Supplemental Material

Cumate-inducible gene expression system for sphingomonads and

other Alphaproteobacteria

Andreas Kaczmarczyk, Julia A. Vorholt, Anne Francez-Charlot#

Institute of Microbiology, ETH Zurich, Zurich, Switzerland

Supplemental Material and Methods

Construction of plasmid pTOPO-TERM193

Tandem copies of a putative bidirectional transcriptional terminator encoded in the Sphingomonas Fr1 genome (between genes Sphme2DRAFT_0228 and Sphme2DRAFT_0229; Fig S1A) were constructed by oligo annealing and extension with Phusion DNA polymerase using oligos oJVZ793 and oJVZ794. Oligo oJVZ793 contains the full terminator sequence and, when double-stranded after the first round of PCR with help of oVZ794, can self-anneal through identical 3'- and 5'-ends in a way that allows the formation of larger concatemers in each PCR cycle (Fig. S1B). Cycling conditions were as follows: 2 min initial denaturation at 98°C; 10 s 98°C, 10 s 57°C, 40 s 72°C (20 cycles). The PCR reaction was subjected to agarose gel electrophoresis (4% agarose) and bands between 200 and 400 bps were purified, T-tailed by incubation with MasterTaq DNA polymerase (5Prime), and cloned into pCR2.1-TOPO (Invitrogen). Sequencing revealed that one clone carried 2 repeats of the terminator, with the last terminator corresponding to the wild-type terminator, and the first terminator carrying a 1bp deletion at the base of the stem loop (plasmid pTOPO-TERM193; Fig. S1C).

Construction of plasmid pQF

Plasmid pQF is the parent for all other PQ5-based plasmids and was assembled in multiple steps (an outline is given in Fig. S2). First, a fragment containing a high-GC codon-optimized version of the repressor-encoding gene *cymR* (*cymR**) driven by the *neo* promoter, the P_{syn2}-derivative P_{syn2a} flanked by two CuO operator sites followed by a MCS (including N- and C-terminal triple-FLAG-tags [3xFLAG-tags]) and the putative transcriptional terminator T193 was synthesized by GeneArt (Invitrogen). This fragment was amplified using oligos oJVZ1286 and oJVZ1287, digested with EcoRI/PscI and cloned between the same sites of pCM62, generating pQ0 (Fig. S2A). Sequencing revealed that T193 carried a point mutation in the stem. Several attempts to revert this mutation by PCR-based site-specific mutagenesis failed for unknown reasons and we thus proceeded with this mutant terminator, termed T193*. Next P_{neo}, P_{syn2a} and the CuO

2

sequences of pQ0 were replaced by a synthesized DNA fragment (MWG Operon Eurofins) containing the *bla* promoter (driving *cymR** expression) and P_{syn2} with a single CuO operator sequence downstream of the P_{syn2} -10 box (Fig. S2B); the fragment had been delivered on a standard cloning plasmid and was directly subcloned using NheI/SpeI restriction sites, generating pQ0new. *lacZ* on the XbaI/EcoRI fragment of pAK127lacZ(MCS) was then subcloned into the BcuI/EcoRI sites of pQ0new, resulting in pQ0newlacZ (Fig. S2C). The NheI/AgeIfragment of pQ0newlacZ harboring P_{bla} was replaced by a fragment harboring a modified bla promoter core sequence ($P_{bla-mut1}$), in which the -35 hexamer has been changed from TTCAAA to TTGACA and the -10 hexamer from GACAAT to NACAAT, generated by annealing of oligos oJVZ1098 and oJVZ1099, giving a plasmid library called pQ0newlacZ-Pblamut1 (note that the first base in the -10 box is randomized). Next, the plasmid library was digested with AgeI/NcoI and a DNA fragment encoding the CuO operator sequence generated by annealing oligos oJVZ1100 and oJVZ1101 was cloned in between, giving plasmid library pQ0lacZ-Pblamut1-Cu0. This library was transformed into Sphingomonas Fr1 and several transformants were tested for β -galactosidase activity with and without cumate and the plasmid of one transformant, which showed the highest induction ratio (clone 5), was extracted and sequenced. This plasmid, which encoded the -10 hexamer TACAAT in the modified *bla* promoter (referred to as P_{bla-mut1T}), was designated pQF-lacZ (Fig. S1D). To restore the original multiple cloning site, a fragment harboring *cymR** and P₀₅ was PCR-amplified from pQF-lacZ (oligos oJVZ1286/oJVZ1288) and cloned in between the PscI/BcuI sites of pQ0new, yielding pQF.

