Table S1.	Physicochemical	properties o	of the	water	sample	S

Samples	Weather	Water temperature	pН	Salinity (%) ^c	NaCl (%) ^d	Organic matter
	temperature (°C) ^a	(°C) ^b				$(mg l^{-1})$
JAC	30°C	30°C	8.20	0.2	0.14	65
MAS	30°C	24°C	8.00	4.0	1.1	27
VER	30°C	28°C	8.05	5.0	1.5	54

JAC, MAS and VER represent Jacarepiá lagoon, Massambaba beach and Vermelha lagoon, respectively.

^a The weather temperature was measured during the sampling. The weather temperature in this area varies annually from 19 to 32°C. In summer, the temperature is usually around 26°C.

^b The water temperature was measured during the sampling.

^c Total salinity was determined by the density method. This area shows an annual negative water balance, with an excess of evaporation over precipitation. Precipitation exceeds evaporation only in summer. In Vermelha lagoon, the salinity can vary annually from 3.5 to 8%.

^d The amount of NaCl in water was determined by titration.

Table S2. Identification of the bacterial isolates

Strains	Closest BLAST match	% Similarity	GenBank accession nº	Able to grow using:
INDA IN	Decudomonas gomeinosa	1000/	VC127777 1	nonhtholono
JINDO_JIN	P seudomonas deruginosa	100%	KC15/2//.1	
JNB2_JN	Cobetia marina	100%	JX867732.1	naphthalene
C08-88 JH				
D04-36_JH	Achromobacter spanius	99%	JN629044.1	heptadecane
B03-67_JH	Achromobacter xylosoxidans	99%	JQ923444.1	heptadecane
D06-95_JO	Acinetobacter calcoaceticus	100%	JX010982.1	crude oil
D05-92_JO	Pseudomonas aeruginosa	100%	JX469434.1	crude oil
D08-98_JO	Achromobacter sp.	100%	JQ901430.1	crude oil
E01-107_JO		000/	10422022 1	amada atl
E05-10_JO	<i>P seudomonas</i> sp.	99%	JQ455952.1	crude on
D12-106_JO	Acinetobacter sp.	100%	HQ289880.1	crude oil
F06-20_JO	Pseudomonas aeruginosa	100%	JX469434.1	crude oil
F05-19B_JO	Achromobacter sp.	98%	JQ901430.1	crude oil
E06-11B_JO	Achromobacter sp.	99%	JQ901430.1	crude oil
F03-18_JO	Acinetobacter sp.	100%	JX843792.1	crude oil
F02-115/1_JO	Acinetobacter sp.	99%	JN228299.1	crude oil
E12-16_JO				
E11-15_JO	Psaudomonas peruginosa	100%	IXA2AA25 1	crude oil
E10-14_JO	i seudomontas acruginosa	10070	J/A+2++23.1	
E09-13_JO				
E08-12_JO	Pseudomonas aeruginosa	100%	JX469434.1	crude oil
E07-11C_JO	Acinetobacter sp. 19B	100%	HQ289880.1	
MNB5a_MN	Halomonas sp. 5CpOI8	99%	JN602239.1	naphthalene

