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1 Introduction

This document describes the functions available in the netweavers package. The pack-
age may be used with proteomics mass spectrometry data to summarize quantified pep-
tide data, fit linear models and test for differential expression, and perform network
analysis on protein-protein interaction networks using protein p-values. To get started,
first you need to load the package in your R session:

> library(netweavers)

We will use the example dataset called vanHoof, which contains mass spectrometry (MS)
data from a phosphorylation study of human embryonic stem cells (hESCs), (Van Hoof
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et al., 2009). The SILAC experiment measured undifferentiated hESCs and hESCs dif-
ferentiated with bone morphogenetic protein 4 (BMP4) at three time points (30 minutes,
60 minutes and 240 minutes) with two biological replicates at each time point. The data
were processed using PVIEW (Khan et al., 2009, 2011).

The dataset that contains the main objects required for use in this vignette is loaded
by

> data(vanHoof)

2 Differential Expression Test

The function DEtest uses functions from the package limma for hypothesis testing via
linear models on quantified protein- or peptide-level data. The input requires the data
to be in the form of an ExpressionSet.

We will use ExpSetVH to test for differential expression at the peptide level. This
ExpressionSet contains the quantified data in the assayData slot, the sequences and
protein IDs in the featureData slot, and the experimental design, phenoDataVH, in the
phenoData slot:

> ExpSetVH

ExpressionSet (storageMode: lockedEnvironment)

assayData: 12524 features, 6 samples

element names: exprs

protocolData: none

phenoData

sampleNames: a30min b30min ... b240min (6 total)

varLabels: sampleIDs groups

varMetadata: names labelDescription

featureData

featureNames: 1 2 ... 13096 (12524 total)

fvarLabels: Sequence Protein

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation:

Note that the phenoData contains the label groups that indicates which samples belong
to each of the three factor levels (time points) of the experiment:

> phenoData(ExpSetVH)@data

sampleIDs groups

a30min a30min min30
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b30min b30min min30

a60min a60min min60

b60min b60min min60

a240min a240min min240

b240min b240min min240

Note that the ExpressionSet only contains 6 samples (and not 12) because with SILAC
one measures the ratio of abundances of differentiated versus undifferentiated hESCs.

The function DEtest takes as input the ExpressionSet and the name of the variable
subject to testing:

> outDE <- DEtest(ExpSetVH, label="groups")

groups (F-test)

Warning: nestedF multiple testing scheme not carried out due to missing p-values

groups (pairwise comparison): min240 - min30

groups (pairwise comparison): min240 - min60

groups (pairwise comparison): min30 - min60

If there are technical replicates in the data, set reps = TRUE. Note the warning: the
function decideTests() with method = "nestedF" is used for multiple testing across
the contrasts and proteins (or peptides); it requires complete data (see the limma User’s
Guide for more details). One option is to filter out peptides with too many missing
values and impute the remaining NAs. The resulting object is a list containing two
items:

1. A list of data frames comprised of the output of topTable applied to the eBayes

model fit.

2. A data frame containing (moderated) statistics from an F -test.

> str(outDE)

List of 2

$ resultsTable_limma :List of 3

..$ min240 - min30:'data.frame': 12524 obs. of 9 variables:

.. ..$ Sequence : chr [1:12524] "MVMIQDGPLPTGADKPLR" "RPLEDGDQPDAK" "VMLGETNPADSKPGTIR" "EKPVDLQNFGLR" ...

.. ..$ Protein : chr [1:12524] "FUBP3" "FUBP1" "NME1" "SMARCC1" ...

.. ..$ logFC : num [1:12524] 62.8 -27.8 -15.5 12.1 5.9 ...

.. ..$ AveExpr : num [1:12524] 20.98 33.44 46.34 32.28 9.42 ...

.. ..$ t : num [1:12524] 481.1 -213.3 -118.5 93.1 45.2 ...

.. ..$ P.Value : num [1:12524] 8.76e-06 4.02e-05 1.21e-04 1.90e-04 7.33e-04 ...

.. ..$ adj.P.Val: num [1:12524] 0.0189 0.0432 0.0867 0.1021 0.3154 ...
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.. ..$ B : num [1:12524] 0.944 0.926 0.879 0.837 0.528 ...

.. ..$ df : num [1:12524] 1 0 0 0 0 0 0 0 0 0 ...

..$ min240 - min60:'data.frame': 12524 obs. of 9 variables:

.. ..$ Sequence : chr [1:12524] "SLDQEIARPLENENQEFLK" "VMLGETNPADSKPGTIR" "MVMIQDGPLPTGADKPLR" "EKPVDLQNFGLR" ...

.. ..$ Protein : chr [1:12524] "NES" "NME1" "FUBP3" "SMARCC1" ...

.. ..$ logFC : num [1:12524] -274.7 -95.2 62.7 54.5 -37.2 ...