Primer name	Primer sequence (5' to 3')
oJVZ534	ATTTTAAGCTTAGCAGGGGGGCATGGCCTC
oJVZ739	ATTTGGTACCTCTAGCTAGCGATATCACC
oJVZ740	ATTTTCTAGAGACAAGTTTGTACAAAAAGC
oJVZ743	ATTTGGTACCAGAAGGGAGAGACCCCCGAATGG
oJVZ744	ATTTGAATTCTTACTTGTACAGCTCGTCCATG
oJVZ745	ATTTTACATGTGATGGATATCTGCAGAATCCGCCC
oJVZ746	ATTTTAAGCTTGCCGCCAGTGTGCTGGGATTCGCCC
oJVZ793	TTTTGTTTGCGGGGGGTTCGCCGGTCACGCAAAAAAGGCCGGGGGGGG
	CCCGGCCTTTTTGTTTGCGGG
oJVZ794	CCCGCAAACAAAAGGCC
oJVZ1082	ATTTGGTACCCACAGGAAACAGCTATGACC
oJVZ1083	ATTTGAATTCAATACGGGCAGACATGGCC
oJVZ1086	AGCTTTTTCTAGAGGGCCGGATCCCG
oJVZ1087	GTACCGGGATCCGGCCCTCTAGAAAA
oJVZ1088	AGCTTCCGCATGTACCCGTACGACGTCCCGGACTACGCCAT
oJVZ1089	TAATGGCGTAGTCCGGGACGTCGTACGGGTACATGCGGA
oJVZ1090	AGCTTCCGCATGGAGCAGAAGCTGATCTCGGAAGAGGACCTGGGCTCGAT
oJVZ1091	TAATCGAGCCCAGGTCCTCTTCCGAGATCAGCTTCTGCTCCATGCGGA
oJVZ1093	ATTTTGGTACCGCATCGCGGCCCATCACGGC
oJVZ1098	CCGGTACATTGACATATGTATCCGCTCATGANACAATAACCCTGATG
oJVZ1099	CTAGCATCAGGGTTATTGTNTCATGAGCGGATACATATGTCAATGTA
oJVZ1100	CCGGAACAAACAGACAATCTGGTCTGTTTGTA
oJVZ1101	CATGTACAAACAGACCAGATTGTCTGTTTGTT
oJVZ1102	ATTTAGATCTTCCCCGAAAAGTGCCACC
oJVZ1103	ATTTACTAGTAGGCCTAGCACCAGGCGTTTAAGG
oJVZ1104	ATTTGGATCCGCTGATGTCCGGCGGTGC
oJVZ1105	ATTTCCATGGATGGATATCTGCAGAATC
oJVZ1106	ATTTGCTAGCACGGGCAGACATGGCCTG
oJVZ1107	ATTTAAGCTTCCGCATGGTGAGCAAGGGCGAGG
oJVZ1108	ATTTATTAATCTTGTACAGCTCGTCCATG
oJVZ1286	ATTTACATGTTCAGCGCTTGAACTTGGC
oJVZ1287	ATTGAATTCAAAAAAAGGCCGGGGGGGGGGGGGGGGGGG

