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Supplementary Note

Development of a SChLAPI ISH assay

To optimize an ISH assay for SCALAPI, we first employed a panel of samples previously
analyzed for SChLAPI expression by qPCR. For this, we validated our ISH assay on 9
FFPE samples (3 PCAs positive for SChLAPI, 3 PCAs negative for SChLAPI, and 3
benign tissues) with matched qPCR data, and we observed high concordance between our
qPCR and ISH results (Supplementary Fig. 4a). Following this confirmation of our
method, we used ISH to analyze a tissue microarray (TMA) repressing 22 metastatic
PCAs and 8 localized PCAs (Supplementary Fig. 4b). These data were used to generate
the images used in Fig. 1.

Development of prostate cancer gene signatures from RNA-Seq data

To analyze the clinical significance of SChLAPI, we evaluated its association to
aggressive gene signatures. We used publically available data from the Oncomine
database to extract prostate cancer clinical concepts. Next, we evaluated the statistical
association between each dataset in our clinical concept compendium with the gene
signatures derived from correlation analysis. For this analysis, we also included
signatures from our RNA-Seq cohort delineating localized cancer vs. benign tissues, high
grade localized prostate cancer (Gleason >8 vs. Gleason 6), and metastatic vs. primary
tumors (Supplementary Fig. 5 and Supplementary Table 3). Here, we used statistical
modeling to identify genes that distinguish these sample sets from each other. To
evaluate the overlap of the SChLAPI gene signature with these clinical gene signatures,
we computed odds ratios, p-values, and g-values for each comparison (one-sided Fisher’s
exact test, Methods).

SChLAPI as a prognostic biomarker

Our analysis of SChLAPI utilizes a clinical cohort of patients with high-risk features,
such as highly elevated PSA levels. Thus, our data suggest that SCALAPI expression
retains its prognostic utility for defining a subgroup of patients more likely to experience
BCR, CP, and PCSM even in high-risk patients, where most individuals experienced
disease recurrence within ten years post-prostatectomy. We further noted that SChALAP]
expression is a particularly strong prognostic indicator for CP and PCSM, which is
important, as it is known that patients who develop BCR do not necessarily progress
further to lethal or clinically significant recurrent disease: that is, many patients who
experience BCR nevertheless die with prostate cancer but not from it'>. As such, CP and
PCSM represent more stringent criteria to define aggressive prostate cancer. Thus, our
data suggest that SChLAPI is a powerful biomarker of lethal disease.

Note on human research samples

We employed two sets of prostate cancer samples for this study. For the University of
Michigan cohort, patients provided informed consent and enabled biomedical research
using their tissue samples according to an institutional review board-approved protocol as
detailed in the Methods section. Metastatic prostate cancer samples were obtained
through the Rapid Autopsy Program operated through the University of Michigan
Prostate Cancer Specialized Program Of Research Excellence (S.P.O.R.E.).




For the Mayo Clinic cohort, eligible patients provided informed consent according to an
institutional review board-approved protocol as detailed in the Methods section. Briefly,
men with high risk disease were selected for the current student as defined by cancer
histology, PSA values, and local invasion of adjacent structures by the cancer.
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Supplementary Figure 1: Nomination of SChALAPI. (a) A gene desert on chr2q31
between CWC22 and UBE2E3 contains multiple transcripts that are upregulated in
prostate cancer, including the predicted outliers PCAT-109 and PCAT-114. These
transcripts are unannotated in major gene annotation databases. (b) A comparison of
IncRNA outliers nominated by COPA, including their location, frequency in clinical
samples, their expression in tissues and cell lines, and whether they occur in metastatic

prostate samples.