.. ..$ AveExpr : num [1:12524] 91.6 46.3 21 32.3 13.5 ...

.. ..$ t : num [1:12524] -2106 -730 481 417 -285 ...

.. ..$ P.Value : num [1:12524] 5.52e-07 4.02e-06 8.77e-06 1.14e-05 2.34e-05 ...

.. ..$ adj.P.Val: num [1:12524] 0.00119 0.00432 0.00615 0.00615 0.01005 ...

.. ..$ B : num [1:12524] 1.22 1.22 1.21 1.21 1.2 ...

.. ..$ df : num [1:12524] 1 0 0 0 0 0 0 0 0 0 ...

..$ min30 - min60 :'data.frame': 12524 obs. of 9 variables:

.. ..$ Sequence : chr [1:12524] "SLDQEIARPLENENQEFLK" "VMLGETNPADSKPGTIR" "EKPVDLQNFGLR" "DQDLTQEIAMEHFVK" ...

.. ..$ Protein : chr [1:12524] "NES" "NME1" "SMARCC1" "AKAP8L" ...

.. ..$ logFC : num [1:12524] -274.74 -79.75 42.31 -37.29 -4.02 ...

.. ..$ AveExpr : num [1:12524] 91.62 46.34 32.28 13.51 2.86 ...

.. ..$ t : num [1:12524] -2106 -611.3 324.3 -285.9 -23.4 ...

.. ..$ P.Value : num [1:12524] 5.52e-07 5.60e-06 1.83e-05 2.32e-05 2.57e-05 ...

.. ..$ adj.P.Val: num [1:12524] 0.00119 0.00602 0.01106 0.01106 0.01106 ...

.. ..$ B : num [1:12524] 1.19 1.19 1.18 1.18 3.77 ...

.. ..$ df : num [1:12524] 1 0 0 0 0 0 0 0 0 0 ...

$ resultsTable_Fpvalue:'data.frame': 12524 obs. of 7 variables:

..$ Sequence : chr [1:12524] "SLDQEIARPLENENQEFLK" "VMLGETNPADSKPGTIR" "MVMIQDGPLPTGADKPLR" "EKPVDLQNFGLR" ...

..$ Protein : chr [1:12524] "NES" "NME1" "FUBP3" "SMARCC1" ...

..$ F : num [1:12524] 2956842 306746 154265 96028 54321 ...

..$ df1 : int [1:12524] 2 2 2 2 2 2 2 2 2 2 ...

..$ df2 : num [1:12524] 0 0 0 0 0 2 0 3 2 0 ...

..$ p.Val : num [1:12524] 8.23e-07 6.86e-06 1.31e-05 2.04e-05 3.47e-05 ...

..$ adj.P.Val: num [1:12524] 0.00177 0.00738 0.00937 0.01095 0.01493 ...

The data frames contain any original annotation and several statistics output by the
function topTable including p-values and adjusted p-values. These p-values can be used
as input in runNetweavers, e.g. for comparing timepoints 30 and 60 minutes you could
use

> outDE_30to60 <- outDE$resultsTable_limma[["min30 - min60"]]

3 Peptide to Protein Summarization

If your quantified MS data are at the peptide level, you will need to summarize the data
to the protein level in order to do network analysis.
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3.1 Data Frame Summarization

One way to roll-up peptides to proteins is to input a data frame of the quantified data,
along with the sequences, protein IDs and experimental design, into the function cus-

tomSummarizer. The input data look like:

> head(dataVH)

Sequence Protein a30min b30min a60min b60min

1 AAAAAAALQAK RPL4 0.9390492 0.9430509 NA NA

2 AAAAAWEEPSSGNGTAR RCC2 NA NA NA NA

3 AAAAGLGHPASPGGSEDGPPGSEEEDAAR ARID3A NA NA NA NA

4 AAAGEFADDPCSSVK CTNNA1 0.8568542 NA NA NA

5 AAAGQESEGPAVGPPQPLGK ARID1A 1.8687121 NA 2.272664 NA

6 AAALVDEGLDPEEHTADGEPSAK TSHZ3 NA 0.4784046 NA NA

a240min b240min

1 0.9122702 NA

2 0.4053151 NA

3 NA 0.4606221

4 0.9437617 NA

5 1.7914869 NA

6 NA 0.4516751

> phenoDataVH

sampleIDs groups

a30min a30min min30

b30min b30min min30

a60min a60min min60

b60min b60min min60

a240min a240min min240

b240min b240min min240

and the following shows how to specify the parameters in the function to get the desired
output:

> esetSum1 <- customSummarizer(pepquant=dataVH, samplecols=3:8,

+ peptidecol=1, proteincol=2,

+ sumprot="median", phenodata=phenoDataVH)

> esetSum1

ExpressionSet (storageMode: lockedEnvironment)

assayData: 3200 features, 6 samples

element names: exprs

5



protocolData: none

phenoData

sampleNames: a30min b30min ... b240min (6 total)

varLabels: sampleIDs groups

varMetadata: names labelDescription

featureData

featureNames: 1 2 ... 3200 (3200 total)

fvarLabels: Protein

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation:

The output is an ExpressionSet with the summarized, protein-level data in the as-

sayData slot. The slot phenoData contains the phenoDataVH and the slot featureData
contains the Protein field from dataVH. The output can be input into DEtest for dif-
ferential expression testing.

