SUPPLEMENTARY FILE 1: PSEUDO-CODE FOR THE A-CLUSTERING AND d_{bp} -MERGE ALGORITHMS

Algorithm 1 (A-clustering) Given ordered methylation measures, by chromosomal location, at m sites for n subjects, an m-vector of chromosomal locations L, corresponding m-vector of cluster assignments, distance measure (e.g. Spearman correlation), distance measure threshold \overline{D} , base pair distance \overline{d}_{bp} and type (single, average or complete)

- (1) Set the cluster indicator $ind_current_cluster \leftarrow 1$.
 - The matching set *current_cluster* contains all the indices of sites belonging to cluster indicated by *ind_current_cluster*.
 - The set *next_cluster* contains all the indices of sites belonging to cluster indicated by *ind_current_cluster* + 1.
- (2) Until no more clusters can be merged:
 - (a) Let merge be true if $dist(current_cluster, next_cluster) \leq \mathcal{D}$ (depend on type), and if also $\min(L(next_cluster)) - \max(L(current_cluster)) < \bar{d}_{bp}$.
 - (b) Repeat while merge is True: current_cluster ← current_cluster ∪next_cluster by updating cluster assignments
 - (c) If merge is False: $ind_current_cluster \leftarrow (ind_current_cluster+1) \% current_number_of_clusters (modulo)$
- (3) Output cluster assignments.

Note that we know that "no more clusters can be merged" after cycling through all clusters and merge none.

Algorithm 2 (d_{bp} -merge) Given ordered methylation measures, by chromosomal location, at m sites for n subjects, an m-vector of chromosomal locations L, distance measure (e.g. Spearman correlation), a threshold \overline{D} , and base-pair distance \underline{d}_{bp} . Let $cluster(site_k)$ be the cluster of site k; initially it is the kth site alone.

- (1) Set the site indicator $ind_current_site \leftarrow 1$. The matching site is $current_site$
- (2) While $ind_current_site < number_of_sites$:
 - (a) Let site₁,..., site_k be all sites such that $L(site_l) L(current_site) \le \underline{d}_{bp}$ ordered by their distance from $current_site$.
 - (b) Set $merge \leftarrow False, l \leftarrow k$.
 - (c) While merge is False and $l > ind_current_site$:
 - If $dist(current_site, site_l) < D$
 - Set $cluster(current_site, ..., site_l) \leftarrow cluster(current_site)$.
 - Set *merge* \leftarrow True.
 - Else $l \leftarrow l-1$

SUPPLEMENTARY FILE 1: PSEUDO-CODE FOR THE A-CLUSTERING AND D_{BP} -MERGE ALGORITHMS

The following figure is Figure 1 from the paper, showing a difference in clustering results without/with using d_{bp} -merge initiation,

FIGURE 1. Figure 1 from the paper - in color. Left panel: d_{bp} -merge was not used. Right panel: d_{bp} -merge initiation followed by Aclust.