a Splice acceptor not present

tgggtecacact GCTTTTATGAGCTGTAACACTCACCGCGAAGGTCCGCAGCTTCACTCCTGAAGCCAGCGAGACCACGAGCCTACTGGGAGGAACGAA

Exon 1] CAACTCCCGACGCGCCGCCTTAAGAGCTGTAACACTCACCGCGAAGGTCTGCAGCTTCACTCCTGAGCCAGCGAGACCACGAACCCACCAGAAG
GAAAAAACTCCGAACACATCTGAACATCAGAAGCAACAAACTCCGGACACGCCGCCTTTAAGAACTGTAACACTCACTGCGAGGGTCCGCGGCT
TCATTCTTGAAGTGAGTGAGACCAAGAACCCACCAGTTCTGGACACAATTTCAAGTCCTCAGGgtgagtttteee. Splice donor
Splice acceptor

Exon 2 | clgtgttttettttcag TGCCATCAATATTCTGAAAATGGCAGTGATTTTTATTCAACCTGTATAAGGCACTTTCACCATGTACCTGGAAGCAACATCTACATC
I'T l-l I'CAGgtaatagtttce Splice donor
Splice acceptor )

Exon 3 | teaaccacattectag T TTTCCTCTGTCCACTATGAAGGACTTTGTGACCACATTCTGACTCTGATGAGATCCTGCCCAGAATTGACCTGAACCCCAATAAT
TCACCTTTCTCTCAGgtaatgtttica gpfice donor
Splice acceptor

Exon 4 I gtitettettetttcag TTTCTTCTACGCCAGGTGTGTGCTTAGCTCCATGACAAAAGGTGACAGCTTATTCTGCAGCACACACACATCATCAAAGTGGGAGG
TGGTGAGACTGGCACACTGACAGTCTGTCCTAGCAGATTTCAGCTCACACT Gglgagticeageatg Splice donor
Splice acceptor o o N .
ccctacaatgtaacagCAATCTAGATGCTGGGGACACAAGGTCCACCTTCCAGGAATATGGCCATGACACCAGAAATCACAAACATGATGAGAATGGAAT

Exon 5 | GACTGGGGAAGAAGTGCCAGATGCTTCACTTGTAAATGAAGACCCAGCCTCTGGGGATGCAGATACCACCTCCCTGAAGAAGCTGAATATCTGC
AGATAAGTGGAGTTCACCAATGATGAGGAGCGGGATGGAGAAAGGAGGTAGGGAGAGTCATCCAAGGAACATGAGCAACATGTTAAAAGgtaaga
agtga
SPIice acceptor

Exon 6 | teletactetactetagCCAAGTGGTTTAATTTCTGGAGATGGTGAACCCAAGAGGCTCTGCTGGGAGACAACAAAAATAATGAAGglaatggatgaaar
Splice acceptor I Splice donor
acaattgecticetag AATTGAACCAGAGTCCGGTGAATATCAGCACTGGGACCAGTTAGCAGAGGAAAAGGAAAGAATAAAAGCGAAAAGAATGAAGA
GTCATATGATTACCAACTTTTCCTTTTTCATATAAATTGAGTGTATATGGGTCTGGAACAACCTGAATTTCCATCAAGTCCTGGCTAACCTCATTA
TGTCCTATGAATATTTTTGACTAATCCCACTTTACATTAATCTGTATTGTGAATGTGGATATTGAATTATATTTCTTTGTAATCCCATTATCCAAAA
TCCAGTTCAGAGACTATTAGTTACCAATGTTCACTGTGAAGGAAAAAAAAAAAAAAAAAGCTCAGAGGATAAACATGTGATATGGTTTGGCTGT

Exon 7 | GTCCCCACCCAAATATCATCTTGAATTGTAGCTCCCATAATTCCCACGTGTTGTGGGAGGGACCCGGTGGGAGATAATTGTATCATGGGGGTGGT
TCCCCCATACTATTCTCATAGTAGTGAATAAGTCTCACAAAATCTGATGGTTTTATGAGGGAAAACCCCTTTCACCTGGTTCTCATTCTCTTCTCT
GGTCTGTCGTCATGTAAGACATGCCTTTCACCTTCTCCACCATGACTGTGAGGCCTCCCCAGCCACGTGGAACTGTGAGCCCATTAAACCTCTTTC
ACTTATAAATtacccagtctetgg Splice donor

