

SUPPL. FIG. 1. Confirmation of E. festucae yapA, gpxC and tpxA single and gpxC and tpxA double deletions by Southern blotting (A) Schematic of the wild-type yapA locus, linearised replacement construct (pGC2), $\Delta yapA$ mutant genomic locus and complementation construct (pGC11). The regions of recombination between homologous sequences flanking the yapA locus and hph resistance cassette are indicated by grey shading. Restriction enzyme sites used to generate linear replacement (BglII, XhoI) and complementation fragments (EcoRV, EcoRI) and for Southern analysis (PstI) are indicated. Grey arrows indicate genes flanking yapA. (B) Autoradiograph of Southern blot of PstI digests (1 µg) of E. festucae WT/PN2278 (lane 1), ΔyapA#145/ PN2740 (lane 2) and ΔyapA#243/ PN2739 (lane 3) genomic DNA, probed with ³²P-labelled pGC2. The expected fragment sizes are 6.1- and 5.7-kb for wild-type and 6.7- and 4.7-kb for the $\Delta yapA$ mutants. The additional 3.8-kb band corresponds to the size of the construct indicating it has integrated as a tandem repeat at the yapA locus. (C) Schematic of the wild-type gpxC locus, linearised replacement construct (pGC4) and $\Delta g p x C$ mutant genomic locus. The regions of recombination between homologous sequences flanking the gpxC locus and nptII resistance cassette are indicated by grey shading. Primer pair gpx1/gpx4 used to generate linear replacement fragment and restriction enzyme sites used for Southern analysis (NcoI) are indicated. Grey arrow indicates gene flanking gpxC. (D) Autoradiograph of Southern blot of NcoI digests (1 µg) of E. festucae Fl1/ PN2278 (lane 1), AgpxC#10/ PN2741 (lane 2) and AgpxC#34/PN2742 (lane 3) genomic DNA, probed with ³²P-labelled pGC4. The expected fragment sizes are 3.2- and 2.4-kb for wild-type and 4.1- and 2.4-kb for the $\Delta gpxC$ mutants. (E) Schematic of the wild-type tpxA locus, linearised replacement construct (pGC12) and AppxA mutant genomic locus. The regions of recombination between homologous sequences flanking the tpxA locus and hph resistance cassette are indicated by grey shading. Restriction enzyme sites used to generate the linear replacement fragment (BglII, XbaI) and for Southern analysis (XbaI) are indicated. Grey arrow indicates gene flanking tpxA. (F) Autoradiograph of Southern blot of XbaI digests (1 µg) of E. festucae Fl1/ PN2278 (lane 1), ΔtpxA#105/ PN2821 (lane 2) and ΔtpxA#157/ PN2822 (lane 3) genomic DNA, probed with ³²P-labelled pGC12. The expected

fragment sizes are 8.8-kb for wild-type and 9.5-kb for the $\Delta tpxA$ mutants. (G) Schematic of the wild-type gpxC locus, linearised replacement construct (pGC4) and $\Delta gpxC$ mutant genomic region for generation of the double mutant in a $\Delta tpxA$ background. The regions of recombination between homologous sequences flanking the gpxC locus and nptII resistance cassette are indicated by grey shading. The gpxC was deleted in the $\Delta tpxA$ #105 background. Primer pair gpx1/gpx4 used to generate linear replacement fragment and restriction enzyme sites used for Southern analysis (*NcoI*) are indicated. Grey arrow indicates gene flanking gpxC. (H) Autoradiograph of Southern blot of *NcoI* digests (1 µg) of *E. festucae* FI1/ PN2278 (lane 1), $\Delta gpxC\Delta tpxA#22/PN2831$ (lane 2), $\Delta gpxC\Delta tpxA#128/PN2828$ (lane 3), $\Delta gpxC\Delta tpxA#133/PN2829$ (lane 4) and $\Delta gpxC\Delta tpxA#168/PN2830$ (lane 5) genomic DNA, probed with DIG-labeled gpx1/gpx4 PCR fragment from pGC4. The expected fragment sizes are 3.2- and 2.4-kb for wildtype and 4.1- and 2.4-kb for the $\Delta gpxC\Delta tpxA$ mutants.

SUPPL. FIG. 2. Oxidative stress sensitivity of *E. festucae* deletion strains. Agar plugs 5 mm in diameter of strains indicated were inoculated onto PD medium containing a range of H_2O_2 , KO_2 , menadione and diamide concentrations as shown and cultured at 22°C for 7 days.