Table S1. Oligonucleotides used in this work

oJVZ1288	TGCAAACTAGTTACAAACAGACC
oJVZ1291	AGCTGCTGCAATGGAACCAACGAACGCGACTTTGGTTTCATCGCC
oJVZ1292	GATCGGCGATGAAACCAAAGTCGCGTTCGTTGGTTCCATTGCAGC
oJVZ1434	GTACAGCATTGACGGGCCCGGCCACCCCGCGTAGAAGCGCGCCAC
oJVZ1435	GTGGCGCGCTTCTACGCGGGGTGGCCGGGCCCGTCAATGCT
oJVZ1436	ATTTAGGCCTACGGGTTGCTGCGCAACC
oJVZ1437	ATTTACATGTTGAAGACGAAAGGGCCTCG
PL28pNTGACN_s	ATTTAAGCTTCCGGCGTGCGACGGTGCGCGGATCGCCCCATGGNTGACNGAT
	CGCCGCGAAGCCGC
PL28pTANNNGC_as	ATGGATCCGGCTTTAAATCCTGAATTCGGTTGCCCGGAAAGCCGGCGCNNNT
	AGCGGCTTCGCGGCGATC

Gene (IMG locus tag)	Annotation (according to the IMG system)	Upstream region used for motif search (in bp)
Sphme2DRAFT_0192	ribosomal protein L21	100
Sphme2DRAFT_0653	ribosomal protein L36	100
Sphme2DRAFT_0682	ribosomal protein L28	100
Sphme2DRAFT_0799	DNA-directed RNA polymerase, omega subunit	100
Sphme2DRAFT_1509	ribosomal protein S12	100
Sphme2DRAFT_1511	translation elongation factor EF-G	100
Sphme2DRAFT_1512	translation elongation factor TU	100
Sphme2DRAFT_1514	ribosomal protein L3	100
Sphme2DRAFT_1524	ribosomal protein L14	100
Sphme2DRAFT_1543	ribosomal protein S13	120
Sphme2DRAFT_1545	DNA-directed RNA polymerase, alpha subunit	100
Sphme2DRAFT_1546	ribosomal protein L17	100
Sphme2DRAFT_1816	ribosomal protein L33	100
Sphme2DRAFT_2298	ribosomal protein L13	100
Sphme2DRAFT_2439	DNA primase, catalytic core	100
Sphme2DRAFT_2588	ribosomal protein L10	100
Sphme2DRAFT_2592	ribosomal protein L11	99
Sphme2DRAFT_2614	signal recognition particle protein	100
Sphme2DRAFT_2637	ribosomal protein S21	100
Sphme2DRAFT_2679	ribosomal protein L25	100
Sphme2DRAFT_2712	ribosomal protein S1	100
Sphme2DRAFT_2792	ribosomal protein L31	100
Sphme2DRAFT_3405	ribosomal protein S6	100

Table S2. Putative housekeeping genes used for MEME motif search

Fig. S1. Genomic context, construction and sequence of TERM193. (A) Location of the original terminator on the genome (not to scale). Numbers indicate the distance of genes to each other and the beginning/end of the terminator in base pairs. **(B)** Construction of TERM193 using oligonucleotide annealing and extension with DNAP. The red regions in oligonucleotide oJVZ793 represent identical sequences at the 5' and 3' ends, the blue region encodes the terminator. Oligo oJVZ794 is depicted in orange. Sequences complementary to the red and blue regions in oJVZ793 are depicted in orange and purple, respectively. Only a selection of productive annealing/elongation events is shown. **(C)** Sequence of the fragment encoding TERM193. Terminators are underlined. A single copy of oJVZ793 is indicated in italics and the repetetive elements are shown with the same color code as in **(B)**. The green sequences are derived from the backbone of pCR2.1-TOPO. The red arrow indicates the location of the 1-bp deletion (see the text for details).

