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1 Filtering Sensitivity Analyses

The sensitivity of guided principal components analysis (gPCA) to different levels of variance
filtering were investigated. Filtering using an ANOVA approach was also investigated. The
main goal of filtering in our analyses is to remove non-informative features and to reduce the
time required for the analysis.

1.1 Sensitivity of gPCA Results to Filtering

The GENEMAM and GENOA case study data were filtered using a variance filter to retain
the 1000 most variable features. The sensitivity of the results of gPCA to this filtering
was investigated using the GENEMAM data. Table S1 shows the resulting p-values from
retaining between 10 (0.002% of GENEMAM features and 0.043% of GENOA features)
and all features from the full (a) GENEMAM data set or (b) GENOA data set. For the
GENEMAM data, as long as 500 (0.076%) or more features are retained, significant batch
effects are found. Since filtering to retain 500 features takes approximately 1 minute to run,
there is no need to retain fewer features. For the GENOA data, as long as 50 (0.216%) or
more features are retained, significant batch effects are found, which takes approximately 8
seconds to run.

Data were also simulated as in our main simulation study, but with p = 20000 features
and n = 90 samples. For each of the three phenotype scenarios (no phenotype, high variance
phenotype, and low variance phenotype) data were simulated with batch and phenotype
means µb1 = µp1 = 0 and µb2 = µp2 = 1. The batch variance was σb = 0.5, the phenotype
variance for the high phenotypic variance scenario was σp = 2, and the phenotype variance
for the low phenotypic variance scenario was σp = 0.2. The proportion of features affected
by batch (bprop) was held constant at 0.004, 0.017, and 0.03 for the no, high variance, and
low variance phenotype scenarios, respectively, each of which had good power in the previous
simulation study. The proportion of features affected by phenotype in the high variance and
low variance scenarios was 0.01. Table S2 shows the filtering sensitivity results. The columns
represent the same information as for the case studies.

1.2 ANOVA Filtering

An analysis of variance (ANOVA) filter was applied to the GENEMAM data to assess it as
an alternative to variance filtering. The limma package was used to fit an ANOVA (lmFit())
model with batch represented in the design matrix. The eBayes() function was subsequently
used to compute the moderated F statistics and create an indicator of features with a
significant batch effect to be used to filter the centered, mean-value imputed data. The
methods of Benjamini and Hochberg (1995) and Bonferroni were used to adjust for multiple
comparisons at significance levels of α = 0.05 and 0.01. Table S3 shows the number of
features retained from each adjustment method. In all cases the number of features is very
large owing to the large batch effect present in this dataset. As shown in section 1.1, gPCA is
not sensitive to filtering, so filtering can be used to reduce the data dimension and facilitate
implementing gPCA by reducing the analysis time without worry.

2 gPCA Run Time Analysis

An analysis of the time it takes to run gPCA on varying sizes of data was performed. Table
S1(a) gives the time it takes to run gPCA on the GENEMAM data with between 10 and the
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Table S1: Case Study Variance Filtering Sensitivity Results: δ and corresponding p-values
resulting from retaining between 10 and all features from the full data set. System Time
gives the system time in minutes required to run gPCA as discussed in Section 2.

Number Features (%) δ p-value System Time (min)
1 10 (0.002) 0.6878 0.511 0.812
2 20 (0.003) 0.5617 0.706 0.779
3 50 (0.008) 0.6129 0.119 0.841
4 100 (0.015) 0.4603 0.264 0.866
5 200 (0.03) 0.4194 0.268 0.892
6 500 (0.076) 0.5428 0.012 0.965
7 1000 (0.152) 0.5987 <0.001 1.144
8 2000 (0.304) 0.6914 <0.001 1.453
9 5000 (0.761) 0.7244 <0.001 2.479
10 10000 (1.521) 0.8344 <0.001 3.895
11 20000 (3.042) 0.9814 <0.001 7.620
12 50000 (7.606) 0.9807 <0.001 15.348
13 100000 (15.212) 0.9819 <0.001 33.395
14 200000 (30.424) 0.9835 <0.001 60.809
15 500000 (76.061) 0.9839 <0.001 162.075
16 657366 (100) 0.9839 <0.001 206.657

(a) GENEMAM

Number Features (%) δ p-value System Time (min)
1 10 (0.043) 0.8664 0.087 0.118
2 20 (0.087) 0.8117 0.063 0.118
3 50 (0.216) 0.7693 0.025 0.129
4 100 (0.433) 0.7421 0.008 0.146
5 200 (0.865) 0.8315 <0.001 0.183
6 500 (2.163) 0.9220 <0.001 0.302
7 1000 (4.326) 0.9219 <0.001 0.520
8 2000 (8.652) 0.9006 <0.001 0.977
9 5000 (21.631) 0.8811 <0.001 2.394
10 10000 (43.262) 0.8620 0.006 4.052
11 20000 (86.524) 0.8338 0.012 8.051
12 23115 (100) 0.8282 0.013 9.388

(b) GENOA
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Table S2: Simulation Variance Filtering Sensitivity Results: δ and corresponding p-values
resulting from retaining between 10 and all features from the full data set. System Time
gives the system time in minutes required to run gPCA as discussed in Section 2.