SUPPL. FIG. 3. Multiple sequence alignment and maximum-likelihood dendrogram of fungal GPx proteins. (A) Multiple sequence alignment of fungal GPx proteins. Solid line indicates active-site motif, dashed line indicates GPx family signature motif and dotted line indicates region containing the resolving cysteine. Conserved cysteine residues are highlighted in red. In species where multiple Gpx3-like proteins were present (*C. albicans*) the protein sharing the highest identity and similarity (CaO19.86, XP_714295.1) to *S. cerevisiae* Gpx3 was aligned. *Ef, Epichloë festucae; Nc, Neurospora crassa; Mo, Magnaporthe oryzae; An, Aspergillus nidulans; Yl, Yarrowia lipolytica; Ca, Candida albicans; Sp, Schizosaccharomyces pombe; Sc, Saccharomyces cerevisiae.*

(B) Maximum-likelihood dendrogram of fungal GPx proteins. Values above branches indicate bootstrap values based on 2000 replicates. Gene IDs with associated GenBank accession numbers in parentheses are as follows: Ef, *E. festucae* GpxC EfM2.018640 (KC121578); Nc, *N. crassa* NCU09534.5 (XP_957919.1); Mo, *M. oryzae* MGG_07460.7 (XP_367549.2); An, *A. nidulans* ANID_02846.1 (XP_660450.1); Y1, *Y. lipolytica* YALI0E02310 (XP_503454.1); Ca, *C. albicans* CaO19.87 (XP_714296.1), CaO19.85 (XP_714294.1), CaO19.86 (XP_714295.1); Sp, *S. pombe* Gpx1 SPBC32F12.03c (NP_596146.1); Sc, *S. cerevisiae* Gpx2 YBR244W (NP_009803.1), Gpx3 YIR037W (NP_012303.1), Gpx1 YKL026C (NP_012899.1), Ca, *C. albicans* CaO19.4436 (XP_714081.1). \blacklozenge = filamentous fungal species, \blacklozenge = yeast species.

SUPPL. FIG. 4. Multiple sequence alignment and maximum-likelihood dendrogram of Prx signature motifs. (A) Multiple sequence alignment of Prx signature motifs. The first Prx signature motif from peroxiredoxin proteins from clade a in C. Conserved peroxidatic cysteine residues are highlighted in red. (B) The second Prx signature motif from peroxiredoxin proteins from clade a in C. Conserved peroxidatic cysteine residues are highlighted in red. (B) The second Prx signature motif from peroxiredoxin proteins from clade a in (C). Conserved resolving cysteine residues, where present, are highlighted in red. *Sp. Schizosaccharomyces pombe*; *Sc, Saccharomyces cerevisiae*; *Ca, Candida albicans*; *Yl, Yarrowia lipolytica*; *Ef, Epichloë festucae*; *An, Aspergillus nidulans*; *Mo, Magnaporthe oryzae*; *Nc, Neurospora crassa*. (C) Maximum-likelihood dendrogram of fungal Prx proteins. Values above branches indicate bootstrap values based on 2000 replicates. Gene IDs with associated GenBank accession numbers in parentheses are as follows: Sp, S. pombe Tpx1 SPCC576.03c (NP_588430.1), Bcp SPBC1773.02c (NP_595117.1), Pmp20 SPCC330.06c (NP_587706.1); Sc, *S. cerevisiae* Tsa1 YML028W (NP_013684.1), Tsa2 YDR453C (NP_010741.1), Prx1 YBL064C (NP_009489.1), Dot5 YIL010W (NP_012255.1), Ahp1 YLR109W (NP_013210.1); Ca, *C. albicans* Tsa1

SUPPL. FIG. 5. Subcellular localization of Yap1 in *S. cerevisiae*. Confocal images of *S. cerevisiae* cells expressing *S. cerevisiae* Yap1-eGFP under the control of the *GAL1* promoter (pGC18) in WT (PN2871), $\Delta YAP1$ (PN2872) and $\Delta GPX3$ (PN2873) strains in the absence of H₂O₂ (- H₂O₂) and in cells treated with 0.4 mM H₂O₂ (+ H₂O₂) for 10 min. Bar = 5 µm

SUPPL. FIG. 6. Analysis of the *E. festucae-L. perenne* association. Photographs taken 8 weeks after inoculation with the following strains as indicated: *E. festucae* wild-type (WT), $\Delta yapA\#145/$ PN2740 and $\Delta yapA\#243/$ PN2787, $\Delta gpxC\#10/$ PN2741 and $\Delta gpxC\#34/$ PN2742, $\Delta pxA\#105/$ PN2821 and $\Delta tpxA\#157/$ PN2822 and $\Delta gpxC\Delta tpxA\#22/$ PN2831.

