1 Supplementary Information

 $\mathbf{2}$

3 I ranscriptional Response of the Archaeal Ammonia Oxidiz	nse of the Archaeal Ammonia Oxidi	al Response of the	Transcriptional	3
--	-----------------------------------	--------------------	-----------------	---

4 Nitrosopumilus maritimus to Low and Environmentally Relevant

5 Ammonia Concentrations

6

7 Tatsunori Nakagawa, David A. Stahl

8

9

11 Supplementary Materials and Methods

12

13	Medium. The basal salt medium contained NaCl 26 g, $MgSO_4 \cdot 7H_2O$ 5 g,
14	$MgCl_2 \cdot 6H_2O 5 g$, $CaCl_2 \cdot 2H_2O 1.5 g$, KBr 0.1 g in 1000 ml of ultra pure water. The
15	following solutions were autoclaved separately and added to 1 liter of autoclaved basal
16	salt medium at room temperature; 10 ml of 1 M HEPES in 0.6 M NaOH, 2 ml of 1 M
17	sodium bicarbonate, 5 ml of 2.93 mM KH ₂ PO ₄ , 1 ml of 7.5 mM FeNa-EDTA, 1 ml of
18	non-chelated trace element mixture (0.5 mM H ₃ BO ₃ , 0.5 mM MnCl ₂ ·4H ₂ O, 0.8 mM
19	CoCl ₂ ·6H ₂ O, 0.1 mM NiCl ₂ ·6H ₂ O, 0.01 mM CuCl ₂ ·2H ₂ O, 0.5 mM ZnSO ₄ ·7H ₂ O, 0.15
20	mM Na ₂ MoO ₄ ·2H ₂ O dissolved in 100 mM HCl), and 1 ml of 1 M NH ₄ Cl. The pH of
21	the medium after adding the above stock solutions was 7.5.
22	

23The DNA was extracted from the cells fixed with RNALater solution using qPCR. 24DNeasy Blood & Tissue Kit (QIAGEN). The amoA genes of N. maritimus SCM1 in 25medium were quantified by real-time PCR in a LightCycler system with LightCycler 26FastStart DNA Master SYBR Green I kit (Roche Diagnostics). The primer set, 27CrenAmo-SCM1-F and CrenAmoAModR (Table S1), was used for the quantitative 28PCR. Ten-fold dilution series of genomic DNA of N. maritimus SCM1 was used for 29DNA standard for the quantitative PCR. The cycling condition was as follows: an 30 initial denaturation at 95°C for 5 min; 35 cycles at 95°C for 10 s, 55°C for 10 s and 72°C for 13 s, followed by a melting curve analysis. The fluorescence intensity was 3132measured at 77°C. The amplification efficiency of quantitative PCR averaged 87.2% $(r^2 = 0.999).$ 33

34

 $\mathbf{2}$

35	RNA standards for qRT-PCR. To generate RNA standards for qRT-PCR, DNA
36	fragments for each RNA standard were amplified with the following PCR primer sets:
37	CrenAmo-SCM1-F and CrenAmoA-ModR (1) for the amoA gene, amt1F-490 and
38	amt1R-644 for the amt1 gene and amt2F-956 and amt2R-811 for the amt2,
39	hcd-911F-SCM1 and hcd-1267R-SCM1 for the hcd gene, Slayer2614F and
40	Slayer2821R for the <i>slp1</i> gene, and SL2-2908F and SL2-3030R for the <i>slp2</i> gene (Table
41	S1). PCR amplified DNA fragments were cloned into pCRII-TOPO (Life
42	Technologies) with TOPO TA Cloning Dual Promoter Kit (Life Technologies).
43	Plasmids were extracted with PureLink Quick Plasmid Miniprep Kit (Life
44	Technologies) and RNA amplified from purified plasmids using T7 RNA Polymerase
45	(Life Technologies). The RNA was extracted with a general acidic phenol method and
46	treated twice with DNase (Life Technologies). The length and quality of each RNA
47	standards was confirmed with a Bioanalyzer 2100 (Agilent Technologies, Santa Clara,
48	CA), and quantified with a NanoDrop 1000 spectrophotometer (Thermo Fisher
49	Scientific, Waltham, MA).
50	
51	REFERENCE

