with 

myosin heads distributed between M.ATP and AM.ADP.Pi states according to the equilibrium 

constant. The fraction of myosin heads in each state was calculated with an interval (x) of 0.025 

nm. Because detached myosin heads exist only within  there are (5.5/0.025 =) 220 discrete 

positions for which the isometric distribution is calculated. The fractional occupancy of the 

various states at the steady state of the isometric contraction is shown as a function of x in Figure 

S2. 

 

 

Figure S2 A. x distribution of the fraction of myosin motors in the detached (green) and the attached state 

(blue) during an isometric contraction. B. Fractional occupancy of the various attached states, according 

to the colour code and the figures in the inset. States not represented here contribute for a fraction < 0.005 

 

The ratio of the number of myosin heads in the AM.ADP.Pi state over that in the AM.ADP state 

is about 0.09 with about 93% of the AM.ADP myosin motors in the M1 and M2 states. 

During the isotonic velocity transient t was 25 µs, while during ramp shortening t was chosen 

according to sliding velocity.  
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The step perturbation in force is complete in zero time, consequently, the simulated length 

response at the end of the force step (phase 1) is not affected by the rapid phase 2 shortening as 

in the experimental records (Figure 1). 

With the distribution of attached states during isometric contraction as in Figure S2B, the 

average motor strain (s) is 3.4 nm and thus the isometric force developed by a single myosin 

motor is F = (∙ s =) 4.1 pN. Since only 30% of all the heads are attached in the isometric 

contraction, corresponding to (300∙0.30=) 90 myosin motors per half thick filament, the force per 

half-thick filament is (4.1 pN ∙ 90=) 370 pN. With 0.41∙10
15

 thick filaments per cross sectional 

area (Brenner & Yu, 1991; Kawai et al., 1993) the force of the fibre is (370 pN/thick filament ∙ 

0.41∙10
15

 thick filament/m
2
=) 152 kPa, within the range of isometric force found in this 

preparation ((Linari et al., 2007; Caremani et al., 2008) and Table 1).  

The force generated by an attached myosin motor at a given x (Fx) between x-x/2 and x+x/2 is 

calculated as 
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Where j identifies the three biochemical states (b1=AM.ADP.Pi, b2=AM.ADP and b3=AM) and 

a (=5.5 nm) is the increase in strain of a motor slipping from the first (A) to the second actin 

(A’). 

The average force (F) generated by the population of the attached myosin heads is calculated by 

integrating Fx over x.  
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2. Kinetic requirements during shortening. 

For the model to fit the isotonic velocity transient and the steady power, it is assumed that 

attached motors engaged in the working stroke in either the AM.ADP.Pi state or AM.ADP state 

can slip to the next actin monomer farther from the centre of the sarcomere, while the actin 

filament is sliding along for the collective action of the other motors on the same filament.  

Figure S3 shows how the fluxes through the conventional path (blue line, steps 4, 5 and 1 of the 

scheme in Figure 4A), the early detachment path (green line, steps 6 and 7) and the slip to the 

second actin (red line, either step 8 or 9 followed by the termination of the working stroke on A’) 

contribute to the total ATPase rate (black line) at each shortening velocity. The flux of the 

myosin motors slipping to the second actin, is zero in isometric contraction, when 0.75 of the 

total ATPase rate is due to the flux through the conventional path and 0.25 to the flux trough the 

early detachment path (ordinate intercepts in Figure S3). The flux of motors using two actins 

(red) rises sharply with the shortening velocity and in the region of V < 1000 nm s
-1

, 

corresponding to that for the maximum power, attains a value that is 0.4 the total ATPase rate, a 

fraction comparable to that provided by motors cycling through the conventional path (blue). At 

V  1000 nm s
-1 

the flux of slipping motors decreases with the increase in shortening speed and, 

at V0, becomes 0.1 the total ATPase rate, while 0.7 is contributed by the flux through the 

conventional cycle and 0.2 by the flux through the early detachment. 
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Figure S3. Dependence on shortening velocity of the total flux of myosin motors contributing to the 

ATPase rate (black line) and of its fractions: blue line, flux of myosin motors that complete the cycle on 

the same actin monomer A (conventional); red line, flux of myosin motors slipping to the second actin 

(A’) to complete the cycle (slip); green line, flux of myosin motors that detach with both ligands (early 

detachment). 
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Table S1 Equations expressing the x-dependence of the rate constants of the forward transitions in the reaction 

scheme according to the direction of the reaction flow during steady shortening. The rate constants of the transitions 

between different biochemical states or between different actin monomers are indicated as klm where l (from 1 to 9) 

identifies the transition according to the scheme of Figure 4A and m (M1→M4) indicates the structural state involved 

in the transition. The rate constant of the structural transitions for the same biochemical state are indicated as kw with 

w = w1, w2 and w3 for the transitions M1→M2, M2→M3 and M3→M4 respectively. These “structural” rate constants 

have the same x-dependence for the different biochemical states but their values are multiplied by 0.01 for AM and 

A’M states. x0 is the strain of the M1 state at x=0, which has been set to 1.15 nm. (’) is added to the subscript if the 

transition occurs on the second actin.  