SUPPL. FIG. 7. Confocal analysis of the *E. festucae-L. perenne* association. Confocal depth series images of longitudinal sections through *L. perenne* pseudostem tissue, infected with *E. festucae* strains indicated as in Fig S6, stained with Alexafluor (WGA-AF488) and aniline blue. Images were generated by maximum intensity projection of 10 x 1 μ m confocal z-stacks. Bar = 50 μ m

Table S1. Organisms and plasmids

Strain	Relevant characteristic(s)	Source or reference
S. cerevisiae		
PN2735	MATa; his $3\Delta 1$; leu $2\Delta 0$; met $15\Delta 0$; ura $3\Delta 0$ (BY4741; wild type)	Euroscarf, Frankfurt
PN2736	BY4741; MATa; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0; YML007w::kanMX4 (Δ <i>yap1</i>)	Euroscarf, Frankfurt
PN2737	BY4741; MATa; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0; YIR037w::kanMX4 (Δ <i>gpx3</i>)	Euroscarf, Frankfurt
PN2845	BY4741; MATa; his3 Δ 1; leu2 Δ 0; met15 Δ 0; ura3 Δ 0; YML007w::kanMX4 pGC8 (Δ <i>yap1/ScYAP1</i>)	This study
PN2846	BY4741; MATa; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0; YML007w::kanMX4 pGC6 (Δ <i>yap1/EfYapA</i>)	This study
PN2847	BY4741; MATa; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0; YML007w::kanMX4 pYES2 (Δ <i>yap1</i> /pYES2)	This study
PN2848	BY4741; MATa; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0; YIR037w::kanMX4 pGC7 (Δ <i>gpx3/ScGPX3</i>)	This study
PN2849	BY4741; MATa; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0; YIR037w::kanMX4 pGC5 (Δ <i>gpx3/EfGpxC</i>)	This study
PN2850	BY4741; MATa; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0; YIR037w::kanMX4 pYES2 (Δ <i>gpx3</i> /pYES2)	This study
PN2871	MATa; his $3\Delta 1$; leu $2\Delta 0$; met $15\Delta 0$; ura $3\Delta 0$ (WT/pGC18)	This study
PN2872	BY4741; MATa; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0; YML007w::kanMX4 (Δ <i>yap1</i> /pGC18)	This study
PN2873	BY4741; MATa; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0; YIR037w::kanMX4 (Δ <i>GPX3</i> /pGC18)	This study
E. festucae		
PN2278	Wild type (Fl1)	(Young <i>et al.,</i> 2005)
PN2739	$Fl1/\Delta yapA::PtrpC-hph; Hyg^{R}(\Delta yapA#243)$	This study
PN2740	Fl1/ $\Delta yapA::PtrpC-hph; Hyg^{R}(\Delta yapA#145)$	This study
PN2787	$\Delta yapA/yapA; PN2739/pGC11; Hyg^{R}; Gen^{R}(\Delta yapA#243/yapA)$	This study
PN2788	$\Delta yapA/yapA; PN2740/pGC11; Hyg^{R}; Gen^{R}(\Delta yapA #145/yapA)$	This study
PN2741	$Fl1/\Delta gpxC::PtrpC-nptII-TtrpC; Gen^{R}(\Delta gpxC#10)$	This study
PN2742	$Fl1/\Delta gpxC::PtrpC-nptII-TtrpC; Gen^{R}(\Delta gpxC#34)$	This study
PN2821	$Fl1/\Delta tpxA::PtrpC-hph; Hyg^{R}(\Delta tpxA #105)$	This study
PN2822	$Fl1/\Delta tpxA::PtrpC-hph; Hyg^{R}(\Delta tpxA#157)$	This study
PN2828	PN2821/ $\Delta gpxC::PtrpC-nptII-TtrpC; Hyg^{R}; Gen^{R}(\Delta gpxC\Delta tpxA \# 128)$	This study
PN2829	PN2821/ $\Delta gpxC::PtrpC-nptII-TtrpC; Hyg^{R}; Gen^{R}(\Delta gpxC\Delta tpxA#133)$	This study
PN2830	PN2821/ $\Delta gpxC::PtrpC-nptII-TtrpC; Hyg^{R}; Gen^{R}(\Delta gpxC\Delta tpxA\#168)$	This study

