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1. Network Analysis Tools Comparison 

 

NetWeAvers is one of several free tools available for performing network analysis for proteomics data, 

each with its own (dis)advantages. For example, NetWeAvers uses a simple but general summarization 

method where other tools provide more sophisticated methods perhaps specific to certain data types.  

Table S1 compares NetWeAvers to several public network analysis tools: BioNet (Beisser et al., 2010); 

ppiStats (Chiang et al., 2013); DEGraph (Jacob et al., 2010); jActiveModules (Ideker et al., 2002); 

BiNGO (Maere et al., 2005); MCODE (Bader and Hogue, 2003); R spider (Antonov et al., 2010); 

atBioNet (Ding et al., 2012).  

 

Table S1. R packages and other tools for analyzing networks with mass spectrometry proteomics data.  

 Summarization 

and protein-

level testing? 

Generic 

experiment 

type? 

p-value 

threshold-

free? 

> 1 possible 

significant 

network? 

Few 

parameter 

specifications? 

Use of 

any 

network? 

R packages       

  NetWeAvers yes yes yes yes yes yes 

  BioNet no yes no no (only 1 

optimal) 

no yes 

  ppiStats no (testing 

only) 

no (bait-

prey only) 

N/A no (analysis 

is per 

protein) 

yes yes 

  DEGraph no (testing 

only) 

no (2 

conditions 

only) 

no yes (if >1 

network 

submitted) 

yes yes 

Cytoscape       

  jActiveModules no (testing 

only) 

yes yes yes no yes 

  BiNGO no yes no yes yes yes 

  MCODE no no yes no (no 

statistical 

scores) 

no yes 

Web-based tools       

  R spider *   no yes N/A yes yes no 

  atBioNet * no yes N/A yes no no 

* free, not open source 

 

 

 

 

 



2. The NetWeAvers Procedure 

 
Figure S1. Main steps of the NetWeAvers procedure. (a) Unique peptide abundances or intensities are 

summarized per protein to obtain a single measure for each protein. (b) Linear models (R/Bioconductor 

package limma) are used to determine statistical significance of differential expression between groups. 

Protein p-values are mapped onto a protein-protein interaction network. (c) Network analysis first finds 

highly connected (dense) clusters and then calculates a weighted average of p-values per dense cluster. 

Output includes cluster size, score, p-value and members (proteins) of the clusters. Clusters may be 

viewed using e.g. Cystocape (Shannon et al., 2003).  

 

3. Details of the NetWeAvers Algorithm 

 

Finding Dense Clusters  

The function findDenseClusters includes options that let the user specify the minimal size of the 

desired network (min_clus_size) and the number of steps to take in random walks on the network 

(steps). See http://arxiv.org/abs/physics/0512106 for more details on the random walk algorithm and 

http://igraph.sourceforge.net/doc/R/walktrap.community.html for its R implementation. 

 

Scoring Clusters 

The clusters are scored using weighted p-values (function scoreClusters) where the weight, w, given 

to each protein is the inverse of the number of proteins with which the given protein interacts. A measure 

for each protein is given by ln(p-value*w
1/c

) where c is a user-specified value indicating how influential 

the weight should be. A value of c = 1 makes the weights as influential as the p-values in the algorithm, 

while a value less than 1 makes them highly influential such that the protein score heavily relies on the 

number of proteins with which the given protein interacts. A value of c that is much larger than 10 makes 

http://arxiv.org/abs/physics/0512106
http://igraph.sourceforge.net/doc/R/walktrap.community.html


the weights negligible. The default value for c is 10, which somewhat suppresses the weights. If, for 

example, the user is interested in finding clusters around a hub, then c should be set to a small value less 

than 1. Once the protein measures have been calculated, they are combined within clusters to generate a 

cluster score by taking either the mean or median of the individual protein measures. 

  

Permutation Test 

The null hypothesis of the permutation test (function permTest) is that differentially abundant proteins 

are present in the dense clusters at random. By default, protein names are permuted 1000 times and the 

cluster score is recalculated for each permutation. For a given cluster, the proportion of permuted scores 

greater than the cluster's observed score is the cluster p-value. A small cluster p-value may be considered 

statistically significant, as it indicates that the dense cluster is enriched with differentially expressed 

proteins. 

 

4. Application Results 

 

We applied the R package to mass spectrometry data from a phosphorylation study of human embryonic 

stem cells (hESCs, Van Hoof et al., 2009). The authors performed a stable isotope labeling by amino acids 

in cell culture (SILAC) experiment using undifferentiated hESCs and hESCs differentiated with bone 

morphogenetic protein 4 (BMP4). Measurements were taken at three time points (30, 60 and 240 minutes 

after initiation of differentiation) with two biological replicates at each time point. The data were 

processed using PVIEW (Khan et al., 2009, 2011); the processed dataset is available in the NetWeAvers 

package (vanHoof). See the R package vignette provided as Supplementary File 2 for the code used for 

summarizing the data, performing hypothesis testing on the summarized data, and running the network 

analysis using the protein p-values from the comparison of 30 and 60 minutes with the Reactome human 

PPI network, version 43 (http://www.reactome.org/download/current/homo_sapiens.interactions.txt.gz). 

