## **1** Supplementary Data

2

## **3** Phenotypic characteristics of strain QM49

4 Cells are Gram-negative, aerobic, non-spore-forming, non-motile, and rod shaped, 0.3-0.5 µm in diameter and 1.5-2.4 µm in length after culture on R2A agar for 3 days. Colonies grown on R2A agar 5 6 for 3 days are smooth, circular, translucent, creamy-white and convex. Grows at 4-37°C and in pH 7 6.0-8.5, but not at 42°C. Optimum growth occurs at 25-30°C and pH 7.0. Growth occurs in the 8 absence of NaCl and in the presence of 1.0% (w/v) NaCl, but not 2.0% (w/v) NaCl. Growth occurs 9 on nutrient agar but not on MacConkey agar. Catalase-positive and oxidase-positive. Nitrate is 10 reduced to nitrite in aerobic conditions. Urease, arginine dihydrolase, β-Galactosidase and β-11 glucosidase are positive. Protease activity and indole production are negative. Does not produce any 12 acid or gas from glucose. The following compounds are utilized as sole carbon sources: D-glucose, D-mannose, D-maltose, salicin, D-melibiose, L-fucose, L-arabinose, L-rhamnose, N-acetyl-D-13 14 glucosamine, D-sucrose, D-maltose, and glycogen. The following compounds are not utilized as sole 15 carbon sources: D-mannitol, gluconate, caprate, adipate, malate, citrate, phenyl-acetate, D-sorbitol 16 propionate, caprate, valerate, L-histidine, 2-ketogluconate, 3-hydroxy-butyrate, 4-hydroxy-benzoate, 17 L-proline, D-ribose, itaconate, suberate, malonate, acetate, lactate, L-alanine, 5-ketogluconate 3-18 hydroxy-benzoate, and L-serine.





21 Supplementary Fig. S1.

Supplementary Fig. S1. Phylogenetic analysis of characterized glycoside hydrolases family 3.
Amino acid sequences were obtained from the NCBI/EMBL database and CAZy database (accession numbers are indicated on the tree). This tree was made using the neighbor-joining method (4) with a Kimura two-parameter distance matrix (2) and pairwise deletion. Bootstrap values expressed as percentages of 1000 replications greater than 50% are shown at the branch points. The bar represents 20 amino acid residues substitutions per 1000 amino acid residues.

- -





Supplementary Fig. S2. Transformation pathways of ginsenosides Rb<sub>1</sub>, Rb<sub>2</sub>, Rc, and Rd by
 recombinant BglQM, respectively.



37 Supplementary Fig. S3. Negative ion ESI-MS-MS spectra of biotransformed ginsenosides by
38 BglQM: A, MS-MS spectrum of ginsenoside Rg<sub>2</sub>(S); B, MS-MS spectrum of ginsenoside Rh<sub>1</sub>(S).

| Strain | Most closest type strain                          | Similarity <sup>a</sup><br>(%) | b.p. <sup>b</sup> - | Re                       | $Rg_1$    | $Rb_1$                   |
|--------|---------------------------------------------------|--------------------------------|---------------------|--------------------------|-----------|--------------------------|
| name   |                                                   |                                |                     | Transformed ginsenosides |           |                          |
| QM01   | Paenibacillus glycanilyticus DS-1 <sup>T</sup>    | 99.3                           | 728                 | $Rg_2(S)$                | $Rh_1(S)$ | Rd                       |
| QM04   | Burkholderia soli GP25-8 <sup>T</sup>             | 99.0                           | 728                 | $Rg_2(S)$                | $Rh_1(S)$ | Rd, F <sub>2</sub> , C-K |
| QM05   | Dyella koreensis BB4 <sup>T</sup>                 | 99.6                           | 734                 | -                        | -         | $Rd, F_2$                |
| QM06   | Dyella koreensis BB4 <sup>T</sup>                 | 99.6                           | 734                 | -                        | $Rh_1(S)$ | Rd, $F_2$                |
| QM08   | Dyella koreensis BB4 <sup>T</sup>                 | 99.6                           | 734                 | -                        | -         | $Rd, F_2$                |
| QM12   | Dyella koreensis BB4 <sup>T</sup>                 | 99.6                           | 734                 | -                        | $Rh_1(S)$ | Rd, $F_2$                |
| QM15   | Bacillus acidiceler CBD 119 <sup>T</sup>          | 99.7                           | 738                 | PPT                      | PPT       | Rd                       |
| QM18   | Asticcacaulis biprosthecium ACM 2498 <sup>T</sup> | 98.8                           | 673                 | -                        | -         | Rd, F <sub>2</sub> , C-K |
| QM20   | Dyella koreensis BB4 <sup>T</sup>                 | 99.6                           | 734                 | -                        | -         | Rd, F <sub>2</sub> , C-K |
| QM21   | Dyella koreensis BB4 <sup>T</sup>                 | 99.6                           | 734                 | -                        | -         | $F_2$                    |
| QM26   | Dyella japonica $XD53^{T}$                        | 98.5                           | 734                 | -                        | -         | $Rd, F_2$                |
| QM28   | Dyella japonica $XD53^{T}$                        | 98.5                           | 734                 | -                        | -         | $Rd, F_2$                |
| QM45   | Dyella koreensis BB4 <sup>T</sup>                 | 99.6                           | 734                 | -                        | $Rh_1(S)$ | $F_2$                    |
| QM48   | Dyella koreensis BB4 <sup>T</sup>                 | 99.6                           | 734                 | -                        | $Rh_1(S)$ | $F_2$                    |
| QM49   | Mucilaginibacter gossypiicola Gh-48 <sup>T</sup>  | 99.9                           | 1450                | $\operatorname{Rg}_2(S)$ | $Rh_1(S)$ | C-K                      |

## 40 **Table S1**. Isolated strains with ginsenoside-converting abilities

41 <sup>a</sup>Similarity is based on 16S rRNA gene sequences.

