Supplemental Figure 1. CMF22 and basal body co-staining. Indirect immunofluorescence
 on detergent-extracted cytoskeletons from CMF22-HA cells. Samples were stained with anti HA antibodies to detect CMF22-HA (green) and YL 1/2 antibodies as a marker for the basal
 body (red). The kDNA and nuclear DNA were stained with DAPI (blue).

5 Supplemental Figure 2. CMF22 knockdown does not affect axoneme ultrastructure.

6 Transmission electron microscopy (TEM) analysis of flagella in CMF22-UKD cells grown in the
7 absence or presence of tetracycline for 72 hours as indicated. Samples are either whole cells

8 (upper panels) or 1% NP40-extracted samples (lower panels).

9 Supplemental Figure 3. Removal of tetracycline restores wild-type motility in CMF22-

UKD cells. CMF22-UKD cells were induced with tetracycline for RNAi knockdown of CMF22
for 72 hours then tetracycline was removed by diluting the culture to 1x10⁶ every 24 hours for 5
days. (A) Motility traces of individual cells at day 5 after tetracycline removal. (B) Mean
squared displacement (msd) of CMF22-UKD cells after 5 days tetracycline removal is plotted as
a function of time interval.

15 Supplemental Figure 4. CMF22 Knockdown cells exhibits both reverse and forward beats.

16 Time-lapse image series from video microscopy of CMF22-UKD cells 72 hrs post induction.

17 Filled arrow indicates position of wave at each time point. Unfilled arrows indicate approximate

18 position where waveform originated. "P" marks the posterior end of the cell and "A" marks the

19 anterior end of the cell. (Top) Induction with Tet shows a reverse flagellar beat that moves

- 20 toward the base of the flagellum. Frames 110 to 130 taken from Supplementary Movie 5.
- 21 (Bottom) A reverse flagellar beat that moves towards the base of the flagellum, then stops and

moves toward the tip of the flagellum (bottom panels). Frames 145 to 595 taken from
Supplemental Movie #8.

24 Supplemental Table #1: CMF22 orthologues from 115 diverse eukaryotes. The TbCMF22

25 protein (XP_828418.1) was used as the original query to perform reciprocal best BLAST using

the NCBI BLAST portal and species specific portals. An orthologue was confirmed only if

27 TbCMF22 was returned as the top hit upon BLAST against the *T. brucei* genome. To get diverse

28 coverage of genomes, multiples species from the same genus were not compared. Our study

found 85 orthologues for CMF22 out of 86 organisms with motile cilia, 0 out of 4 organisms

30 with immotile cilia and 3 out of 25 organisms without cilia.

Supplemental Movie #1: 30 fps CMF22-UKD –Tet, control cells. Video microscopy shows
normal motility of uninduced (-Tet) CMF22-UKD cell line. Notice that the cell rapidly travels
across the field of view. Video recorded and played at 30 fps.

Supplemental Movie #2: 30 fps CMF22-UKD +Tet cells. After 72 hours of RNAi induction
(+Tet), CMF22-UKD cells exhibit erratic movements in which flagellar beating is impaired and
cells are not capable of propulsive motility. Notice in the knockdown (+Tet), erratic movements
of the flagellar tip, bent anterior (thin end), and base-to-tip beating. Video recorded and played at
30 fps.

Supplemental Movie #3: 1000fps video of flagellar beating in control cells. Cells maintained -Tet. Videos were recorded at 1000 frames/second and played back at 50 frames/second. Note several tip-to-base beats. Figure 6 (-Tet) shows time-lapse image series taken from frames 100 to 300.

43 Supplemental Movie #4: 1000fps video of reverse (base-to-tip) flagellar beating in CMF22
44 Knockdown cells. CMF22-UKD cells were maintained +Tet for 72 hrs. Videos recorded at
45 1000fps and played at 50 fps. Figure 6 (+Tet) shows time-lapse image series taken from frames
46 150 to 350.

47 Supplemental Movie #5. 1000fps video of forward (tip-to-base) flagellar beating in CMF22 48 knockdown cells. CMF22-UKD cells were maintained +Tet for 72 hrs. Videos recorded at 49 1000fps and played at 50 fps. Video shows a flagellar beat that moves from tip toward base but 50 then appears to stop and then reverse direction. Supplemental Figure 3 (top panels) shows time-51 lapse image series taken from frames 110 to 130. 52 Supplemental Movie #6: 30 fps video of normal cell translocation in CMF22UKD-Ri cells 53 maintained in – Tet. Video shows essentially normal beating and translocation of CMF22-UKD-54 Ri cells before RNAi induction with Tet. 55 Supplemental Movie #7: 30 fps video of normal cell translocation in CMF22UKD-Ri cells 56 72 hours post-induction for RNAi against endogenous CMF22. CMF22UKD-Ri cells were 57 maintained +Tet for 72 hrs. Video was recorded and played at 30 fps. Video shows essentially

normal beating and translocation of CMF22-UKD-Ri cells after RNAi knockdown of

59 endogenous CMF22.

60 Supplemental Movie #8: 1000 fps video of reverse flagellar beating followed by a forward

beat in CMF22 Knockdown cells. CMF22-UKD cells were maintained +Tet for 72 hrs. Videos
recorded at 1000fps and played at 50 fps. Video shows a forward beat that moves from the tip

towards the base of the flagellum (frames 100 to 200) and is immediately followed by a reverse

- 64 beat that moves back to the tip of the flagellum (frames 300 to 400). Supplemental Figure 3
- 65 (bottom) shows time-lapse image series taken from frames 145 to 595.