 

A total of 52 clusters were discovered by mapping the Van Hoof dataset p-values to the Reactome version 

43 human protein-protein interaction (PPI) network. The clusters described in Table S1 were all 

significant at a level of 0.01 in the NetWeAvers network analysis. Ingenuity (Ingenuity® Systems, 

www.ingenuity.com) and Reactome (Croft et al., 2011) were used to annotate the networks. The main 

function of the most significant cluster, which contains 30 proteins with p-values less than 0.10 (Figure 

S2), is transcription regulation, an essential part of embryonic stem cell (ESC) differentiation (Heng and 

Ng, 2010). The other significant clusters (clusters c32, c52 and c34, Figures S3-S5) also are involved in 

processes or pathways known to be involved in ESC differentiation, such as RNA splicing, post-

translational modification, and DNA repair (Pritsker et al., 2005; Cai et al., 2012; Maynard et al., 2008). 

Cytoscape (Shannon et al., 2003) was used to visualize the clusters which are shown in Figures S2-S5. 

The overlap between the results provided here and the results in Van Hoof et al. is smaller than might be 

expected due to the use of different databases, one a signaling pathway database and one a PPI network. 

 

 

 

 

 

 

http://www.reactome.org/download/current/homo_sapiens.interactions.txt.gz
www.ingenuity.com


Table S2. Significant clusters from Van Hoof dataset. 

Cluster_ID Cluster_size Cluster_score Cluster_pvalue Network Function 

c5 190 1.412 0.000 Transcription regulation 

c32 30 2.476 0.000 RNA splicing 

c52 6 5.245 0.000 Post-translational modification 

c34 8 2.583 0.010 DNA repair (non-homologous end-joining) 

 

Legend for Figures S2-S5.  

 
 

Figure S2. Cluster c5 – transcription regulation.  

 
 

 

 

 

 

 

 



Figure S3. Cluster c32 – RNA splicing. 

 
 

Figure S4. Cluster c52 – post-translational modification. 

 
 

Figure S5. Cluster c34 – DNA repair. 

 
 

 



5. Using NetWeAvers with Other R Packages 

 

In order to display the flexibility of NetWeAvers, we present here an example of using alternative 

summarization and testing procedures, from another R package, prior to performing the NetWeAvers 

aglorithm. To find statistically significant dense clusters of proteins we ran NetWeAvers with default 

parameters on the protein ratio p-values from the R package isobar’s vignette (Breitwieser et al., 2011; 

http://www.ms-isobar.org/isobar.pdf) and the Reactome human PPI version 43. Specifically, we 

performed each step in the pre-processing and testing from the vignette on the dataset ibspiked_set1, 

which is isobaric tag for relative and absolute quantitation (iTRAQ) data from human plasma with spiked-

in proteins. From the object rat.list, which is comprised of statistics for summarized proteins, we 

extracted the variable p.value.rat, which contains the p-values for the ratios of isobaric tags for each 

protein. These protein p-values were input into NetWeAvers. The filtered human network did not include 

the spike-ins from the other species, but several clusters were significant, including those related to the 

complement system, platelet aggregation, cholesterol and lipoproteins, and glycolysis. 

 

6. Null Dataset 

 

We tested the NetWeAvers algorithm (default parameter settings) on a null data set by comparing 2 

samples with themselves and shuffling the protein-protein interactions. Of the 84 dense clusters 

discovered, 1% had a p-value less than 0.01, 9% had a p-value less than 0.05 and 18% had a p-value less 

than 0.10. These values are roughly consistent with a random p-value distribution. 

 

7. Rationale for Threshold-Free p-Values 

 

Suppose we want to score the networks in Figure S6 where the p-values are either indicated in black 

(adjacent to red nodes) or are 1 (blue nodes). The networks in (a) and (b) are nearly identical, but there are 

slight differences in the p-values around typical thresholds (0.001, 0.01, 0.05, 0.10). 

 

Figure S6. Toy example of networks containing nodes with varying p-values. 

 
 

(a) (b) 

http://www.ms-isobar.org/isobar.pdf


The networks can be scored on actual p-values or by using a binary classification of nodes (significant or 

not, based on a chosen threshold). For example, for a threshold of 0.001 the node is scored as 0 if the p-

value is less than 0.001 and 1 if greater than 0.001. Here we use the mean of the p-values to demonstrate 

the impact of thresholding. A possibly interesting network with differentially expressed nodes will have a 

mean closer to 0 and closer to 1 otherwise. Table S3 shows that as the threshold increases the mean 

decreases, but that these values are quite different between the two networks (a) and (b). The averages 

without thresholding are relatively close, which seems more reasonable for such similar p-values in the 

given networks. In this latter case no subjective cutoff is required and there is less loss of information as 

compared to the use of dichotomized p-values. 

 

Table S3. Average p-values (with and without thresholds) of nodes in networks from Figure S2. 

Threshold (a) Mean (b) Mean 

0.001 1 0.875 

0.01 0.875 0.750 

0.05 0.750 0.625 

0.10 0.625 0.500 

None 0.522 0.519 
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