MNB3_MN	Halomonas cupida	100%	AB681327.1	naphthalene
MNB2_MN MNB1MN	Cobetia marina	100%	JX867732.1	naphthalene
MHM5a_MH	Muricauda aquimarina	100%	NR_042909.1	-
MHM1_MH	Achromobacter xylosoxidans	97%	JQ923444.1	heptadecane
H08-56_MH	Achromobacter spanius	99%	JN629044.1	-
MHM3b_MH A01_51_MH	Marinobacter sp.	99%	JX119043.1	heptadecane
H07-53_MH	Marinobacter hydrocarbonoclasticus	100%	JQ799097.1	heptadecane
MHM11_MH	Alcanivorax dieselolei	99%	GU370129.1	heptadecane
H03-39_MO MOM4_MO	Achromobacter xylosoxidans	99%	JQ337947.1	crude oil
A09-115/2_MO A10-116_MO A06-42_MO	Alcanivorax dieselolei	99%	GU370129.1	crude oil
A07-43_MO	Alcanivorax sp.	99%	HE601937.2	crude oil
MOM3/2_MO	Muricauda aquimarina	99%	NR_042909.1	crude oil
MOM6/2_MO	Marinobacter hydrocarbonoclasticus	100%	JQ799097.1	crude oil
MOM7/2_MO MOM16_MO	Marinobacter sp.	99%	JX515656.1	crude oil
MOM10_MO	Pseudomonas stutzeri	99%	JX177707.1	ND
VHB3a_VH	Marinobacter hydrocarbonoclasticus	100%	JQ799097.1	heptadecane
F09-148A_VO	Marinobacter sp.	99%	GQ200194.3	crude oil
G01-155_VO	Vitellibacter vladivostokensis	100%	AB681115.1	crude oil
G02-156_VO	Alcanivorax dieselolei	99%	GU370129.1	crude oil
H02-159_VO	Marinobacter sp.	98%	JX119043.1	crude oil

$000-105_{0}$ $000-105_{0}$ $000-1001_{0}$ $00000000000000000000000000000000000$	G06-163_VO	Alcanivorax dieselolei	99%	CP003466.1	crude oil
--	------------	------------------------	-----	------------	-----------

The strains are denoted as follows: the strain code followed by an underline symbol (_) and a code representing the microcosm from where the strains were isolated from: the first letter corresponds to the origin of each sample (J – Jacarepiá lagoon, M – Massambaba beach and V – Vermelha lagoon), followed by the hydrocarbon used in the different microcosms (H – Heptadecane, N – Naphthalene and O – crude oil).

- no growth observed; ND - not determined

Fig. S1. (A) World map showing the localization of Rio de Janeiro (Brazil). (B) The Rio de Janeiro and primary Brazilian offshore oil-reservoir field (Santos Basin). (C) The Massambaba Environmental Protection Area and the sites sampled are indicated with arrows. JAC, VER and MAS represent Jacarepiá lagoon, Vermelha lagoon and Massambaba beach, respectively.

Fig. S2. Denaturing gradient gel electrophoresis (DGGE) fingerprints and the dendrogram obtained after the cluster analysis using the Ward and similarity Pearson coefficients to compare the structures of the hydrocarbon-enriched bacterial communities from the contaminated microcosms. (A) DGGE of heptadecane-enriched bacterial communities (at 12 days after the microcosms were established) showing the sampling replicates of the different microcosms. (B) DGGE of temporal analyses of contaminated microcosms. The samples are denoted as follows: the first letter corresponds to the origin of the samples (J – Jacarepiá lagoon, M – Massambaba beach and V – Vermelha lagoon), followed by the hydrocarbon used in the different microcosms (H – heptadecane, N – naphthalene and O – crude oil), and the number representing the sampling point (0, 4, 12 and 32 days). The last letter represents either DNA (D)- or RNA (R)-based analyses.

Fig. S3. Network Analysis constructed using the Cytoscape program showing the unique and shared bacterial OTUs among the different samples. The samples are denoted as follows: the first letter represents the origin of the samples (J – Jacarepiá lagoon, M – Massambaba beach and V – Vermelha lagoon), followed by the hydrocarbon used in the different microcosms (H – Heptadecane, N – Naphthalene and O – crude oil). JAC, MAS and VER represent the controls (without contamination) for Jacarepiá lagoon, Massambaba beach and Vermelha lagoon, respectively.

Fig. S4. The unweighted and weighted UniFrac Principal Coordinate Analysis (PCoA) ordination diagram was generated based on data obtained from clone libraries (OTU = 97%). The data were plotted based on the ecosystem type, and the colors chosen for the different sample groups are the same as those used in the Redundancy Analysis (RDA, Fig. 2): green, Vermelha lagoon; blue, Massambaba beach and red, Jacarepiá lagoon.