 

   

k1, M1 (M
-1

 s
-1

) = 10
5
  

k1, M2 (M
-1

 s
-1

) = 10
5
  

k1, M3 (M
-1

 s
-1

) = 10
5
  

k1, M4 (M
-1

 s
-1

) = 4.16·10
5 

= -1.92·10
5
·(x+x0+7.48) 

= 10
5
 

x < -10.75 

-10.75 ≤ x < -9.15 

 x ≥ -9.15 

k1’, M1 (M
-1

 s
-1

) = 10
5
  

k1’, M2 (M
-1

 s
-1

) = 10
5
  

k1’, M3 (M
-1

 s
-1

) = 10
5
  

k1’, M4 (M
-1

 s
-1

) = 4·10
5 

= -1.85·10
5
·(x+x0+7.48) 

= 10
5
 

x < -16.25 

-16.25 ≤ x < -14.65 

 x ≥ -14.65 

k2 (s
-1

) = 30  

k3 (s
-1

) = 70·exp·(-0.1·(x+x0-1.5)
6
)  

k4, M1 (s
-1

), k4’, M1 (s
-1

) = 60  

k4, M2 (s
-1

), k4’, M2 (s
-1

) = 100  

k4, M3 (s
-1

), k4’, M3 (s
-1

) = 1000  

k4, M4 (s
-1

), k4’, M4 (s
-1

) = 5000  

k5, M1 (s
-1

) = 1.62 

= -0.2·(x+ x0+0.9) 

= 0.02 

x < -10.15 

-10.15 ≤ x < -2.15 

 x ≥ -2.15 

k5, M2 (s
-1

) = 171 

= -20·(x+ x0-3) 

= -180·(x+ x0+0.73) 

= 12 

x < -6.65 

-6.65 ≤ x < -2.35 

-2.35 ≤ x < -1.95 

 x ≥ -1.95 

k5, M3 (s
-1

) = 225 

= -40·(x+ x0–4.9) 

= -20·(x+ x0+3.6) 

= 18 

x < -11.65 

-11.65 ≤ x < -7.35 

-7.35 ≤ x < -5.65 

x ≥ -5.65 

k5, M4 (s
-1

) = 9808 

= -1500·(x+ x0+1.85) 

= -200·(x+ x0+8.46) 

= -60·(x+ x0+6.5) 

= 30 

x < -26.15 

-26.15 ≤ x < -21.15 

-21.15 ≤ x < -10.45 

-10.45 ≤ x < -8.15 

x ≥ -8.15 

k5’, M1 (s
-1

) = 15.2 

= -4·(x+ x0+6.45) 

= -(x+ x0+4.8) 

= 0. 2 

x < -11.15 

-11.15 ≤ x < -8.15 

-8.15 ≤ x < -6.15 

 x ≥ -6.15 

k5’, M2 (s
-1

) = 133.8 

= -20·(x+ x0+7.86) 

= -3·(x+ x0+3.6) 

x < -15.65 

-15.65 ≤ x < -9.75 

-9.75 ≤ x < -8.15 
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= 10  x ≥ -8.15 

k5’, M3 (s
-1

) = 222 

= -40·(x+ x0+10.47) 

= -20·(x+ x0+9.25) 

= 15 

x < -17.15 

-17.15 ≤ x < -12.85 

-12.85 ≤ x < -11.15 

 x ≥ -11.15 

k5’, M4 (s
-1

) = 1469 

= -1500·(x+ x0+23.96) 

= -200·(x+ x0+13.96) 

= -60·(x+ x0+12) 

= 30 

x < -31.65 

-31.65 ≤ x < -26.65 

-26.65 ≤ x < -15.95 

-15.95 ≤ x < -13.65 

x ≥ -13.65 

k6, M1 (s
-1

) = 82 

= -10·(x+ x0-7) 

= 70 

x < -2.35 

-2.35 ≤ x < -1.15 

 x ≥ -1.15 

k6, M2 (s
-1

) = 1860 

= -600·(x+ x0+0.4) 