CMF22-UKD +Tet

Motile Cilia	CMF22 Orthologue	Motile Cilia	CMF22 Orthologue
Acvrthosiphon pisum	XP_003242250.1	Monodelphis domestica	XP_001372750.2
Aedes aegypti	XP 001658040.1	Monosiga brevicollis	XP_001744417.1
Ailuropoda melanoleuca	XP 002915532.1	Mus musculus	NP 083398.2
Allomvces macrogvnus	AMAG 01639.2	Myotis davidii	ELK32629.1
Amphimedon		Naegleria gruberi	XP_002678621.1
queenslandica	XP_003388958.1	Nasonia vitripennis	XP_003423849.1
Anolis carolinensis	XP_003215233.1	Nematostella vectensis	XP_001637403.1
Anopheles gambiae	XP_320769.4	Oikopleura dioica	CBY14496.1
Apis melifera	XP_001122486.2	Oreochromis niloticus	XP_003440019.1
Batrachochytrium	EGF82441.1	Ornithorhynchus anatinus	XP_001513364.2
dendrobatidis		Oryctolagus cuniculus	XP_002723285.1
Bigelowiella natans	jgilBigna1l142761	Oryzias latipes	XP_004067899.1
Bos taurus	NP_001193476.1	Ovis aries	XP_004001818.1
Branchiostoma floridae	XP_002594378.1	Oxytricha trifallax	EJY71359.1
Canis familiaris	XP_539921.3	Pan troglodytes	XP_003309586.1
Capitella teleta	ELU03195.1	Paramecium tetraurelia	XP_001429179.1
Chlamydomonas	XP_001690665.1	Pediculus humanus	XP_002432035.1
reinhardti		Perkinsus marinus	XP_002776859.1
Ciona intestinalis	XP_002129665.1	Physcomitrella patens	XP_001767278.1
Clonorchis sinensis	GAA52427.1	Phytophthora infestans	XP_002898734.1
Crassostrea gigas	EKC42060.1	Plasmodium falciparum	None
Culex pipiens	XP_001847569.1	Pongo abelii	XP_002818732.2
	ConsensusfromContig6672-snap-	Rattus norvegicus	NP_001019488.2
Cyanophora paradoxa	gene-0.0	Saccoglossus kowalevskii	NP_001171756.1
Danaus plexippus	EHJ76815.1	Saprolegnia parasitica	SPRG_02274.1
Danio rerio	NP_001073437.2	Sarcophilus harrisii	XP_003770307.1
Drosophila melanogaster	AAM11255.1	Schistosoma mansoni	XP_002572778.1
Ectocarpus siliculosus	CBN77721.1	Selaginella moellendorffii	XP_002974085.1
Emiliania huxleyi	jgilEmihu1l235066	Spizellomyces punctatus	SPPG_02701.3
Equus caballus	XP_001496552.2	Strongylocentrotus purpuratus	XP_780770.3
Felis catus	XP_003991344.1	Sus scrofa	XP_003133808.1
Gallus gallus	XP_421878.2	Taeniopygia guttata	XP_004175065.1
Giardia lamblia	XP_001707075.1	Takifugu rubripes	XP_003974316.1
Guillardia theta	EKX39704.1	Tetrahymena thermophila	XP_001015966.1
Harpegnathos saltator	EFN82410.1	Tetraodon nigroviridis	CAG08045.1
Helobdella robusta	jgilHelro1l188756	Thalassiosira pseudonana	XP_002294237.1
Heterocephalus glaber	EHB01958.1	Thecamonas trahens	AMSG_00296.2
Homo sapiens	NP_001257513.1	Toxoplasma gondii	XP_002371250.1
Hydra magnipapillata	XP_002168984.2	Tribolium castaneum	EFA11364.1
Leishmania major	XP_001681896.1	Trichomonas vaginalis	XP_001330039.1
Lottia gigantea	jgilLotgi1l61523l0860	Trichoplax adhaerens	XP_002111442.1
Loxodonta africana	XP_003417985.1	Trypanosoma brucei	XP_828418.1
Macaca mulatta	EHH17871.1	Trypanosoma cruzi	XP_817318.1
Meleagris gallopavo	XP_003207414.1	Volvox carteri	XP_002951335.1
Micromonas pusilla	XP_003061855.1	Xenopus tropicalis	XP_002932048.1

Immotile Cilia	CMF22 Orthologue	
Trichinella spiralis	None	
Caenorhabditis elegans	None	
Brugia malayi	None	
Ascaris suum	None	
No Cilia	CMF22 Orthologue	
Arabidopsis thaliana	None	
Aureococcus		
anophagefferens	EGB03618.1	
Chlorella variabilis	EFN52029.1	
Coprinopsis cinerea	None	
Cryptococcus neoformans	None	
Cryptosporidium parvum	None	
Cyanidioschyzon merolae	None	
Dictyostelium discoideum	None	
Encephalitozoon cuniculi	None	
Entamoeba histolytica	None	
Glycine max	None	
Neurospora crassa	None	
Oryza sativa	None	
Ostreococcus tauri	XP_003078557.1	
Phaeodactylum tricornutum	None	
Populus trichocarpa	None	
Rhizopus oryzae	None	
Saccharomyces cerevisiae	None	
Schizosaccharomyces pombe	None	
Solanum tuberosum	None	
Theileria annulata	None	
Ustilago maydis	None	
Vitis vinifera	None	
Zea mays	None	