Fig. S2. Construction of plasmid pQF. (A) Plasmid pQ0. (B) Plasmid pQ0new. (C) Plasmid pQ0new-lacZ. (D) Plasmid pQF-lacZ. In the sequences, promoter regions are indicated by arrows and their -35 and -10 boxes are highlighted in grey. *cymR** and MCS/lacZ start codons and ribosome bind sites are in bold and CuO operator sites are boxed. The schematic drawings show genes (large arrows) and promoters (bended arrows), the CuO operator sites (black circles), the MCS including the 3xFLAG tags (grey boxes) and relevant restriction sites. Note that cloning of *lacZ* destroyes the SpeI site (indicated as 'SpeI/XbaI scar' in panels (C) and **(D)**). For details see the text.

SKA58	GAAAGGGTTGCGTGCCGTCCCATCCGGG	TTGAC	GCCGCAGGGAATCCC <mark>G</mark> I	TATCGGC	GCGGCT <mark>T</mark> TC <mark>C</mark> GAACGAACCCGAATTCAAAGGTTGAACAGACT	ATGI	ł
UT26S	GGTTGCGGCCCGGAAAGGCGCTGGGCGGG	TTGAC	CGCGCGGGGGAATCCCGI	TATCCGC	GCCGCT <mark>T</mark> TC <mark>C</mark> GAACGAACCCGAATTACAAGGTTGATT-GACT	ATGT	ł
L-1	GGTTGCGGCCCCGAAAGGCTCCGGGCGGG	TTGAC	TGCGCCGGGAATCCCGI	TATCGGC	GCCGCT <mark>T</mark> TC <mark>C</mark> GAACGAACCCGAATTACAAGGTTGATT-GACT	ATGT	ł
AP49	CGCTAGTGCCACGATCCCGAGCGGATGG	TTGAC	TCGGACGGGAATCCGTI	TATCGGC	GCCGCT <mark>T</mark> TC <mark>C</mark> GAACGAACCCGAATTTCAAAGGTTGATTGACT	ATGT	ł
RW1	CGAGGGTTGCATCGGGCCGGTCCATCCAGC	TTGAC	AATCCCTGGAACGGGGC	TATCGGC	CGCGACTTT <mark>C</mark> CGGGCAACCCGAACATCAGGACGAAGTACA	ATGT	t
SYK-6	CCTAACGAAGCGGGTTTGTCAGGGAAAGCGCC	TTGAC	ATTCGCAGCTGAGCCGC	TATCGGC	GCCGCT <mark>T</mark> TC <mark>C</mark> GTAAGAACCCAGATCAGGATCGATTGAC	ATGT	t
S17	GCGGTTGCACGGTCGCCCATGGGGAATCGG	TTGAC	GGCGCACGGGAACACGG	TATCCGC	GCGGCCTTTCCGGGCATTGCCTGAAACCAGGATAACGATC	ATGT	t
FA2	CCCTCGTACCCGGCTGGTTGCAGCACCGGCGAC	TTGACC	GATCGTCGCCCACGGG ^G I	TACTGGC	GCCCACTTTCCGGGCAACCGAATTCAGGATT-ATTCAC	ATGT	ł
5.2	CCGGCTTCGCGGGGTGGTTGCAGCCATCGCGAC	TTGACC	GATCG <mark>CG</mark> CAAGGAAG <mark>G</mark> I	TACTCGC	GCCCACTTTCCGGGCAACCGAATTCAGGATT-AGTCAC	ATGT	ł
FR1	CGGCGTGCGACGGTGCGCGGATCGCCCCATGG	TTGAC	GATCGCCGCGAAGCCGC	TAGTGGC	GCCGGCTTTCCGGGGCAACCGAATTCAGGATTTAAAGCC	ATGI	ł
URHD0007	TGAAGCGCCTCGCCACA	TTGAC	AGCAGGGCCCCAGCGG	TAACGGG	CGGCGCTTTCCGGGCGCAGCCAAGCGCTTAGAACCAAAATCAGGATATTGACC	ATGI	į
DSM18422	GGAAAGCGGCGCCGAAAGG	TTGAC	TATTGGTCCTGTGACGG	TATCGGG	CGGCGC <mark>TTTC</mark> CGGGCGCTTCGGCGTCCAACCTTCAGATTAGGATGTGACCG	ATGT	ł
PP1Y	CTGCGAAAAACCGCGGCGCAAC	TTGAC	TTCACCTGGTGACTCGG	TAAGGGC	GCGCCTTCCCGTACAAACGGCCA-AGATTTTTTCGAGCGAGAGTAGAC	ATGT	ł
AP12	TGCGAAAAACCTGTGCGCAAC	TTGACC	TTGCACGGGCGACTCGC	TAAGGGC	GCGCCTTCCCGTTTCTACGGCAACAGATCTTTTCGAGCGAGAGTAGAC	ATGT	į
LH128	CCCTTCAAAAACCTGTGTGCAAC	TTGACC	TTGGGTGGGGGGAATCGG	TAAGGGC	GCGCCTTCCCGTACTTAACGGCAAGCAATTTTCGAGCGAGAAAGACT	ATGI	ł
Consensus	a.c	TTGAC	cgggac.c <mark>G</mark> .	TAtcgGc	gccgctTtcCgcaac.catttcaggg.t.a.tacc	ATGT	ł
				_			
		-35		-10		ATG	i
					-		