Polyadenylation signal not present

Splice donor
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Supplementary Figure 2: Characterization of SChLAPI and its expression. (a) The
sequences of the seven exons found in the SChLAPI gene are detailed here, indicating the
presence of splice donor and splice acceptor sites. Interestingly, the promoter for
SChLAPI lacks a CpG island but instead has remnants of a long terminal repeat from an
ancestral retrovirus. Nucleotides comprising the SChLAPI gene are capitalized, whereas
genomic non-SChLAPI basepairs are in lower case font. (b) A schematic summarizing
the observed SChLAPI isoforms. A total of 8 isoforms were observed, with isoform #1
and isoform #2 accounting for >90% of transcripts. (¢) Abundance of SChLAP1 isoforms
by RT-PCR in LNCaP cells. Isoforms 1, 2, and 3 were cloned for experimental use. (d)
Prevalence of SChLAPI1 expression in localized prostate cancer tissues and metastatic
prostate cancer tissues. P value was determined by one-sided Fisher’s exact test. (e)
SChLAPI prevalence in molecular subtypes of prostate cancer. Prostate cancer samples
were stratified by available data for SPINK1 expression (determined by qPCR), PTEN
deletion or Chr8q amplification (determined by array CGH or ETS fusions (ERG and
ETV1 determined by break-apart FISH). Data have been previously published in*”.
SChLAP1 demonstrates a significant association with ETS fusion status and PTEN
deletion status in localized but not metastatic prostate cancer. SChLAP1 demonstrates no
association with Chr8q amplification of SPINK1 expression. P values determined by a

two-sided Fisher’s exact test.
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Supplementary Figure 3: SChLAPI is a non-coding gene.

(a) Analysis of the coding potential for the SChLAPI sequence across 29 mammals in all
3 reading frames using PhyloCSF. HOTAIR serves as a control non-coding gene.
GAPDH and B-actin serve as control coding genes. Scores above 0 suggest coding
potential whereas scores below 0 suggest no coding potential. (b) In vitro translation
assays for SChLAPI. Three isoforms of SChLAPI were cloned and tested for protein-
coding capacity using an in vitro translation assay. GUS is used as a positive control.
PCAT-1 and water serve as negative controls. Non-specific bands are indicated with an

asterisk. SChLAPI isoforms do not generate a protein in this assay.
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Supplementary Figure 4: SChLAPI expression is associated with cancer histology.
(a) Concordance between SChLAPI in situ hybridization data and SChLAPI qPCR data
for 9 tissue samples. A cut-off of 5 was used to determine positivity of SChLAPI by
qPCR and a cut-off of 3 was used to determine SChLAP-positive samples by ISH. (b) In
situ hybridization data for SChLAPI a panel of 8 localized prostate cancers and 22
metastatic prostate cancers. (¢) Boxplot analysis of SChLAP1 expression in Gleason
score. Left, SChLAP1 expression in Gleason 6, 7 or 8 samples. Middle, SChLAP1
expression when Gleason 7 is subdivided into 3+4 and 4+3 histology. Right, SChLAPI
expression in Gleason pattern 3 cancers (Gleason 3+3 and 3+4) compared to Gleason
pattern 4 cancers (Gleason 4+3 and 4+4). P values determined by Mann-Whitney U test.

(d) ROC analysis demonstrating the ability for SChLAP1 to discriminate between

Gleason pattern 3 and Gleason pattern 4 prostate cancer.
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Supplementary Figure 5: Generation of prostate cancer gene signatures from RNA-
Seq data.

(a) Heatmap analysis defines a gene expression signature from RNA-seq data
distinguishing benign prostate tissues and localized prostate cancer tissues. (b) Heatmap
analysis defines a gene expression signature from RNA-seq data distinguishing low grade
from high grade localized prostate cancer tissues. (¢) Heatmap analysis defines a gene
expression signature from RNA-seq data distinguishing localized prostate cancer tissues

from metastatic cancers.
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Supplementary Figure 6: SChLAPI expression stratifies prostate cancer patient
outcomes.
(a) Kaplan-Meier analysis of prostate cancer outcomes. Patients were stratified according

