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Mercury Methylation Experiments. Individual cultures for methylation experiments were pre-

grown for 4-5 days until they reached exponential phase. Before tests, pre-grown cells of all 

strains were washed twice with fresh sulfide-free media under strictly anaerobic conditions using 

tightly sealed 50 ml centrifuge tubes (centrifuged for 20 min. at 3,000 rpm). Washed cells were 

then resuspended in a sulfide-free medium for each strain and used as inocula. A similar dilution 

of inoculum of each individual strain (roughly 10%) was used in Hg methylation experiments, 

e.g., roughly 7 ml of pre-grown culture which was subject to washing was added to 63 ml of 

fresh medium in a 130 ml serum bottle. Initial inoculation of each strain was adjusted to a similar 

cell density in different experiments by adjusting to final OD660 of 0.010-0.011 (about 2.8×104 

cells ml-1) for M. hungatei and to 0.020-0.022 (about 4.6×105 cells ml-1) for D. africanus and 

others. Experiments were performed in triplicate. Heat killed abiotic controls, prepared by 

treating cultures at 80 °C for 1 h (1), and sterilized media blanks were included in all methylation 

experiments.  

Potential Hg methylation rates were measured by spiking 203HgCl2 (in 0.1 N HCl) kindly 

provided by Christy C. Bridges (Mercer University School of Medicine, Macon, GA). The 

radioisotope (specific activity, 2.504 µCi µg-1) was injected into each serum bottle at 

180.6~191.9 kBq L-1 (corresponding to 9.7~10.3 nM or 1.9~2.1 µg Hg L-1).  The final 

concentration of Hg in these incubation was similar to or lower than concentrations in previous 

methylation studies (2-5). A volume of 0.1 N NaOH similar to that of the injected 203Hg substrate 

was immediately injected into the serum bottles to neutralize the added acid, and the cultures 

were thoroughly mixed by vortexing.  Cultures were then statically incubated at either 32 or 37 

°C in the dark.  Ten ml aliquots were withdrawn with a syringe in daily intervals for MeHg 
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extraction and a similar volume of O2-free 100% N2 was added to the bottles to maintain 

constant pressure for five days.  
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Newly synthesized CH3
203Hg in cultures was separated from unreacted 203HgCl2 by a 

toluene extraction method that was modified from previous studies (6-8). Samples were 

extracted on the day of sampling to minimize the effect of 203Hg decay. Recoveries of MeHg 

ranged from 90 to 98% as determined by using cell cultures to which 2 ml of 3N HCl were added 

to terminate microbial activities followed by the addition of ~0.1 µCi 14C-CH3HgCl (specific 

activity, 60 mCi/mmol; radiochemical purity, 95.2%; Amersham Corp., Buckinghamshire, 

England), and employing the same extraction protocol. The radiotracer approach allows quick 

analysis of potential methylation rates at an ambient total Hg concentration and/or at trace levels 

(6, 9). Since previous tests showed the potential formation of unknown organic forms of 203Hg 

(Mark Marvin DiPasquale, USGS, personal communication) and low levels of Hg(II) carryover 

into toluene are known (10), the formation of MeHg in M. hungatei cultures was confirmed by 

the detection of MeHg by EPA method 1630 (11). 

Potential initial Hg methylation rates (fmol MeHg per µg protein day-1) were calculated 

from the linear range of lines describing MeHg concentrations vs. time, either normalized by 

initial protein (for Fig. 1a) or by protein levels at each time point for Fig. 2. The initial 

concentration of cell proteins at inoculation was used in the calculations for Fig. 1a to allow a 

protein-normalized comparison among different treatments and with results obtained by others 

(5). The Hg methylation rates (Fig. 2) were calculated based on the initially linear range of 

methylation in 32 h for all strains and treatments except for G. sulfurreducens incubated at 32 °C 

and M. hungatei at 37 °C where 12 hrs measurements were used to calculate initial rates.  
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FIG. S1 Hg methylation by M. hungatei JF-1 and D. africanus DSM 2603. Synthesis of MeHg 
(pM) (a) and cell growth (protein concentrations, b) of M. hungatei in media with TiCl3 or Na2S 
as a reductant, and D. africanus in medium containing Na2SO4 as a terminal electron acceptor.      
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FIG. S2 Comparison of Hg methylation by M. hungatei JF-1 with activities of known 
methylating bacteria. MeHg concentrations (a) and cell growth (b) during incubation of D. 
desulfuricans ND132 (pyruvate as an electron donor and fumarate as an acceptor), D. africanus 
DSM 2603 (pyruvate and fumarate), G. sulfurreducens PCA (sodium acetate and ferric acetate) 
at 32 °C, and M. hungatei JF-1 at 37 °C. TiCl3 was served as a reductant in all incubations. 
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FIG S3 Maximum likelihood phylogeny of HgcA orthologs (or paralogs) from methanogens, 

and sulfate and iron reducing bacteria. Confirmed Hg methylators are highlighted in bold. 

Accession numbers are listed in parentheses. Numbers at branching points denote boot support as 

a percentage of 100 successful resampling. 
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FIG S4 Maximum likelihood phylogeny of HgcB orthologs (or paralogs) from methanogens, 
and sulfate and iron reducing bacteria. Confirmed Hg methylators are highlighted in bold. 
Accession numbers are listed in parentheses.  
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FIG S5 Maximum likelihood phylogeny of concatenated HgcA and HgcB from known Hg 
methylating species (shown in bold) and orthologs identified by homology to the proteins of M. 
hungatei JF-1. The bar on the right identifies taxa at the phylum/class level; Chl stands for 
Chloroflexi and the Deltaproteobacteria bracket distinguishes iron reducers, sulfate reducers, and 
syntrophs. The tree is out-grouped by paralogs of Hgc proteins belonging to the CdhD family.  
The bar at the bottom indicates branch length corresponding to 1 substitution per 100 amino 
acids. 
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