
Supplemental material

Mibd : MTAHSDAGGDPRPPERLLGVS SVAALNL AY IYAFRAAG-VARLAVVL PAAEGLPAGAL PIVDAVHTEHD : 7 Epid :MYGKLLICATASINVININHY VE KQHFDEVNILFSPSSKNFINTDVLKLFCDNLYDEIKD : 6	76 74 52 73
TvaF : SAGGAPHVRIAAESDAVVVAPATAATLGKLANGICDNIVTQIVMAAECEVILAPVMNPAMLAKPAVRRNLDABRAEGFV : 15 MibD :QGKGHVALSRWAQHLLVLPATANLLGCAASGLAPNFLATVLLAADCEITFVPAMNPVMWRRAVRRNVATVRADGHH : 15 EpiD :PLLNHINIVENHEYILVLPASANTINKIANGICDNLLTTVCLTGYQKLFIFPNMNIRMWGNPFLQKNIDLLKNNDVK : 13 CypD : DVPPEVNSGKSGASECFLVFPATLDTVMRLA <mark>OG</mark> RADSPALMMLQLTDAFLVIADTFPGSNEIVENNVQTLKLRPNV : 14	51 39
TVAF : VAEEGQ : 196 MibD : VVDBLPGAVYEAASRSIVEGLAMPRPEALVRLLGGGDDGS-PAGPAG-PVGRAEHVGAVEAVEAVEAVEAVEAAEALA : 227 EpiD : VYSBDMN : 181 CypD : EFAERVN : 190	7 L

FIG S1 Sequence alignment of TvaF with AviCys forming enzymes. MibD (Accession number: ADK32557), EpiD (P30197) and CypD (ADR72965) are involved in the biosynthesis of microbisporicin, epidermin and cypemycin, respectively. Amino acid sequence alignment was carried out using CLUSTAL W multiple sequence alignment program (version 2.1) (2) and edited with GeneDoc (version 2.7) (1).

Isolation of thioviridamide. The fermentation broth (1 litter) was centrifuged and the mycelium was extracted with acetone. The extract was evaporated and then extracted with EtOAc at pH 3. The extract was applied to a silica gel column, which was washed with CHCl₃ - MeOH (10:1) and eluted with CHCl₃ - MeOH (5:1). The eluate was subjected to HPLC (YMC-Pack D-ODS-7; YMC, Kyoto, Japan) with 85% MeOH - 5 mM disodium hydrogen citrate. The corresponding peak fraction was concentrated and then partitioned between EtOAc and water. The organic layer was washed with 0.01 M HCl and water. The EtOAc solution was dried over anhydrous sodium sulfate and evaporated to dryness to give a pure powder of thioviridamide.

FIG S2 ¹H NMR spectrum of thioviridamide produced by *S. lividans* expressing the *tva* gene cluster. ¹H NMR spectrum was obtained in CD₃OD on a JEOL JNM-LA400 spectrometer at 400 MHz.

Strain and plasmid	Relevant characteristics
Streptomyces strains	
S. olivoviridis NA05001	Thioviridamide producer
S. lividans TK23	Heterologous host for thioviridamide production
Escherichia coli strains	
XL1-blue MR	Strain for cosmid library construction; $\Delta(mcrA)183$
	Δ (mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac
XL1-blue MRF'	Cloning host; $\Delta(mcrA)183 \Delta(mcrCB-hsdSMR-mrr)173 endA1$
	$supE44$ thi-1 recA1 gyrA96 relA1 lac [F' proAB lac1 ^q Z\DeltaM15 Tn10 (Tet ^r)]
JM110	dam/dcm methylases deficient strain; dam dcm supE44 hsdR17 thi leu
	rpsL1 lacY galK galT ara tonA thr tsx Δ (lac-proAB) [F' traD36 proAB
	$lacI^{q}Z\Delta M15$]
Plasmids	
pWE15	General cosmid vector for a genomic library of S. olivoviridis NA05001.
pGEM-11Z	General cloning vector with multiple cloning sites for cloning of a
	0.8-kbp <i>tvaJ</i> fragment into the HindIII site.
pBluescript II SK (+)	General cloning vector with multiple cloning sites for cloning of a
	2.0-kbp tvaA fragment into the EcoRI/XbaI sites and cloning of the tva
	gene cluster (16.6-kbp) into the XbaI/HindIII sites.
pWHM3	E. coli/Streptomyces shuttle vector for cloning and expression of the tva
	gene cluster.

TABLE S1 Bacterial strains and plasmids used in this study

Supplemental References

- Nicholas, K. B., H. B. Nicholas, and D. W. Derrfield. 1997. GeneDoc: analysis and visualization of genetic variation. EMBNEW NEWS 4:14.
- Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673-80.