to their SChLAPI signature score. Signature scores at or above the 80" percentile were
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deemed ‘High’, and the rest ‘Low’. Statistical significance was determined by the log
rank test. Analysis of the 10-year overall survival probability for prostate cancer patients
from the Setlur et al. study®. (b) As in (a), Analysis of the biochemical recurrence
probability for prostate cancer patients from the Glinksy et al. study’. (¢) SChLAPI
expression in the Mayo Clinic cohort. Prostate cancer tissue samples were analyzed for
gene expression using Affymetrix Human Exon 1.0 ST GeneChips and probe 2518129
was used as representative of the SChLAPI gene. PAM unsupervised analysis (see
Methods) of the expression data clustered samples into SChLAPI-low and SChLAPI-
high expression cohorts. Notches indicate 95% confidence intervals for each group. (d)
SChLAPI predicts for biochemical recurrence in the University of Michigan cohort.
SChLAPI expression was measured using qPCR on a cohort of fresh-frozen prostate
cancer tissue samples from radical prostatectomy patients for whom follow-up for
biochemical recurrence was available. Statistical significance was determined by the log-

rank test.

13



a b . . Prostate cancer-
Biochemical recurrence Clinical progression C specific mortality
(Multivariate) (Multivariate) (Multivariate)
H X =0.106 :
StageTXN-| =g p =0.565 StageTxN- +—e = StageTxNo —-——— p=0541
1
1 _ ! =0.001 !
Stage T3 | g™ 0.0 Stage T3 : — b Stage T3- e p = 0.060
1 1
Gleason | ! | Gleason | ' _o ___ ©-0003 Gleason | ! ) p =0.005
810 | 1o || 810 | | 810 | !
PSA ! . p=0.028 PSA -Ib— p =0.866 PSA - _L._I p=0.550
1
1 ! 1
SMS | d==e p=0.121 SMS ':'— p=0438 SMS -ol— p=0.798
I
1 I =
SChLAP-1-{ | —#—— p=0004 SCHLAP-1- | ——#——— p=0.003 SChiAP-1] | g P=0.006
1 T - T T T T T T :
024 68101214 024 6 8101214 0 2 4 6 8 1012
Hazard Ratio Hazard Ratio Hazard Ratio
d f Prostate cancer-
Biochemical recurrence e Clinical progression specific mf)rtality
(Univariate) (Univariate) (Univariate)
[ ! L ! p=0.091
Stage TxN- & < p=0.063 Stage TxN- : ag P00V Stage TxNH : <
1
I I
Stage T3 4 : — P = 0,001 Stage T3 | = P = 0.002 Stage T3 :_._ p=0035
1 I
Gleason score| ' Gleason score| ! 1 Gleason score| ! ~0.002
8-10 B -:-0— p=0314 8-10 = :ﬁ— p=0.006 810 : ———t—— s 00
I
PSA | 4 p=0753 PSA | —r——— p=0541 PSA - =t p=0.394
1 I |
I
SMS { 1= p=0275 SMS - = p=071 SMS - 4= p=0761
! I : 0.001
SChLAP-1{ e p=0048 SChLAP-14{ | ——4———— p<0001 SChLAP-H - p=0
T - T L T T L T T T T T
0 2 4 6 8 10 0 2 4 6 8 0 2 4 6 8 10
Hazard Ratio Hazard Ratio Hazard Ratio

Supplementary Figure 7: SChLAPI expression is an independent predictor of
patient clinical parameters. (a-f) Multivariate and univariate analyses for SCALAPI
and disease outcomes. (a-c) Multivariate survival analyses demonstrate that SCALAPI is
an independent predictor of prostate cancer biochemical recurrence (a), clinical
progression (b), and prostate cancer-specific mortality (c¢) following radical
prostatectomy. (d-f) Univariate survival analyses for SChLAPI for biochemical
recurrence (d), clinical progression (e), and prostate cancer-specific mortality (f) as in (a-

¢). For these analyses, clinical significance was adjusted for confounding adjuvant



treatment, and Gleason score was dichotomized between those samples <7 >8. Red
diamonds indicate the median hazard ratio for each factor and blue lines indicate the 95%

confidence interval.
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Supplementary Figure 8: In vitro knockdown and overexpression of SChLAPI. (a)
22Rv1, LNCaP, and Dul45 cells were treated with siRNAs against SChLAPI. qPCR
indicates relative knockdown efficiency in these cell lines. Error bars represent S.E.M.