52	1. Mincer TJ, Church MJ, Trent Taylor L, Preston C, Karl DM, DeLong EF.
53	2007. Quantitative distribution of presumptive archaeal and bacterial nitrifiers in
54	Monterey Bay and the North Pacific Subtropical Gyre. Environ. Microbiol.
55	9: 1162-1175.
56	

primer	target gene	sequence (5' - 3')
CrenAmo-SCM1-F	amoA of SCM1 strain	CCAAGTAGGTAAGTTCTATAA
CrenAmoA-ModR	amoA of SCM1 strain	AAGCGGCCATCCATCTGTA
amt1F-490	amt1 of SCM1 strain	GGTGGTATTGTAATTCACAC
amt1R-644	amt1 of SCM1 strain	AGCACTACCTGCGTTAAATC
amt2F-956	amt2 of SCM1 strain	GTAGTACACATTTCTTCAGG
amt2R-811	amt2 of SCM1 strain	TTCACTACCTGCGTTAAAGC
hcd-911F-SCM1 ^a	hcd of SCM1 strain	AGCTATGTTTGCAAAACAGG
hcd-1267R-SCM1	hcd of SCM1 strain	CTCATTCTGTTTTCCACATC
hcd-1153F-SCM ^b	hcd of SCM1 strain	TTAGCTCAAGATATTGCAGG
Slayer2614F	slp1 of SCM1 strain	GTTGTTGGTTCAGCAACTAC
Slayer2821R	slp1 of SCM1 strain	GATCTACACCAATCAACTGG
SL2-2908F	slp2 of SCM1 strain	ACACCATATACCTACGCAGG
SL2-3030R	slp2 of SCM1 strain	TCTAACACCTGCTGAGTCGC

Table S1 PCR primers used in this study.

^{*a*} Primer hcd-911F-SCM1 was used only to amplify *hcd* gene fragment during the making of RNA standard.

^b Primer hcd-1153F-SCM1 was used only for qRT-PCR analyses.

Table S2 PCR cycles for qRT-PCR.

PCR cycle	target RNA of SCM1
61°C for 20 min, 95°C for 30 sec, 35 cycles of 95° C for 5 sec, 56°C for 10 sec, and 72°C for 13 sec, and a detection at 77°C for 3 sec, followed by a melting curve (65 to 95°C) with heating rate of 0.1°C/sec.	amoA, amt1, amt2, slp1
61°C for 20 min, 95°C for 30 sec, 35 cycles of 95° C for 5 sec, 56°C for 10 sec, and 72°C for 13 sec, and a detection at 75°C for 3 sec, followed by a melting curve (65 to 95°C) with heating rate of 0.1°C/sec.	hcd
61°C for 20 min, 95°C for 30 sec, 35 cycles of 95° C for 5 sec, 56°C for 10 sec, and 72°C for 13 sec, and a detection at 79°C for 3 sec, followed by a melting curve (65 to 95°C) with heating rate of 0.1°C/sec.	slp2

Overview of experiment and sampling time points for batch culture, dialysis Fig. S1 bag systems, and $\mathrm{NH_4^+}\textsc{-}starvation$ experiments.

- Overview of experiment and sampling time points for short-term ammonia Fig. S2
- starvation and readdition studies.

76 Fig. S3 Changes in concentrations of (A) NH_4^+ and (B) NO_2^- in media of N.

77 maritimus SCM1 during short-term starvation and readdition experiments (open squares,

inner dialysis bag; closed squares, outer dialysis bag), and continuous dialysis bag

rowth (open circles, inner dialysis bag; closed circles, outer dialysis bag). These

80 concentrations were determined with each dialysis bag described in Fig. 3.

81

84 85

82