1	Isolation of butanol- and isobutanol-tolerant bacteria and physiological characterization
2	of their butanol tolerance
3	
4	
5	SUPPLEMENTAL MATERIAL
6	
7	Supplemental TABLE S1. Primers used for the amplification, direct sequencing, and cloning
8	of the <i>cfa</i> gene of strain CM4A.
9	

Primer name	Use	Primer sequence (5' to 3')
cfa-F ^a	Amplification	GAGGGAATGCAATGTTAG
cfa-R ^a	Amplification	TCTATTAACCAATCCGG
cfa362R ^a	Sequencing	CCTAGATCGTAATGGCTGTG
cfa871F ^a	Sequencing	GGTGGCTATATTCCTGGTG
cfa-5EF ^b	Cloning	CC <u>GAATTC</u> GAATGCAATGTTAG
cfa-5XR ^b	Cloning	CC <u>CTCGAG</u> ATTAACCAATCCG

^aThe primers were designed from the *cfa* gene sequence in the *Enterococcus faecalis* V583
genome (NC004668). ^bPrimers containing *Eco*RI and *Xho*I sites, as underlined, were used to
amplify the *cfa* gene for cloning into the pET-28b expression vector (Novagen) to produce an
N-terminal His 6-tagged fusion protein.

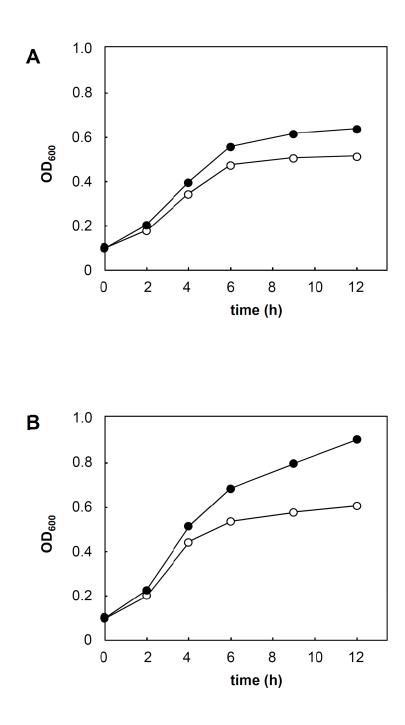
Supplemental TABLE S2. Cell surface hydrophobicity of strain CM4A grown with or
without 2.0% butanol.

CM4A cells	BATH (%) ^a				
CM4A cells	Butanol	<i>n</i> -Hexane	<i>n</i> -Tetradecane	Toluene	Xylene
without butanol	11.6 ± 2.94	22.3 ± 0.26	15.9 ± 0.45	30.5 ± 0.45	21.9 ± 1.58
with 2.0% butanol	0.8 ± 4.11	4.3 ± 1.62	6.5 ± 1.39	5.3 ± 1.39	2.6 ± 1.87

^aThe value represents the percentage of cells adhering to a given solvent in three independent

27 measurements. $[1-(OD_{600} \text{ of aqueous phase after mixing})/(OD_{600} \text{ of initial suspension})] \times 100.$

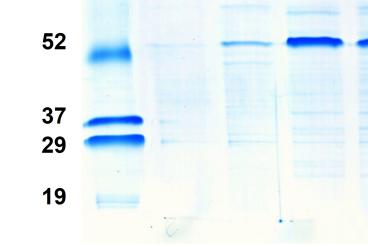
30


31 Supplemental TABLE S3. Changes in the membrane fatty acid compositions of the strain *E*.

- 32 *coli*/pCFA and the control strain *E. coli*/pET28 in response to the presence of 0.1 mM IPTG^a.
- 33