(b) Cell proliferation assays for LNCaP, 22Rv1, and Dul45 treated with SChLAPI
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siRNAs or non-targeting negative controls. EZH2 siRNA serves as a positive control.
Error bars indicate S.E.M. An asterisk (*) indicates p < 0.05 by Student’s t-test. Error
bars represent S.E.M. (¢) Expression of SChLAPI in 22Rvl cells treated with non-
targeting, siRNA #2 for SChLAPI, or siRNA #2 with exogenous overexpression of
SChLAPI isoform 2. (d) Boyden chamber invasion assay data for 22Rv1 cells treated
with non-targeting, siRNA #2 for SChLAPI, or siRNA #2 with exogenous
overexpression of SChLAPI isoform 2. Data are represented as absorbance at 560nM.
Error bars represent S.E.M. (e) Overexpression of SChLAPI isoforms 1-3 in RWPE cells
was confirmed using qPCR, which demonstrated that the overexpression resulted in
comparable levels of SChLAPI transcript to LNCaP cells that express this gene
endogenously. HMBS serves as a negative control. Error bars represent S.E.M. (f) Cell
proliferation assays for RWPE cells overexpressing SChLAPI isoforms. No significant

change in cell proliferation is observed. Error bars represent S.E.M.
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Supplementary Figure 9: Knockdown of SChLAPI delays tumor engraftment but

not tumor growth Kinetics. (a) Knockdown efficiencies for the shRNA knockdown of

SChLAPI in LNCAP and 22Rv1 cells. Error bars indicate S.E.M. (b) Histolopathology
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of murine tumors formed by intracardiac injection of 22Rv1 shNT or 22Rv1 sh-SChLAP1
cells. Images are taken from the lungs and livers or mice with tumors. Slides are stained
with H&E. (¢) The fraction of mice surviving following subcutaneous injection of the
22Rv1 cell lines. This plot represents tumor-specific death of mice sacrificed when the
tumor volume reached the maximum allowable volume. (d) 22Rv1 cells infected with
lentivirus for shNT, sh-SChLAPI #1, and sh-SChLAPI #2 were injected subcutaneously
in mouse flanks and tumor growth was monitored by caliper measurements. N = 10 mice
for shNT cells, n = 12 mice for sh-SChLAPI #1 cells, n = 9 mice for sh-SChLAP1 #2
cells. Absolute tumor volume for 22Rv1 shNT, sh-SChLAPI #1 and sh-SChLAPI #2
cells. Errors bars represent S.E.M. (e) Percent of mice with tumor engraftment over
time. Knockdown of SChLAPI delays the onset of tumor engraftment. (f) The percent
change in tumor volume per cell line normalized to the time of tumor engraftment.
Errors bars represent S.E.M. (g) Tumor volume normalized to the time of tumor
engraftment. Errors bars represent S.E.M. (h) Immunohistochemistry staining for Ki67
in 22Rv1 shNT and sh-SChLAPI liver metastases. (i) Summary of Ki67 tumor staining
for 22Rv1 shNT and sh-SChLAPI murine tumors show significant difference in Ki67