Number Features (%) δ p-value System Time (min)
1 10 (0.05) 0.9991 <0.001 0.027
2 100 (0.5) 0.9976 <0.001 0.030
3 1000 (5) 0.9918 <0.001 0.048
4 2000 (10) 0.9896 <0.001 0.069
5 5000 (25) 0.9856 <0.001 0.133
6 10000 (50) 0.9839 <0.001 0.241
7 15000 (75) 0.9787 <0.001 0.350
8 20000 (100) 0.9795 <0.001 0.445

(a) No Phenotype

Number Features (%) δ p-value System Time (min)
1 10 (0.05) 0.5571 0.673 0.029
2 100 (0.5) 0.4314 0.086 0.029
3 1000 (5) 0.4015 0.037 0.049
4 2000 (10) 0.4429 0.021 0.071
5 5000 (25) 0.4977 0.009 0.138
6 10000 (50) 0.5495 0.004 0.252
7 15000 (75) 0.5846 0.003 0.366
8 20000 (100) 0.6211 0.002 0.469

(b) High Variance Phenotype

Number Features (%) δ p-value System Time (min)
1 10 (0.05) 0.4627 0.422 0.030
2 100 (0.5) 0.2484 0.425 0.034
3 1000 (5) 0.3164 0.203 0.060
4 2000 (10) 0.3304 0.198 0.090
5 5000 (25) 0.3615 0.091 0.182
6 10000 (50) 0.4008 0.027 0.341
7 15000 (75) 0.4364 0.010 0.503
8 20000 (100) 0.4632 0.003 0.625

(c) Low Variance Phenotype
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Table S3: Number of features retained using an ANOVA filtering method with different
multiple comparison adjustment methods and stringencies.

Adj. Method α Feat. Retained
1 BH 0.05 636141
2 BH 0.01 624797
3 Bonferroni 0.05 546012
4 Bonferroni 0.01 535708

full set of features. There were n = 614 samples and the data were centered and mean-value
imputation was performed prior to performing gPCA. Table S1(b) gives the time it takes to
run gPCA on the GENOA data allowing the number of features retained after filtering to
vary from 10 to the full dataset. There were n = 703 samples and the data were not centered
prior to performing gPCA. There were no missing values so mean-value imputation was not
necessary.

3 Batch Correction Sensitivity Analysis

A simulated dataset was chosen where batch and phenotypic effects are dependent. In
this scenario each feature j for j = 1, . . . , p was assigned to have no phenotypic effect, a
phenotypic effect only, a batch effect only, or both batch and phenotypic effects. For feature
j, we let

fj = βppjpheno + βbbjbatch + e

where p and b are length p vectors indicating whether each feature had a phenotypic or batch
effect, respectively, pheno and batch are length n vectors giving the phenotype and batch
effect for each sample, and e ∼ N(0, σb) is a random error term. The βp and βb parameters
determine the magnitude of the phenotypic and batch effects, respectively.

The proportion of features effected by phenotype was pprop = 0.1, the variance was
σb = 0.5. The batch and phenotype magnitude parameters were βb = 2 and βp = 0.5,
respectively. The number of features with a phenotypic and batch effects was set at 50 for
each effect, and the number of features with both a phenotypic and batch effect was set at
100. The method of Benjamini and Hochberg (1995) for adjusting for multiple testing was
used at a significance level of α = 0.1.

After fitting a linear model using the lmFit() function with phenotype as the predictor,
the number of significant features in simulated data was assessed using the eBayes() function
in the limma package both prior to batch correction and after batch correction using the batch
mean-centering method of Sims et al. (2008). For batch correction, the pamr.batchadjust()
function in the pamr package was used.

Contingency tables (Table S4) show features found to have a significant phenotypic effect
pre- and post-batch correction using batch mean-centering via the pamr package in R versus
features with known true phenotypic and batch effects. There were 50 features with a
phenotypic effect, 50 features with a batch effect, and 100 features with both a phenotypic
and batch effect. Optimally the inferential procedure should detect 150 features having a
true phenotypic effect and should fail to reject 850 features with no phenotypic effect. This
shows that batch correction allows features with a true phenotypic effect that is masked by
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batch to be found significant after batch correction.