Fig. S3. Alignment of the 100 base pairs upstream of the *rpmB* open reading frame from different sphingomonads. Highly conserved nucleotides (>90%) are displayed in red and modestly conserved nucleotides (>50%) in blue. The putative -35 and -10 boxes and the *rpmB* start codon (ATG) are boxes. FR1, *Sphingomonas* sp. strain Fr1; S17, *Sphingomonas* sp. strain S17; SKA58, *Sphingomonas* sp. strain SKA58; RW1, *Sphingomonas wittichii* strain RW1; UT26S, *Sphingobium japonicum* UT26S; L-1, *Sphingobium chlorophenolicum* L-1; SYK-6, *Sphingobium* sp. SYK-6; AP49, *Sphingobium* sp. AP49; FA2, *Sphingomonas phyllosphere* FA2; 5.2, *Sphingomonas phyllosphere* 5.2; URHD0007, *Sphingomonas* sp. URHD0007; DSM18422, *Sphingomonas jaspsi* DSM 18422; PP1Y, *Novosphingobium* sp. PP1Y; AP12, *Novosphingobium* sp. AP12; LH128, *Sphingomonas* sp. LH128.

>Prom1	GG T TGAC G GATCGCCGCGAAGCCGCTA ACT GCGC
>Prom2	GG T TGAC G GATCGCCGCGAAGCCGCTA ACT GCGC
>Prom3	GG T TGAC G GATCGCCGCGAAGCCGCTA ACT GCGC
>Prom4	GG T TGAC C GATCGCCGCGAAGCCGCTA CAC GCGC
>Prom5	GG T TGAC G GATCGCCGCGAAGCCGCTA ACC GCGC
>Prom6	GG T TGAC T GATCGCCGCGAAGCCGCTA CAA GCGC
>Prom7	GG T TGAC G GATCGCCGCGAAGCCGCTA ACT GCGC
>Prom8	GG T TGAC T GATCGCCGCGAAGCCGCTA ATC GCGC
>Prom9	GG T TGAC G GATCGCCGCGAAGCCGCTA ACC GCGC
>Prom10	GG T TGAC C GATCGCCGCGAAGCCGCTA AGC GCGC
>Prom11	GG T TGAC C GATCGCCGCGAAGCCGCTA AGC GCGC
>Prom12	GG T TGAC C GATCGCCGCGAAGCCGCTA AGC GCGC
>Prom13	GG T TGAC T GATCGCCGCGAAGCCGCTA ATC GCGC
>Prom14	GG T TGAC G GATCGCCGCGAAGCCGCTA ACT GCGC

Fig. S4. Sequence alignment of the 14 identified strong promoters (core regions only). The -35 and -10 boxes are highlighted in grey and bases that had been randomized are in bold. Identical promoters that served as the basis for P_{syn2} (core sequence TTGACG-N₁₇-TAACTGC) are highlighted in bold.