PN2831	$PN2821/\Delta gpxC::PtrpC-nptII-TtrpC; Hyg^{R}; Gen^{R}(\Delta gpxC\Delta tpxA #22)$	This study
PN2789	PN2741/ pGC9/pJW19/pAN8-1; Hyg ^κ , Gen ^κ , Zeo ^κ (ΔgpxC:: eGFP-yapA, DsRed-stuA(NLS))	This study
PN2790	PN2278/pGC9, pJH19; Hyg ^k (Fl1::GFP-yapA, DsRed-stuA(NLS))	This study
PN2823	PN2821/pGC10/ pJW19/pSF17.8; Hyg ^k ; Gen ^k ($\Delta tpxA$:: eGFP-yapA, DsRed-stuA(NLS))	This study
PN2824	PN2278/pGC13; Gen ^k (Fl1:: <i>PcatA-EGFP</i>)	This study
PN2836	PN2739/pGC14; Hyg ^k , Gen ^k ($\Delta yapA$ #243::PcatA-eGFP-CL1#1)	This study
PN2837	$PN2739/pGC14$; Hyg^{κ} , $Gen^{\kappa}(\Delta yapA # 243::PcatA-eGFP-CL1 # 4)$	This study
PN2838	PN2278/pGC14; Gen ^k (Fl1:: <i>PcatA-eGFP-Cl1</i> #8)	This study
PN2839	PN2278/pGC14; Gen ^R (Fl1:: <i>PcatA-eGFP-Cl1</i> #9)	This study
PN2840	PN2278/pGC14; Gen ^R (Fl1:: <i>PcatA-eGFP-Cl1</i> #10)	This study
PN2841	PN2278/pGC14; Gen ^k (Fl1:: <i>PcatA-eGFP-Cl1</i> #11)	This study
PN2842	PN2740 $\Delta yapA$ #145/pGC14; Hyg ^k , Gen ^k ($\Delta yapA$ #145::PcatA-EGFP-CL1#1)	This study
PN2843	PN2740/pGC14; Hyg ^R , Gen ^R (ΔyapA#145::PcatA-EGFP-CL1#9)	This study
PN2844	PN2739 $\Delta yapA$ #243/pGC14; Hyg ^k , Gen ^k ($\Delta yapA$ #243::PcatA-EGFP-CL1#10)	This study
PN2851	PN2830/pGC9/pJW19/pAN8-1; Hyg ^R , Gen ^R , Zeo ^R ($\Delta gpxC\Delta tpxA::eGFP$ -yapA, DsRed-stuA(NLS))	This study
PN2874	PN2278/pGC19/pJW19; Hyg ^R (FI1::YAP1-eGFP, DsRed-stuA(NLS))	This study
		2
E. coli		
<i>E. coli</i> PN4101	One Shot® TOP10/pGC4; Amp ^k	This study
<i>E. coli</i> PN4101 PN4103	One Shot® TOP10/pGC4; Amp ^R One Shot® TOP10/pGC2; Amp ^R	This study This study
E. coli PN4101 PN4103 PN4107	One Shot® TOP10/pGC4; Amp ^k One Shot® TOP10/pGC2; Amp ^k One Shot® TOP10/pGC6; Amp ^R	This study This study This study
E. coli PN4101 PN4103 PN4107 PN4108	One Shot® TOP10/pGC4; Amp ^R One Shot® TOP10/pGC2; Amp ^R One Shot® TOP10/pGC6; Amp ^R One Shot® TOP10/pGC5; Amp ^R	This study This study This study This study This study
E. coli PN4101 PN4103 PN4107 PN4108 PN4109	One Shot® TOP10/pGC4; Amp ^R One Shot® TOP10/pGC2; Amp ^R One Shot® TOP10/pGC6; Amp ^R One Shot® TOP10/pGC5; Amp ^R One Shot® TOP10/pGC7; Amp ^R	This study This study This study This study This study This study
E. coli PN4101 PN4103 PN4107 PN4108 PN4109 PN4110	One Shot® TOP10/pGC4; Amp ^R One Shot® TOP10/pGC2; Amp ^R One Shot® TOP10/pGC6; Amp ^R One Shot® TOP10/pGC5; Amp ^R One Shot® TOP10/pGC7; Amp ^R One Shot® TOP10/pGC8; Amp ^R	This study This study This study This study This study This study This study
E. coli PN4101 PN4103 PN4107 PN4107 PN4108 PN4109 PN4110 PN4112	One Shot® TOP10/pGC4; Amp ^R One Shot® TOP10/pGC2; Amp ^R One Shot® TOP10/pGC6; Amp ^R One Shot® TOP10/pGC5; Amp ^R One Shot® TOP10/pGC7; Amp ^R One Shot® TOP10/pGC7; Amp ^R One Shot® TOP10/pGC8; Amp ^R	This study This study This study This study This study This study This study This study