= 0 

x < -4.65 

-4.65 ≤ x < -1.55 

 x ≥ -1.55 

k6, M3 (s
-1

) = 990 

= -300·(x+ x0+3.5) 

= 0 

x < -7.95 

-7.95 ≤ x < -4.65 

 x ≥ -4.65 

k6, M4 (s
-1

) = 950 

= -500·(x+ x0+9.3) 

= 0 

x < -12.35 

-12.35 ≤ x < -10.45 

 x ≥ -10.45 

k7 (s
-1

) = 500  

k8, M2 (s
-1

) = 100·exp(-z(x+ 

x0+0.5+z)/kB)/(1+ exp(-z(x+ 

x0+0.5)/kB) 

= 0 

x < -1 

 

x ≥ -1 

k8, M3 (s
-1

) = 40·exp(-z(x+ 

x0+1.5+2z)/kB)/(1+ exp(-z(x+ 

x0+0.5)/kB) 

= 0 

x < -1 

 

x ≥ -1 

k9, M2 (s
-1

) = 380·exp(-z(x+ 

x0+0.5+z)/kB)/(1+ exp(-z(x+ 

x0+0.5)/kB) 

= 0 

x < -1 

 

x ≥ -1 

k9, M3 (s
-1

) = 900·exp(-z(x+ 

x0+1.5+2z)/kB)/(1+ exp(-z(x+ 

x0+1.5)/kB) 

= 0 

x < -1 

 

x ≥ -1 

kw1 (s
-1

) = 52500·exp(-z(x+ x0-

0.5)/kB)/(1+ exp(-z(x+ x0-

0.5)/kB) 

 

kw2 (s
-1

) = 24500·exp(-z(x+ x0-

0.5+z)/kB)/(1+ exp(-z(x+ x0-

0.5+z)/kB) 

 

kw3 (s
-1

) = 14000·exp(-z(x+ x0-

0.5+2z)/kB)/(1+ exp(-z(x+ x0-

0.5+2z)/kB) 

 

kw1’ (s
-1

) = 52500·exp(-z(x+ x0+5)/kB)/(1+  
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exp(-z(x+ x0+5)/kB) 

kw2’ (s
-1

) = 24500·exp(-z(x+ 

x0+5+z)/kB)/(1+ exp(-z(x+ 

x0+5+z)/kB) 

 

kw3’ (s
-1

) = 14000·exp(-z(x+ 

x0+5+2z)/kB)/(1+ exp(-z(x+ 

x0+5+2z)/kB) 
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Table S2 Differential equations used to calculate the rates of the transition between consecutive states 

 

MATP(x, t)/t = k-2(x)AMADPPi(x, t) + k1,M1(x)AM1(x, t) + k1,M2(x)AM2(x, t) + k1,M3(x)AM3(x, 

t) + k1,M4(x)AM4(x, t) + k1’,M1(x)A’M1(x, t) + k1’,M2(x)A’M2(x, t) + k1’,M3(x)A’M3(x, t) + 

k1’,M4(x)A’M4(x, t) + k7(x)M
*
ADPPi(x, t) - (k2(x) + k-1,M1(x) + k-1,M2(x) + k-1,M3(x) + k-1,M4(x) + k-

1’,M1(x) + k-1’,M2(x) + k-1’,M3(x) + k-1’,M4(x) + k-7(x)) ∙MATP(x, t) - v(MATP(x, t)/x); 

 

MADPPi(x, t)/t = k2(x)MATP(x, t) + k-3(x)AM1ADPPi(x, t) - (k-2(x) + k3(x)) ∙AMADPPi(x, 

t) - v(MADPPi(x, t)/x); 

 

M1ADPPi(x, t)/t = k3(x)AMADPPi(x, t) + k-4,M1(x)AM1ADP(x, t) + k-1w(x)AM2ADPPi(x, t) 

+ k-6,M1(x)M
*
ADPPi(x, t) - (k-3(x) + k4,M1(x) + k1w(x) + k6,M1(x)) ∙AM1ADPPi (x, t) - 

v(M1ADPPi (x, t)/x); 

 

M2ADPPi(x, t)/t = k1w(x)AM1ADPPi(x, t) + k-4,M2(x)AM2ADP(x, t) + k-2w(x)AM3ADPPi(x, 

t) + k-6,M2(x)M
*
ADPPi(x, t) + k-8,M2(x)A’M2ADPPi(x, t) - (k-1w(x) + k4,M2(x) + k2w(x) + k8,M2(x) + 

k6,M2(x)) ∙AM2ADPPi (x, t) - v(M2ADPPi (x, t)/x); 