In this example we used the default function median to aggregate all peptide values
of a given protein. You may also input the function mean. Missing values in the feature
data (in the case of peptides that have not been quantified in all samples) are allowed
but ignored.

3.2 ExpressionSet Summarization

If you already have your data in an ExpressionSet, e.g. ExpSetVH, then you can simply
run

> esetSum2 <- esetSummarizer(ExpSetVH, sumprot="median")

to get the summarized data. The output can be input into DEtest for differential
expression analysis.

3.3 p-Value Summarization

Suppose you have peptide-level data and prefer to test at this level as opposed to the
protein level, but still want to run the data through a network analysis. The function
pvalueSummarizer allows you to do this: it summarizes peptide p-values (e.g. generated
by DEtest) and the output may be used in runNetweavers.

The method used to aggregate p-values is Fisher’s method. It returns a single p-value
for each set of p-values, x, using the chi-squared distribution function on −2

∑
ln(x) with

degrees of freedom equal to the length of x.
For example, we can use p-values from outDE generated in the previous section for

comparing timepoints 30 and 60 minutes:
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> pvals3060 <- outDE_30to60[,c("Protein","P.Value")]

> names(pvals3060)[2] <- "pvalue"

> pvalsSum <- pvalueSummarizer(pvals3060)

> head(pvalsSum)

Protein omnibus.P.Val

1 AARS 0.10947111

2 ABCF2 0.71294855

3 ABT1 0.30946672

4 ACBD3 0.36964204

5 ACIN1 0.05578688

6 ACLY 0.32122988

Note that Fisher’s Method assumes independence, which is clearly not true for pep-
tides from the same protein, so these p-values might be too optimistic.

4 Find and Score Dense Clusters

The main function of the NetWeAvers algorithm is to perform network analysis. This
section describes the core network analysis functions that find and score highly connected
subgraphs within a protein-protein interaction network.

The first thing we want to do is filter an entire human network down to just those
proteins of interest and their first interactors. We use networkVH which is the Reactome
version 43 protein-protein interaction network (Matthews et al., 2009):

> filtnet <- filterNetwork(networkVH, pvalsSum$Protein)

Then we find all the dense clusters of this network that have at least 4 proteins (default
size) by taking random walks of length 10 (see Pons and Latapy (2006) for details):

> ## note: this will take a couple of minutes

> ## see clust_2_proteinVH for identical output

> outDC <- findDenseClusters(filtnet, pvalsSum$Protein, min_clus_size=4,

+ steps=10)

> denseClusters <- outDC$clust_2_protein

The first item in the list is the data frame of cluster information that we will use in the
following example. The second two items are special classes of the igraph package that
can be used for visualizing the network (see Visualization section).

In order to score the clusters, we first need to calculate the protein weights and
measures, which requires the use of p-values. We will use the summarized p-values from
the comparison of 30 and 60 minutes (see previous section):
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> ## change name of p-values for use in measureCalc

> names(pvalsSum)[2] <- "pvalue"

> ## calculate protein weights

> proteinWts <- weightCalc(filtnet)

> ## calculate protein measures

> proteinMsr <- measureCalc(pvalsSum, proteinWts, weightamt=3)

> head(proteinMsr)

Protein pvalue weight measure

1 A1CF NA 0.04761905 0

2 A2M NA 0.50000000 0

3 AARS 0.1094711 NA NA

4 AASDHPPT NA 1.00000000 0

5 ABCC8 NA 0.50000000 0

6 ABCF2 0.7129485 NA NA

Note that we used a weight amount of 3, meaning we consider the weights nearly as
important as p-values. Now that we have all the necessary data in proteinMsr we can
score the clusters contained in outDC. The cscoremethod is the function that aggregates
the protein measures per cluster and here we use the default mean:

> cscores <- scoreClusters(denseClusters, proteinMsr, cscoremethod="mean")

The larger the cluster score, the more significantly differentially regulated the proteins
in the cluster are. We can use this statistic to rank our clusters, but we can also run
a permutation test to see if the scores are large not by chance alone. The function
permTest will do this, and here we perform 1000 permutations (B) and make sure we
use the exact same cscoremethod that we did to find the cscores:

> set.seed(1234)