E. coli PN4101 PN4103 PN4107 PN4108 PN4109 PN4110 PN4112 PN4113	One Shot® TOP10/pGC4; Amp ^R One Shot® TOP10/pGC2; Amp ^R One Shot® TOP10/pGC6; Amp ^R One Shot® TOP10/pGC5; Amp ^R One Shot® TOP10/pGC7; Amp ^R One Shot® TOP10/pGC8; Amp ^R One Shot® TOP10/pGC10; Amp ^R One Shot® TOP10/pGC9; Amp ^R	This study This study This study This study This study This study This study This study This study
E. coli PN4101 PN4103 PN4107 PN4108 PN4109 PN4109 PN4110 PN4112 PN4113 PN4133	One Shot® TOP10/pGC4; Amp ^R One Shot® TOP10/pGC2; Amp ^R One Shot® TOP10/pGC6; Amp ^R One Shot® TOP10/pGC5; Amp ^R One Shot® TOP10/pGC7; Amp ^R One Shot® TOP10/pGC8; Amp ^R One Shot® TOP10/pGC10; Amp ^R One Shot® TOP10/pGC9; Amp ^R One Shot® TOP10/pGC9; Amp ^R	This study This study
E. coli PN4101 PN4103 PN4107 PN4108 PN4109 PN4109 PN4110 PN4112 PN4113 PN4133 PN4135	One Shot® TOP10/pGC4; Amp ^R One Shot® TOP10/pGC2; Amp ^R One Shot® TOP10/pGC6; Amp ^R One Shot® TOP10/pGC5; Amp ^R One Shot® TOP10/pGC7; Amp ^R One Shot® TOP10/pGC8; Amp ^R One Shot® TOP10/pGC10; Amp ^R One Shot® TOP10/pGC9; Amp ^R One Shot® TOP10/pGC9; Amp ^R One Shot® TOP10/pGC11; Amp ^R	This study This study
E. coli PN4101 PN4103 PN4107 PN4107 PN4108 PN4109 PN4110 PN4112 PN4113 PN4133 PN4135 PN4151	One Shot® TOP10/pGC4; Amp ^R One Shot® TOP10/pGC2; Amp ^R One Shot® TOP10/pGC6; Amp ^R One Shot® TOP10/pGC5; Amp ^R One Shot® TOP10/pGC7; Amp ^R One Shot® TOP10/pGC8; Amp ^R One Shot® TOP10/pGC10; Amp ^R One Shot® TOP10/pGC10; Amp ^R One Shot® TOP10/pGC11; Amp ^R One Shot® TOP10/pGC12; Amp ^R One Shot® TOP10/pGC12; Amp ^R	This study This study
E. coli PN4101 PN4103 PN4107 PN4107 PN4108 PN4109 PN4109 PN4110 PN4112 PN4113 PN4133 PN4135 PN4151 PN4174	One Shot® TOP10/pGC4; Amp ^R One Shot® TOP10/pGC2; Amp ^R One Shot® TOP10/pGC6; Amp ^R One Shot® TOP10/pGC5; Amp ^R One Shot® TOP10/pGC7; Amp ^R One Shot® TOP10/pGC8; Amp ^R One Shot® TOP10/pGC10; Amp ^R One Shot® TOP10/pGC11; Amp ^R One Shot® TOP10/pGC12; Amp ^R One Shot® TOP10/pGC12; Amp ^R One Shot® TOP10/pGC12; Amp ^R One Shot® TOP10/pGC13; Amp ^R One Shot® TOP10/pGC14; Amp ^R	This study This study
E. coli PN4101 PN4103 PN4107 PN4108 PN4109 PN4109 PN4110 PN4112 PN4113 PN4133 PN4135 PN4151 PN4151 PN4174 PN4188	One Shot® TOP10/pGC4; Amp ^R One Shot® TOP10/pGC2; Amp ^R One Shot® TOP10/pGC6; Amp ^R One Shot® TOP10/pGC5; Amp ^R One Shot® TOP10/pGC7; Amp ^R One Shot® TOP10/pGC8; Amp ^R One Shot® TOP10/pGC10; Amp ^R One Shot® TOP10/pGC11; Amp ^R One Shot® TOP10/pGC11; Amp ^R One Shot® TOP10/pGC12; Amp ^R One Shot® TOP10/pGC13; Amp ^R One Shot® TOP10/pGC14; Amp ^R One Shot® TOP10/pGC14; Amp ^R	This study This study
E. coli PN4101 PN4103 PN4107 PN4108 PN4109 PN4109 PN4110 PN4112 PN4113 PN4133 PN4135 PN4151 PN4151 PN4151 PN4174 PN4188 PN4193	One Shot® TOP10/pGC4; Amp ^R One Shot® TOP10/pGC2; Amp ^R One Shot® TOP10/pGC6; Amp ^R One Shot® TOP10/pGC5; Amp ^R One Shot® TOP10/pGC7; Amp ^R One Shot® TOP10/pGC8; Amp ^R One Shot® TOP10/pGC10; Amp ^R One Shot® TOP10/pGC10; Amp ^R One Shot® TOP10/pGC11; Amp ^R One Shot® TOP10/pGC12; Amp ^R One Shot® TOP10/pGC13; Amp ^R One Shot® TOP10/pGC13; Amp ^R One Shot® TOP10/pGC14; Amp ^R One Shot® TOP10/pGC16; Amp ^R One Shot® TOP10/pGC18; Amp ^R	This study This study