42 <sup>b</sup>b.p.: base pair

| Glycoside<br>hydrolases of<br>Family 3 <sup>a</sup> | 157-169 <sup>b</sup> | 231-244°       | 449-462 <sup>d</sup> |  |
|-----------------------------------------------------|----------------------|----------------|----------------------|--|
| BglQM (This study)                                  | VGACIKHFVANNQ        | EWGFEGFVMSDWYA | IVISRISGEGYDRK       |  |
| U. mic                                              | VGACIKHFVANNQ        | EWGFEGFVMSDWYA | IVISRISGEGYDRK       |  |
| <i>B</i> . GL1                                      | VGACIKHFVVNEQ        | EWGFEGFVMTDWFA | YILTRISGEGVDRK       |  |
| <i>P</i> . C7                                       | VGATLKHFAANDQ        | EWGFDGVVMTDWGA | VVLYRVSGEGWDRR       |  |
| <i>P</i> . TS12                                     | VGTSLKHFAVNNQ        | EWGHEGIVVSDWGA | GLPDRYESEGYDRT       |  |
| T. nea                                              | VGACIKHFVANNQ        | EWGFEGFVMSDWYA | IVISRISGEGYDRK       |  |
| A. acu                                              | VVATAKHYILNEQ        | ELGFQGFVMSDWGA | VFVNSDAGEGYISV       |  |
| F.men                                               | VGACIKHFVANNQ        | EWGFDGFVMSDWYA | VVISRISGEGYDRK       |  |
| K. mar                                              | IAATVKHFVCNDL        | EWKWDGMLMSDWFG | GLNGEWETEGYDRE       |  |
| H. Vul                                              | VAACAKHFVGDGG        | TLKFKGFVISDWEG | AIVAVGEHPYTETK       |  |
|                                                     |                      | <b></b>        |                      |  |

43 Table S2. Comparison of conserved sequence motifs of BglQM with family 3 Glycoside hydrolases<sup>\*</sup>.

**45** (1.1.0).

46 a. Full species names and Genbank IDs of the glycoside hydrolases in family 3 are as follows, *Mucilaginibacter* sp.

47 QM49 β-glucosidase [BglQM (This studty)], JX403802; Unidentified microorganism β-glucosidase (U. mic), ABU68675;

48 Bacillus sp. GL1 β-glucosidase (B. GL1), BAA36161; Paenibacillus sp. C7 β-glucosidase(P. C7), AAX35883;

49 Paenibacillus sp. TS12 glucosylceramidase (P. TS12), BAC16750; Thermotoga neapolitana β-glucosidase (T. nea),

50 ABI29899; Aspergillus aculeatus β-glucosidase (A. acu), BAA10968; Flavobacterium meningosepticum β-glucosidase

51 (F.men), AAB66561; Kluyveromyces marxianus β-glucosidase (K. mar), ACY95404; Hordeum vulgare subsp. Vulgare β-

- 52 D-glucan exohydrolase isoenzyme (H. Vul), AF102868. BglQM, U. mic, B. GL1 and P. C7 are in subfamily 6. The
- 53 conserved residues of *P*. TS12, *T. nea*, *A. acu, F.men have been analysised* (1, 3, 5).
- 54 b. Conserved sequence containing a putative carbohydrate-binding site (3). The conserved residues are shown in box.
- 55 c. Conserved sequence containing the catalytic nucleophile  $(\blacktriangle)(1)$ . The conserved residues are shown in box.

- 56 d. Conserved sequence containing the catalytic acid (1, 3, 5). The conserved glutamic residues are shown in box,
- 57 including those that have been experimentally determined previously, which are highlighted in gray.
- 58
- 59 References:
- Joseph V, Maria H and Geoffrey F. 1999. Three-dimensional structure of a barley b-D-glucan exohydrolase, a family 3 glycosyl hydrolase.Structure. 7:179-190.
- 62 2. Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press,
   63 Cambridge, United Kingdom.
- 64
   3. Preeyanuch T, Lauren SM, Ana CA, Prachumporn TK and Harry B. 2013. Identification of the acid/base catalyst of a glycoside hydrolase family 3 (GH3) β-glucosidase from Aspergillus niger ASKU28. BBA-GEN. SUBJECTS. 1830: 2739–2749.
- 67 4. Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
- 5. Suzuki K, Sumitani J, Nam YW, Nishimaki T, Tani S and Wakagi T. 2013. Crystal structures of glycoside hydrolase family 3 β-glucosidase 1 from Aspergillus aculeatus. Biochem. J. 452: 211-221.
- 71