> cpvals <- permTest(B=1000, prot_data=proteinMsr,

+ clust_2_protein=denseClusters,

+ cluster_scores=cscores, cscoremethod="mean")

Note that we used set.seed before performing the permutation, which ensures the same
results will be output from the permutation test in the next section. Finally, we can
combine the cluster p-values with the cluster scores and membership information:

> cdata <- data.frame(Cluster_ID=denseClusters$clusID,

+ Cluster_size=denseClusters$clusSIZE,

+ Cluster_score=cscores,

+ Cluster_pvalue=cpvals,

+ Cluster_symbol=denseClusters[,-c(1,2)])
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5 All-in-one: runNetweavers

The function runNetweavers is a wrapper for the functions in the NetWeAvers package.
This function performs all of the steps in the NetWeAvers algorithm including filtering
the protein network, finding dense clusters (only if output of findDenseClusters not
already provided), and calculating protein weights, protein measures, cluster scores, and
cluster p-values from a permutation test (optional). The following code runs NetWeAvers
using the default values and produces the same output as above (proteinMsr, filtnet,
and cdata) in a list:

> set.seed(1234)

> outNW <- runNetweavers(pvalsSum, filtnet, weightamt=3)

filtering network

finding dense clusters

calculating proteins weights

calculating protein measures

calculating cluster scores

calculating permutation pvalues

producing results tables

> str(outNW,list.len=5)

List of 3

$ proteininfo:'data.frame': 2363 obs. of 4 variables:

..$ Protein: chr [1:2363] "A1CF" "A2M" "AARS" "AASDHPPT" ...

..$ pvalue : num [1:2363] NA NA 0.109 NA NA ...

..$ weight : num [1:2363] 0.0476 0.5 NA 1 0.5 ...

..$ measure: num [1:2363] 0 0 NA 0 0 NA 0 NA 0 0 ...

$ filt_net :'data.frame': 4823 obs. of 2 variables:

..$ intA: chr [1:4823] "AGPS" "AGPS" "KIF2A" "MYO1C" ...

..$ intB: chr [1:4823] "FAR1" "FAR2" "CCNB1" "RAB4A" ...

$ clusterinfo:'data.frame': 52 obs. of 280 variables:

..$ Cluster_ID : Factor w/ 52 levels "c1","c10","c11",..: 1 12 23 34 45 49 50 51 52 2 ...

..$ Cluster_size : int [1:52] 97 88 10 276 190 6 145 146 72 21 ...

..$ Cluster_score : num [1:52] 0.246 0.6413 0.7331 0.0464 1.4122 ...

..$ Cluster_pvalue : num [1:52] 0.996 0.438 0.314 1 0 0.416 0.719 0.125 0.745 0.023 ...

..$ Cluster_symbol.X1 : chr [1:52] "EREG" "RPA1" "ACOT8" "ADCY6" ...

.. [list output truncated]

9



6 Visualization

6.1 Writing Files for Cytoscape

Here we show how to export the data that can be used as input in Cytoscape (Shannon
et al., 2003) to make the following figure. First we will create a node attributes file by
adding the cluster membership to the protein list:

> proteininfo <- outNW$proteininfo

> clusterinfo <- outNW$clusterinfo

> proteininfo$cluster <- NA

> for(i in 1:nrow(clusterinfo)){

+ proteininfo$cluster[proteininfo[,1]%in%clusterinfo[i,-c(1:4)]] <- i

+ }

Then we can write the file to be uploaded into Cytoscape as node attributes. Note that
Cytoscape cannot parse missing values, so we replace them with -9:

> ## write.table(proteininfo,"nodeAttributes.txt",

> ## sep="\t",row.names=F,quote=F,na="-9")

The following writes the network file:

> ## write.table(filtnet,"network.txt",sep="\t",row.names=F,quote=F)

and after a little bit of customization in Cytoscape we get, for example, the graph of
cluster 5 in Figure 1.

6.2 Using igraph

It is also possible to visualize the resulting filtered network using the functions available
in the igraph package. As an example, we will use the output from findDenseClusters
to set up the plot (but not run, since it takes a while) of the graph with the proteins
colored by cluster membership:

> dc_member <- outDC[['denseClus']]$membership

> dc_graph <- outDC$subGraph

> cols <- rainbow(length(unique(dc_member)))

>

> ## make the plot

> ## plot(dc_graph, vertex.color=cols, vertex.size=3, vertex.label=NA,

> ## edge.color="grey")

6.3 Using RCystocape

See RCytoscape on how to use transfer the network and attributes from R to Cytoscape.
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Figure 1: Image of cluster 5, generated with Cytoscape. A red node indicates a protein
with a p-value less than 0.05, yellow less than 0.10, blue less than 1.00. A grey protein
is one that is not in the Van Hoof dataset but is in the Reactome network.
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