PN1862	One Shot® TOP10/pSF15.15; Amp ^κ	S. Foster
PN1866	One Shot® TOP10/pSF17.8; Amp ^R	S. Foster
PN1687	One Shot® TOP10/ $pII99$; Amp ^k	(Namiki <i>et al.,</i> 2001)
PN4111	One Shot® TOP10/pPN94; Amp ^k	(Takemoto <i>et al.,</i> 2006)
PN1390	One Shot® TOP10/ $pAN8-1$; Amp ^k	(Mattern <i>et al.,</i> 1988)
PN4134	One Shot® TOP10/pJW19; Amp ^R	(Toews <i>et al.</i> , 2004)
PN4201	One Shot® TOP10/pYES2; Amp ^R	Invitrogen
Plasmids		
pGC2	1.1-kb <i>Bgl</i> II/ <i>Kpn</i> I fragment 5' of <i>yapA</i> amplified with yap1/yap2 and 1.2-kb <i>Hind</i> III/ <i>Xho</i> I fragment 3' of <i>yapA</i> amplified with yap3/yap4 in pSF15.15	This study
pGC4	1.1-kb <i>Bgl</i> II/ <i>Kpn</i> I 5' of <i>gpxC</i> amplified with gpx1/gpx2 and 1.4-kb <i>Sal</i> I/ <i>Sal</i> I fragment 3' of <i>gpxC</i> amplified with gpx3/gpx4 in pSF17.8	This study
pGC5	0.5-kb <i>Eco</i> RI/ <i>Xba</i> I <i>gpx</i> C cDNA fragment amplified with gpx5/gpx6 in pYES2	This study
pGC6	1.7-kb <i>Eco</i> RI/ <i>XbaI yapA</i> cDNA fragment amplified with yap5/yap6 in pYES2	This study
pGC7	0.5-kb <i>Hind</i> III/XbaI gpx3 gDNA fragment amplified with gpx7/gpx8 in pYES2	This study
pGC8	1.9-kb <i>Hind</i> III/ <i>Xba</i> I <i>yap1</i> gDNA fragment amplified with yap7/yap8 in pYES2	This study
pGC9	1.7-kb y <i>Eco</i> RI/ <i>ClaI yapA</i> cDNA fragment amplified with yap27/yap28 and 0.8-kb <i>ClaI/NotI</i> EGFP fragment amplified with GCGFP1/GCGFP2 in <i>Eco</i> RI/ <i>NotI</i> site of pPN94 (<i>yapA-EGFP</i>)	This study
pGC10	0.8-kb <i>Eco</i> RI/ <i>Cla</i> I <i>EGFP</i> fragment amplified with EGFP1/EGFP2 and 1.7-kb <i>Cla</i> I/ <i>Not</i> I <i>yapA</i> cDNA fragment amplified with yap29/yap30 in <i>Eco</i> RI/ <i>Not</i> I site of pPN94 (<i>EGFP-yapA</i>)	This study
pGC11	3.7-kb <i>Eco</i> RV/ <i>Eco</i> RI fragment from cosmid 28E7 in pSF17.8	This study
pGC12	2.3-kb <i>BgIII</i> / <i>Kpn</i> I fragment 5' of <i>tpxA</i> amplified with tpx1/tpx2 and 2.5-kb <i>Bam</i> HI/ <i>Xba</i> I fragment 3' of <i>tpxA</i> amplified with tpx3/tpx4 in pSF15.15	This study
pGC13	1-kb XbaI/EcoRI PcatA fragment amplified with pcatA3/pcatA4, cloned into XbaI/EcoRI site of pGC10, 1.8-kb XbaI/XhoI PcatA-EGFP fragment cloned into XbaI/XhoI fragment in pSF17.8 (PcatA-EGFP)	This study
pGC14	1.2-kb <i>Sac</i> II/ <i>Nde</i> I fragment containing a 48 bp insert 3' of <i>PcatA-EGFP</i> amplified in two steps with pCatAF1/CL1R1 and pCatAF1/CL1R2 and replacing the <i>Sac</i> II/ <i>Nde</i> I fragment in pGC13 (<i>PcatA-EGFP-CL1</i>)	This study
pGC16	1-kb P <i>tpxA</i> fragment amplified with tpx37/tpx41 and 0.7-kb EGFP-CL1 fragment amplified with tpx39/tpx40, recombined in yeast and <i>XbaI/NdeI</i> P <i>tpxA-EGFP-CL1</i> fragment cloned into <i>XbaI/NdeI</i> site of pSF17.8 (<i>PtpxA-EGFP-CL1</i>)	This study
pGC18	2.7-kb <i>Eco</i> RI/ <i>Not</i> I <i>yap1-EGFP</i> fragment from pGC19 cloned into <i>Eco</i> RI/ <i>Not</i> I site of pYES2 (PGAL1-Yap1-EGFP)	This study