staining intensity.
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Supplementary Figure 10: SChLAPI and the SWI/SNF complex regulate gene
expression in an opposing manner. (a) Transcriptome profiling following SChLAPI
knockdown in vitro. Differentially expressed genes were determined by SAM analysis
and represented as a heatmap. (b-¢) Gene set enrichment analysis (GSEA) of LNCaP and
22Rv1 cells treated with SChLAPI siRNAs. GSEA results indicate that SChLAPI
knockdown results are inversely correlated with SWI/SNF-associated genes using data
from Shen et al. (b) or using RNA-seq data (c). (d) Comparison of positively correlated
BRM-associated gene signatures in prostate cancer. The BRM-derived signature from
RNA-seq samples was compared to the Shen et al. signature by GSEA. A highly
significant overlap between the signatures is observed. (e) Comparison of negatively
correlated BRM-associated gene signatures in prostate cancer. The BRM-derived
signature from RNA-seq samples was compared to the Shen et al. signature by GSEA. A
highly significant overlap between the signatures is observed. (f) Knockdown efficiency
of SNF5 siRNAs in 22Rv1 and LNCaP. Error bars represent S.E.M. (g) Gene expression
changes nominated by microarray analysis of SChLAP1 knockdown samples are
confirmed by qPCR in LNCaP cells treated with SChLAP1 siRNA #1. B-actin serves as
a control. (h) Gene expression changes nominated by microarray analysis of SNF5
knockdown samples are confirmed by qPCR in LNCaP and 22Rv1 cells. BRG1 serves as
a control. (i) GSEA analysis of SCALAPI and SNF5 knockdowns. Across two cell lines
(LNCaP and 22Rv1), SChLAPI knockdown had the opposite effect on gene expression as
knockdown of SNF5. Here, a positive GSEA normalized enrichment score (NES)
indicates genes up-regulated upon SChLAPI knockdown, and a negative GSEA NES

indicates genes down-regulated upon SChLAPI knockdown. (j) GSEA results from
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comparisons of SChLAPI and SNF'5 knockdown in 22Rv1 cells. SChLAPI was knocked-
down using siRNAs in 22Rv1 cells. Gene expression changes were compared using
GSEA to expression changes observed using SNF5 siRNAs in LNCaP or 22Rvl1 cells.
The enrichment plots of these comparisons are shown. (k) GSEA results from
comparisons of SChLAPI and SNF5 knockdown in LNCaP cells. SChLAPI was
knocked-down using siRNAs in LNCaP cells. Gene expression changes were compared
using GSEA to expression changes observed using SNF5 siRNAs in LNCaP or 22Rv1

cells. The enrichment plots of these comparisons are shown.
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Supplementary Figure 11: SChLAPI and SNFS5 co-regulate genes associated with
prostate cancer aggressiveness. The top 10% of up- or down-regulated genes for
SNF5-knockdown or SChLAPI1-knockdown microarrays in 22Rvl and LNCaP were
intersected to generate an overlapping gene signature for these knockdown experiments.
This signature was analyzed for overlap with the Taylor Prostate 3 Oncomine Concept®
for disease aggressiveness. Left, Venn diagrams demonstrating overlap of SChLAP1 and
SNF5-knockdown experiments. Right, a heatmap visualization showing statistical (q <
0.05) overlap of gene signatures from the SNF5 and SChLAP1 knockdowns with prostate
cancer aggressiveness concepts from Oncomine. Odds ratios from the comparisons with

q-values <0.05 are shown. One-sided Fisher’s exact tests were used for significance.
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Supplementary Figure 12: SChLAPI and SNFS5 expression level and RNA-protein

binding of SChLAPI with SNF5. (a) Relative abundance of SChLAP1 compared to the

SWI/SNF complex in human prostate tissues.

qPCR cycle threshold (Ct) values for

24



SChLAPI1, SNF5, GAPDH, and HMBS are shown. SChLAPI1-positive samples display
Ct values in the low 20s, which is consistent with the abundance of SNF5. (b) Western
blot analysis of SNF5 protein abundance in prostate cancer cells either overexpressing
SChLAPI (RWPE) or with stable knockdown of SChLAPI (22Rv1l, LNCaP). (c¢)
SChLAPI binding to SNF5 protein by UV-crosslinked RIP assays using UV at 254nM.
(d) Co-immunoprecipitation of SChLAP1 with SNF5 using a second independent
antibody. The inset Western blot confirms efficiency of the SNF5 immunoprecipitation.
(e) Expression of AK093002 and LOC145837 in prostate cell lines. qPCR data were
normalized to the average of GAPDH + B-actin and compared to PREC primary non-
immortalized prostate cells. Error bars indicate S.E.M. Expression of these genes in
RWPE is comparable to their expression in 22Rvl. (f) RNA-IP experiments for
SNRNP70 in LNCaP and 22Rv1 shows binding of SNRNP70 to the Ul ncRNA,
indicating specificity of the RNA-IP experiments. Error bars indicate S.E.M. (g) Control
SNRNP70 experiments in the RWPE-SChLAPI overexpression models. Enrichment of
Ul is shown as a control for SNRNP70 IP experiments. (h) Pulldown of SChLAP1
RNA. RWPE-SChLAP1 isoform #1 cells were treated with biotinylated SChLAPI,
TERC or LacZ RNA probes according to the ChIRP protocol’. Quantification of RNA

