1 METHODS

2 **RNA extraction**

The D39 WT and the $\Delta arcD$ mutant were grown in 10 ml THY broth to an OD₆₂₀ of 3 4 0.6. Bacteria were harvested by centrifugation, resuspended into 500 μ l RLT buffer from 5 the RNeasy Mini kit (Qiagen), and milled with 0.1 mm zirconia beads (Biospec Products) 6 using a mini bead beater (Biospec Products) twice of 100 sec, with 5 min interval of 7 incubation on ice. The lysate was centrifuged, and the supernatant was used to isolate 8 RNA following the instructions of the kit. RNA samples were treated twice with an 9 RNase-free DNase set (Qiagen) as per the manufacturer's instruction. Removal of 10 genomic DNA was verified by PCR using 0.1 µg RNA as template.

11 cDNA synthesis and reverse transcriptase PCR (RT-PCR)

12 For each reaction of cDNA synthesis, one microgram of RNA was used as the 13 template for reverse transcription with iScript cDNA Synthesis Kit (Bio-Rad). 14 Subsequently, cDNA was amplified by quantitative PCR with specific primers (Table S1) 15 using iQ SYBR Green Supermix and iQ Single Color Real Time PCR Detection System 16 (Bio-Rad) according to the manufacturer's instruction. Assays were conducted in 17 triplicates of 25 µl reaction volume using 96-well plates as previously described (1). Relative gene expression was analyzed using PFAFFL method (2) and fold changes were 18 19 normalized to gyrA. A two-fold or greater change in mRNA levels of the mutant relative 20 to the D39 WT was considered significant.

21 **References**

22	1.	Thornton J, McDaniel LS. 2005. THP-1 monocytes up-regulate intercellular
23		adhesion molecule 1 in response to pneumolysin from Streptococcus pneumoniae.
24		Infect Immun 73: 6493-8.
25	2.	Pfaffl MW, Horgan GW, Dempfle L. 2002. Relative expression software tool
26		(REST) for group-wise comparison and statistical analysis of relative expression
27		results in real-time PCR. Nucleic Acids Res 30:e36.
28	3.	Krogh A, Larsson B, von Heijne G, Sonnhammer EL. 2001. Predicting
29		transmembrane protein topology with a hidden Markov model: application to
30		complete genomes. J Mol Biol 305:567-80.

Purpose	Primer	Sequence (5' to 3')
Mutagenesis		
arcD	Pr1615	AAGGTAGCATCGGTTTCTGGTTG
	Pr1616	ACACTCTAGATTTGTTTTTCCTCCTGATGTCTAA
	Pr1668	ATCGCTCGAGTATTGTAGTGACCATCGCCCTTCT
	Pr1669	TGGAGAGGAGCAAGAATGGTAGC
arcT	Pr1670	TGAATCCATTTGCGACAGG
	Pr1671	ACACTCTAGATCATGGAATCACCTCACTCACTA
	Pr1617	ATCGCTCGAGGCTAGTCAAGGTATCAATGCTGTC
	Pr1618	GATAGACGGCTTCGGCATAA
Janus cassette	Pr1097	GAGATCTAGAACCGTTTGATTTTTAATGGATAATG
	Pr1098	GAGACTCGAGCCTTTCCTTATGCTTTTGGAC
RT-PCR		
cps2A	Pr2809	ATCACGTTCACAGAAAGTGAAGC
-	Pr2810	CTAGTAGGACTAACGCAGTTACC
cps2B	Pr2811	TGATGTAGATGACGGTCCCAAGT
	Pr2812	TTCTGCTATCTTCTCTTCCGGAG
gyrA	Pr2783	CGTTACATGCTTGTAGATGG
	Pr2784	TGGCATCATAGTTATCAACG
Other primers		
gyrA promoter	Pr2774	TTTTGTCGACCCAAGCTCTTGTGCAATTCC
-	Pr2775	TTTTGGATCCGCATGCGGTACCCATTAATAAATGCCTCATTT
arcD ORF	Pr2704	ACACGGATCCAGTGAAAAAGCTAAAAAAGGG
	Pr1673	CGGGATCCTCATGGAATCACCTCACTCACTA

33 Legends of supplemental figures

34 Fig. S1. Genetic organization and predicted functions of S. pneumoniae arc locus. (A) 35 Schematic representation of *arc* locus in *S. pneumoniae*. The putative function of each 36 gene is indicated. The size of each protein (in amino acids) is shown above, and the space 37 of each intergenic region (in base pairs) is also marked between the adjacent genes. (B) 38 Predicted functions of *arcABCD* genes in *S. pneumoniae* based on published homologs. 39 Purple, gray, and yellow colors denote Gram-positive S. pneumoniae, capsule, and proteins, respectively. Arg, Cit, and Orn denote arginine, citrulline, and ornithine, 40 41 respectively.

42 **Fig. S2.** Infection of A549 cells with the D39 WT and its $\Delta arcD$ mutant. Gram stain 43 showing bacterial association with A549 cells that were seeded on coverslips and 44 observed under microscope (1000 ×).

45 **Fig. S3**. qRT-PCR analysis of *cps2A* and *cps2B* genes compared between the D39 WT 46 and its $\Delta arcD$ mutant. Data shown are the means of two independent experiments. Error 47 bars denote the SEM.

48 Fig. S4. Topological model showing the predicted structure of ArcD protein in the
49 cytoplasmic membrane. This model was generated using TMHMM program
50 (<u>http://www.cbs.dtu.dk/services/TMHMM</u>) based on a hidden Markov model (3).

Fig. S5. Growth of pneumococci in complete CDM (JRH Bioscience). The D39 WT and its $\Delta arcD$, $\Delta arcT$, and $\Delta arcDT$ mutants were inoculated in 10 ml of CDM broth and were monitored hourly at OD₆₂₀ for 15 h. Data shown are the means of three repeat experiments. Error bars denote the SEM.

Α

57 Fig. S2

60

59 Fig. S3