pGC19	2.0-kb <i>Eco</i> RI/ <i>Not</i> I <i>yap1</i> fragment amplified with ScYap6/ScYap8 and 0.7-kb <i>EGFP</i> fragment amplified with GCGFP3/GCGFP4, recombined in yeast and <i>Eco</i> RI/ <i>Not</i> I <i>YAP1-EGFP</i> fragment cloned into <i>Eco</i> RI/ <i>Not</i> I site of pPN94 (PTEF-YAP1-EGFP)	This study
pSF15.15	pSP72 containing 1.4-kb HindIII P <i>trpC-hph</i> from pCB1004 cloned into <i>Sma</i> I site Amp ^R ; Hyg ^R	S. Foster
pSF17.8	Amp ^R ; Gen ^R	S. Foster
pII99	PtrpC-nptII-TtrpC; Amp ^k /Gen ^k	(Namiki <i>et al.,</i> 2001)
pPN94	pSF14.14 containing 0.8-kb <i>SalI</i> / <i>XbaI tef</i> promoter in <i>XhoI</i> / <i>Xba</i> I site and 0.6-kb <i>Eco</i> RI/ <i>BglII</i> T <i>trpC</i> in <i>Eco</i> RI/ <i>BglII</i> site	(Vanden Wymelenberg <i>et al.,</i> 1997)
pAN8-1	Pgpd-sh ble-TtrpC; $Amp^{\kappa}/Zeo^{\kappa}$	(Mattern <i>et al.,</i> 1988)
pJW19	Pgpd- $DsRed$ - $stuA$ (NLS), argB+ in pBluescript KS-; Amp ^R	(Toews et al., 2004)
pYES2	Amp ^k ; URA3	Invitrogen
pCR4- TOPO®	Amp ^R ; LacZ α -ccdB	Invitrogen
Cosmids		
28E7	pMO-cosX clone Fl1 genomic DNA cosmid library containing the <i>yapA</i> gene and 5'UTR.	This study