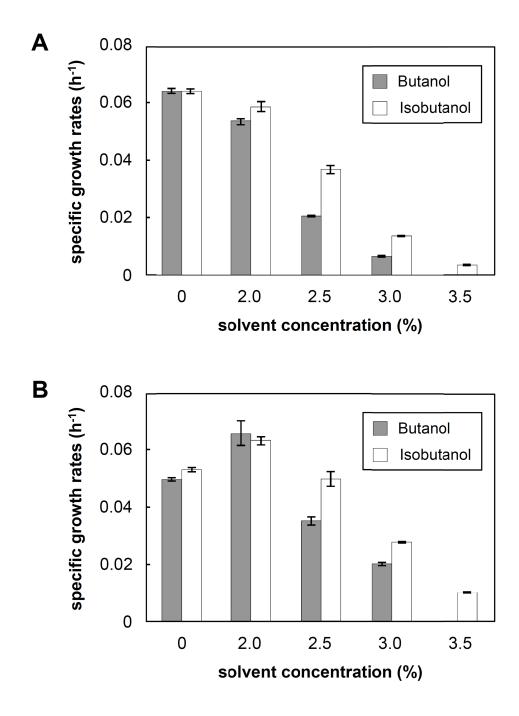
	E. coli/pET28	<i>E. coli</i> /pCFA
C12:0	4.1 ± 0.1	4.3 ± 0.3
C14:0	8.8 ± 0.5	11.1 ± 0.1
С14:0-ЗОН	3.4 ± 0.3	3.4 ± 1.4
C14:1007c	ND	0.1 ± 0.1
C15:0	0.2 ± 0.0	0.1 ± 0.1
C16:0	43.2 ± 0.2	45.2 ± 0.6
C16:1w7c	16.3 ± 0.1	17.6 ± 0.6
cyclo-C17:0	3.9 ± 0.1	5.6 ± 0.7
C18:0	0.5 ± 0.1	0.2 ± 0.2
C18:1007c	19.4 ± 0.7	6.1 ± 0.6
cyclo-C19:0	0.3 ± 0.0	6.5 ± 1.3

34


³⁵ ^aEach fatty acid composition is described as a percentage of the total fatty acids. The values ³⁶ are the means \pm standard deviations of three independent measurements. Abbreviations: ³⁷ X:Y ω Zc, fatty acid containing X carbon atoms with Y double bonds at position Z, counted ³⁸ from the methyl terminus in the *cis* configuration; C14:0-3OH, 3-hydroxy tetradecanoic acid; ³⁹ cyclo-C17:0, *cis*-9,10-methylene hexadecanoic acid; cyclo-C19:0, *cis*-11,12-methylene ⁴⁰ octadecanoic acid; ND, not detected.

46 Supplemental FIG. S1. Growth of *E. coli/*pCFA (•) and the control strain *E. coli/*pET28 (○)
47 in the presence of 0.8% butanol (A) or 0.8% isobutanol (B). The values represent the mean of
48 triplicate experiments.

← cfa



54

95

55

56 **Supplemental FIG. S2.** SDS-PAGE analysis of *cfa* gene expression in *E. coli/*pCFA (lane 57 1-5) and *E. coli/*pET28 (lane 6) at different concentration of IPTG. In total, 60 μg of protein in 58 the sonicated supernatant was purified by His-selective nickel affinity gel chromatography 59 and analyzed by SDS-PAGE. Lane M, molecular weight marker; lane 1, 10 mM glucose 60 without IPTG (negative control); lane 2, no IPTG; lane 3, 0.01 mM IPTG; lane 4, 0.1 mM 61 IPTG; lane 5, 1.0 mM IPTG; lane 6, *E. coli/*pET28 grown without IPTG (negative control). 62

63

66 **Supplemental FIG. S3.** Butanol and isobutanol tolerance of strain GK12. The specific 67 growth rates of non-adapted (A) and butanol-adapted (B) cells following different butanol or 68 isobutanol challenges. Cell adaptation was previously achieved by 15 consecutive passages 69 with 2.0% butanol. The values and error bars represent the mean and SD of triplicate 70 experiments.