Table S4: Contingency tables from simulated data with dependent batch and phenotypic
effects that show the number of features truly significant versus those found to be significant
using lmFit() and eBayes() on (a) raw data and (b) batch corrected data using batch
mean-centering (BMC). The rows of the tables indicate truth and the columns indicate the
test results.

Fail to reject Reject
No Phenotype Effect 850 0

True Phenotype Effect 102 48

(a) Raw

Fail to reject Reject
No Phenotype Effect 849 1

True Phenotype Effect 2 148

(b) BMC Corrected

4 Additional Simulations

4.1 High Proportion of Features Affected by Batch

It is of interest to investigate the performance of gPCA when the proportion of features
affected by batch is high. Simulations were assessed with batch proportion between 50 and
90% of features. Table S5 shows the estimated power is 100% for all scenarios so good results
can be expected even when a large proportion of features are affected by batch.

4.2 Varied Batch Variance and Phenotypic Means Greater than Batch Means

The sensitivity of gPCA results to the level of batch variance was assessed through additional
simulation analyses. For the no phenotype, high variance phenotype, and low variance
phenotype scenarios, estimated power was calculated while varying the variance associated
with batch between σb = 0.5 and 2. The proportion of features affected by batch (bprop)
and the batch means were held constant at a level found to have good power when varying
the batch proportion. For the true phenotype scenarios, the phenotype means were also
varied as an assessment of gPCA when the phenotypic means (µp1 = 0 and µp2 = 1.5 or
2) are higher than the batch means (µb = 0 and 1). Figure S1 shows the power plots
for the three scenarios. We found that as batch variance increased, so did the estimated
power. The smaller the difference in the phenotypic means, the higher the power. In the no
phenotype scenario, we found that power decreased as the batch variance increased. This is
attributable to the first principal component from unguided PCA and gPCA being similar
when no phenotype is affecting the feature data, which is unlikely in application datasets.

5 Heatmaps of the GENEMAM data

The following heatmaps (Figure S2) show how expression levels vary by sample well location
on the plates. Plate 3 stands out because of poor quality issues.
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Table S5: Power for detecting batch effect as a function of the proportion of features that
are affected by batch at 50 to 90% when no phenotypic, high variance phenotypic, or low
variance phenotypic data were included in gPCA.

σb bprop power
1 0.5 0.500 1
2 0.5 0.633 1
3 0.5 0.767 1
4 0.5 0.900 1
5 1.0 0.500 1
6 1.0 0.633 1
7 1.0 0.767 1
8 1.0 0.900 1

(a) No Phenotype

σb σp pprop bprop power
1 0.5 2.0 0.01 0.500 1
2 0.5 2.0 0.01 0.633 1
3 0.5 2.0 0.01 0.767 1
4 0.5 2.0 0.01 0.900 1
5 1.0 2.0 0.01 0.500 1
6 1.0 2.0 0.01 0.633 1
7 1.0 2.0 0.01 0.767 1
8 1.0 2.0 0.01 0.900 1

(b) High Variance Phenotype

σb σp pprop bprop power
1 0.5 0.2 0.05 0.500 1
2 0.5 0.2 0.05 0.633 1
3 0.5 0.2 0.05 0.767 1
4 0.5 0.2 0.05 0.900 1
5 0.5 0.2 0.10 0.500 1
6 0.5 0.2 0.10 0.633 1
7 0.5 0.2 0.10 0.767 1
8 0.5 0.2 0.10 0.900 1
9 1.0 0.2 0.05 0.500 1
10 1.0 0.2 0.05 0.633 1
11 1.0 0.2 0.05 0.767 1
12 1.0 0.2 0.05 0.900 1
13 1.0 0.2 0.10 0.500 1
14 1.0 0.2 0.10 0.633 1
15 1.0 0.2 0.10 0.767 1
16 1.0 0.2 0.10 0.900 1

(c) Low Variance Phenotype
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(a) No Phenotype (b) High Variance Phenotype

(c) Low Variance Phenotype

Figure S1: Power plots while varying the variance associated with batch and the phenotype
means.
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(a) PC1

(b) PC2

Figure S2: GENEMAM - Standardized Heatmaps showing the (a) PC1 and (b) PC2 values
at each sample well location. White spaces indicate missing samples for the plate. Plates 5
and 8 were incomplete plates.
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