Table S2. Primer sequences

Name	Sequence (5' – 3')	Used for
CI 1 R1	CAGGGAGGAGAACCAGTTCTTGCAGGCTAGA	PcatA-eGFP-CL1
CLIKI	ACTCGAGACTTGTACAGCTCGTC	fusion construct
CL1 R2	CATATGCAGGTGGATGACGAAGTGGGACAG	PcatA-eGFP-CL1
021112	GGAGGAGAACCAGTTCTTGCAG	fusion construct
GCGFP1	ATCGATGGTGCTGGTGCTGG	<i>yapA-eGFP</i> fusion
		construct
GCGFP2	GCGGCCGCTTTACTTGTACAG	yapA-eGFP fusion
		CONSTRUCT
GCGFP3	GCCCCCTTTACTACACAG	PIEF-IAPI-eGFP
	OUCCUCITIACITUTACAU	DTEE VAD1 aCED
GCGFP4	GGTGCTGGTGCTGGTGCT	fusion construct
		5' anrC replacement
gpx1	AGATCTAGCCTTTTAAGAAGCACAACG	construct
		5' <i>gpxC</i> replacement
gpx2	GGTACCGAGTTTCACATGTGATCAGTA	construct
2		3' gpxC replacement
gpx3	GICGACGGGATIICATAIGCIAIG	construct
~~~. <b>1</b>		3' gpxC replacement
gpx4	GICUACCIAIGCAIGIIAGCAACC	construct
anv 5	GAATTCATGGCCTCCGCCACGAGCTTCT	S. cerevisiae
gpx.5	GMATTERTODEETCEOCEREORDETTET	complementation
gpx6	TCTAGATTAAGCCTTCTTCGCCAATTCGT	S. cerevisiae
81		complementation
gpx7	AAGCITATGICAGAATICIATAAGCIAGCAC	S. cerevisiae
	C	S complementation
gpx8	TCTAGACTATTCCACCTCTTTCAAAAGTTC	complementation
		screening <i>anrC</i> for
gpx9	ATGATGCCGCCACCTACGAAAT	replacement
10		screening gpxC for
gpx10	AGAACICGICAAGAAGGCGAIAGA	replacement
any 11	TATTCCCCTATCACTCCCCAC	screening gpxC for
gpx11	TATICOULTATOACTOOOCAC	replacement
gnx12	ТАСАТАСБСАБТАБТССАТАААСАТА	screening gpxC for
SPA12	пентеоблогиотеентименти	replacement
gpx15	TCTTCCATACTGATCACATG	screening gpxC for
Spirite		replacement
gpx16	ATCGATCTGTGAACACAGAC	screening gpxC for
01		replacement
pcatA3	TCTAGACGTTTTCATTGAGCAACA	PcalA-eGFP Iusion
		PcatA eGFP fusion
pcatA4	GAATTCTCTCGCGGTATTGGGG	construct
	CCGCGGATGCAGGTCAAAACACGCACTTTGC	PcatA-eGFP-CL1
pCatAF1	GAGTTTG	fusion construct
C.V.	GTAACGCCAGGGTTTTCCCAGTCACGACGAA	PTEF-YAP1-eGFP
SC Y ap6	TTCATGAGTGTGTCTACC	fusion construct
ScVan ⁸	CCCTTGCTCACAGCACCAGCACCAGCACCAT	PTEF-YAP1-eGFP
Se i apo	CGATGTTCATATGCTTATT	fusion construct

tpx1	AGATCTAATAAGCTAAGGGTTCTC	5' <i>tpxA</i> constru
tpx2	GGTACCGAGTATATGTATGTATGATGC	5' <i>tpxA</i> constru
tpx3	GGATCCAATCAGGGAAGGCGAC	3' <i>tpx</i>
tpx4	TCTAGACGTCCGTTATTGCTGCAA	3' <i>tpx</i>
tpx13	CACACCAAGGCGTGAAACCCC	screen
tpx14	CAGTCCATTCCCACGTCTTGGTC	screen
tpx15	ACCCTCCTCCTTATTAGTAA	screen
tpx16	TGCTCCTTCAATATCAGTTC	screen
tpx10		replace screen
upx17	AUCACICUICCUAUUUCAAA	replace
tpx18	ACGCATCCATCTTTGCCGAAC	replace
yap1	AGATCTCACGAGATGAAAAACGTTT	5' yap.
yap2	GGTACCGTGTTCTGTTGTTGTTGTTG	5' yapı constru
yap3	AAGCTTGACGGCGTTAAAGAACT	3' yap
yap4	CTCGAGATGTGTACTCTGACGTTGT	3' yap
yap5	GAATTCATGTCATCAAGTGGCAGCGG	S. cere
yap6	TCTAGACTAAGGCATGGTAGCGCCGT	S. cere
yap7	AAGCTTATGAGTGTGTCTACCGCCAAG	S. cere
yap8	TCTAGATTAGTTCATATGCTTATTCAAAGC	S. cere
vap9	ACGCACGAATGAATACAATAAACT	screen
		screen
yap10	GATTTGTGTACGCCAGACAGTCC	replace
yap11	CTGAACTCACCGCGACGTCTGT	screen: replace
yap21	CCGACTTCACTCACAACATCAGC	screen
yap22	TCATCAAGTGGCAGCGGAGG	screen
yap23	ATTGACTGACGAGGGCCAG	screen
vap27	GAATTCATGTCATCAAGTGGC	yapA-e
J-T-,		vanA-4
yap28	ATCGATAGGCATGGTAGCG	constru

A replacement uct A replacement uct A replacement uct A replacement uct ing *tpxA* for ement A replacement uct A replacement uct A replacement uct A replacement uct evisiae ementation evisiae ementation evisiae ementation evisiae ementation ing yapA for ement ing yapA for ement ing *yapA* for ement ing *yapA* for ement ing *yapA* for ement ing *yapA* for ement eGFP fusion uct eGFP fusion uct

## References

 Young CA, Bryant MK, Christensen MJ, Tapper BA, Bryan GT, Scott B. 2005.
Molecular cloning and genetic analysis of a symbiosis-expressed gene cluster for lolitrem biosynthesis from a mutualistic endophyte of perennial ryegrass. Mol. Gen. Genomics 274:13-29.

2. Namiki F, Matsunaga M, Okuda M, Inoue I, Nishi K, Fujita Y, Tsuge T. 2001. Mutation of an arginine biosynthesis gene causes reduced pathogenicity in *Fusarium oxysporum* f. sp. *melonis*. Mol. Plant-Microbe Interact. **14**:580-584.

3. Takemoto D, Tanaka A, Scott B. 2006. A p67(Phox)-like regulator is recruited to control hyphal branching in a fungal-grass mutualistic symbiosis. Plant Cell **18**:2807-2821.

4. **Mattern IE, Punt PJ**. 1988. A vector of *Aspergillus* transformation conferring phleomycin resistance. Fungal Genetics Newsletter **35**:25.

5. Toews MW, Warmbold J, Konzack S, Rischitor P, Veith D, Vienken K, Vinuesa C, Wei H, Fischer R. 2004. Establishment of mRFP1 as a fluorescent marker in *Aspergillus nidulans* and construction of expression vectors for high-throughput protein tagging using recombination *in vitro* (GATEWAY). Curr. Genet. **45**:383-389.

6. Vanden Wymelenberg AJ, Cullen D, Spear RN, Schoenike B, Andrews JH. 1997. Expression of green fluorescent protein in *Aureobasidium pullulans* and quantification of the fungus on leaf surfaces. Biotechniques **23**:686-690.