 

M3ADPPi(x, t)/t = kw2(x)AM2ADPPi(x, t) + k-4,M3(x)AM3ADP(x, t) + k-w3(x)AM4ADPPi(x, 

t) + k-6,M3(x)M
*
ADPPi(x, t) + k-8,M3(x)A’M3ADPPi(x, t) - (k-w2(x) + k4,M3(x) + kw3(x) + k6,M3(x) + 

k8,M3(x)) ∙AM3ADPPi (x, t) - v(M3ADPPi (x, t)/x); 

 

M4ADPPi(x, t)/t = kw3(x)AM3ADPPi(x, t) + k-4,M4(x)AM4ADP(x, t) + k-6,M4(x)M
*
ADPPi(x, t) 

- (k-w3(x) + k4,M4(x) + k6,M4(x)) ∙AM4ADPPi (x, t) - v(M4ADPPi (x, t)/x); 

 

M1ADP(x, t)/t = k4,M1(x)AM1ADPPi(x, t) + k-5,M1(x)AM1(x, t) + k-w1(x)AM2ADP(x, t) - (k-

4,M1(x) + k5,M1(x) + kw1(x)) ∙AM1ADP(x, t) - v(M1ADP (x, t)/x); 



M2ADP(x, t)/t = kw1(x)AM1ADP(x, t) + k-5,M2(x)AM2(x, t) + k-w2(x)AM3ADP(x, t) + k-

9,M2(x)A’M2ADP(x, t) + k4,M2(x)AM2ADPPi(x, t) - (k-1w(x) + k5,M2(x) + kw2(x) + k9,M2(x) + k-

4,M2(x)) ∙AM2ADP(x, t) - v(M2ADP (x, t)/x); 



M3ADP(x, t)/t = kw2(x)AM2ADP(x, t) + k-5,M3(x)AM3(x, t) + k-w3(x)AM4ADP(x, t) + k4,M3(x) 

AM3ADPPi(x, t) + k-9,M3(x)A’M3ADP(x, t) - (k-w2(x) + k5,M3(x) + kw3(x) + k-4,M3(x) + k9,M3(x)) 

∙AM3ADP(x, t) - v(M3ADP (x, t)/x); 



M4ADP(x, t)/t = kw3(x)AM3ADP(x, t) + k-5,M4(x)AM4(x, t) + k4,M4(x) AM4ADPPi(x, t) - (k-

w3(x) + k5,M4(x) + k-4,M4(x))∙AM4ADP(x, t) - v(M4ADP (x, t)/x); 



M1(x, t)/t = k5,M1(x)AM1ADP(x, t) + k-1,M1(x)MATP(x, t) + k-w1(x)AM2(x, t) - (k-5,M1(x) + 

k1,M1(x) + kw1(x)) ∙AM1(x, t) - v(M1 (x, t)/x); 



M2(x, t)/t = k5,M2(x)AM2ADP(x, t) + k-1,M2(x)MATP(x, t) + kw1(x)AM1(x, t) + k-w2 x)AM3(x, 

t) - (k-5,M2(x) + k1,M2(x) + k-w1(x) + kw2(x)) ∙AM2(x, t) - v(M2 (x, t)/x); 



M3(x, t)/t = k5,M3(x)AM3ADP(x, t) + k-1,M3(x)MATP(x, t) + kw2(x)AM2(x, t) + k-w3(x)AM4(x, 

t) - (k-5,M3(x) + k1,M3(x) + k-w2(x) + kw3(x)) ∙AM3(x, t) - v(M3 (x, t)/x); 


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M4(x, t)/t = k5,M4(x)AM4ADP(x, t) + k-1,M4(x)MATP(x, t) + kw3(x)AM3(x, t) - (k-5,M4(x) + 

k1,M4(x) + k-w3(x)) ∙AM4(x, t) - v(M4 (x, t)/x); 

 

M
*
ADPPi(x, t)/t = k6,M1(x)AM1ADPPi(x, t) + k6,M2(x)AM2ADPPi(x, t) + 

k6,M3(x)AM3ADPPi(x, t) + k6,M4(x)AM4ADPPi(x, t) + k-7(x)MATP(x, t) - (k-6,M1(x) + k-6,M2(x) + k-

6,M3(x) + k-6,M4(x) + k7(x)) ∙M
*
ADPPi (x, t) - v(M

*
ADPPi (x, t)/x); 



A’M1ADPPi(x, t)/t = k-4’,M1(x)A’M1ADP(x, t) + k-w1(x)A’M2ADPPi(x, t) - (k4’,M1(x) + kw1(x)) 

∙A’M1ADPPi (x, t) - v(A’M1ADPPi (x, t)/x); 



A’M2ADPPi(x, t)/t = k-4’,M2(x)A’M2ADP(x, t) + kw1(x)A’M1ADPPi(x, t) + k-w2 

(x)A’M3ADPPi(x, t) + k8,M2(x)AM2ADPPi(x, t) - (k4’,M2(x) + k-w1(x) + kw2(x) + k-

8,M2(x))∙A’M2ADPPi (x, t) - v(A’M2ADPPi (x, t)/x); 



A’M3ADPPi(x, t)/t = k-4’,M3(x)A’M3ADP(x, t) + kw2(x)A’M2ADPPi(x, t) + k-

w3(x)A’M4ADPPi(x, t) + k8,M3(x)AM3ADPPi(x, t) - (k4’,M3(x) + k-w2(x) + kw3(x) + k-

8,M3(x))∙A’M3ADPPi (x, t) - v(A’M3ADPPi (x, t)/x); 



A’M4ADPPi(x, t)/t = k-4’,M4(x)A’M4ADP(x, t) + kw3(x)A’M3ADPPi(x, t) - (k4’,M4(x) + k-

w3(x))∙A’M4ADPPi (x, t) - v(A’M4ADPPi (x, t)/x); 



A’M1ADP(x, t)/t = k-5’,M1(x)A’M1(x, t) + k-w1(x)A’M2ADP(x, t) + k4’,M1(x)A’M1ADPPi(x, t) - 

(k5’,M1(x) + k1w(x) + k-4’,M1(x))∙A’M1ADP (x, t) - v(A’M1ADP (x, t)/x);



A’M2ADP(x, t)/t = k-5’,M2(x)A’M2(x, t) + kw1(x)A’M1ADP(x, t) + k4’,M2(x)A’M2ADPPi(x, t) + 

k-w2(x)A’M3ADP(x, t) + k9,M2(x)AM2ADP(x, t) - (k5’,M2(x) + k-w1(x) + k-4’,M2(x) + kw2(x) + k-

9,M2(x))∙A’M2ADP (x, t) - v(A’M2ADP (x, t)/x); 



A’M3ADP(x, t)/t = k-5’,M3(x)A’M3(x, t) + kw2(x)A’M2ADP(x, t) + k4’,M3(x)A’M3ADPPi(x, t) + 

k-w3(x)A’M4ADP(x, t) + k9,M3(x)AM3ADP(x, t) - (k5’,M3(x) + k-w2(x) + k-4’,M3(x) + kw3(x) + k-

9,M3(x))∙A’M3ADP (x, t) - v(A’M3ADP (x, t)/x); 



A’M4ADP(x, t)/t = k-5’,M4(x)A’M4(x, t) + kw3(x)A’M3ADP(x, t) + k4’,M4(x)A’M4ADPPi(x, t) - 

(k5’,M4(x) + k-w3(x) + k-4’,M4(x))∙A’M4ADP (x, t) - v(A’M4ADP (x, t)/x); 



A’M1(x, t)/t = k5’,M1(x) A’M1ADP(x, t) + k-1’,M1(x)MATP(x, t) + k-w1(x) A’M2(x, t) - (k-5’,M1(x) 

+ k1’,M1(x) + kw1(x)) ∙ A’M1(x, t) - v(A’M1 (x, t)/x); 



 A’M2(x, t)/t = k5’,M2(x) A’M2ADP(x, t) + k-1’,M2(x)MATP(x, t) + kw1(x) A’M1(x, t) + k-w2(x) 

A’M3(x, t) - (k-5’,M2(x) + k1’,M2(x) + k-w1(x) + kw2(x)) ∙ A’M2(x, t) - v(A’M2 (x, t)/x); 



 A’M3(x, t)/t = k5’,M3(x) A’M3ADP(x, t) + k-1’,M3(x)MATP(x, t) + kw2(x) A’M2(x, t) + k-w3(x) 

A’M4(x, t) - (k-5’,M3(x) + k1’,M3(x) + k-w2(x) + kw3(x)) ∙ A’M3(x, t) - v(A’M3 (x, t)/x); 



 A’M4(x, t)/t = k5’,M4(x) A’M4ADP(x, t) + k-1’,M4(x)MATP(x, t) + kw3(x) A’M3(x, t) - (k-5’,M4(x) 

+ k1’,M4(x) + k-w3(x)) ∙ A’M4(x, t) - v(A’M4 (x, t)/x); 


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