pulldown efficiency by qPCR is shown. Error bars indicate S.E.M.

25



a

IB: SNF5

C

Coverage (reads per million) Q.

Coverage (reads per million)

RWPE ChIP
IP:  Input 1gG SNF5

¢« -

-
- ‘. SChLAP1 Isoform 1

= E_ SChLAP1 Isoform 2

(on

00

L}
-4 -2 0 2
log2 Fold Change

chr19:13,105,000-13,109,000

l kb —m——

—_
o

i
i

0] cennaih, R o111 S

Coverage (reads per million)

N N N N
7, =] [0, =] [0, =] wn

RWPE LaCZ
= Genome

2 o = ChIP(p -value)
< 6.7 %
£ o 5.7% (1.5e =322)
2 ° 41 % (2.0e -322)
S (3.5e =322)
£ v -

1.7%
~ o 0.9 %
e~ <=1000 bp <=2000 bp
- = Genome RWPE SChLAP1 Isoform #1

| = ChIP(p -value)

- 41%
34% (14e —120)
(2.1e 155

22%
(6.3e —162)

Percentage %
2 3 456 7
1

- 4 09%
(=}
<=1000 bp <=2000 bp <=3000 bp
N
~ | ® Genome RWPE SChLAP1 Isoform #2
SR ChIP (p —value)
2 6.9%
g @ ] 59% (1.5e —322)
£ o4 43% (2.0e 322
8 (3.5¢ -322)
& ¥
i 1.6 %
o 09%
o
<=1000 bp <=2000 bp <=3000 bp

chr1:29,562,000-29,565,500
1 kb———

Y " W

| B, el o e

:‘AM

[0 p— [P NS S
NFIX = PTPRU==
chr7:66,385,000-66,387,500 g chr17:58,118,500-58,122,500
5] kb ———— 2 3likb—y
A : _A_
3 n
®
I &
o
: 8
0 () F— —

TMEM248

LacZ Ml SChLAP1Iso.1 [ SChLAP1Iso.2 Il

— i
MIR4737 =

IgG Il

26



Supplementary Figure 13: SChLAPI expressed disrupts genomic binding of SNFS5.
(a) ChIP for SNF5 protein followed by Western blot. (b) Bar plots showing enrichment
for SNF5 ChIP-Seq reads at RefSeq gene promoters across the RWPE-LacZ, RWPE-
SChLAPI-Isoform-1 and RWPE-SChLAPI-Isoform-2 samples. Blue bars indicate
percentage of genomic DNA and red bars indicate percentage of all ChIP-Seq reads in
each sample along with the p-value corresponding to the statistical significance of the
difference between the blue and red bars. The CEAS software was used to generate these
plots and compute the enrichment. (¢) Histogram showing the relative log, fold-change
between RWPE-LacZ and RWPE-SChLAPI (average of both isoforms) coverage across
6,235 genome-wide peaks. (d) Example ChIP-Seq binding sites for SNF5 on gene
promoters. SNFS5 binding is higher at gene promoters in RWPE-LacZ cells and decreased

upon SChLAPI overexpression.
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Supplementary Figure 14: Confirmation of SNFS5 target genes by ChIP.

(a) ChIP for SNF5 in 22Rv1 shNT and 22Rv1 sh-SChLAP1 #2. ChIP-PCR for 9 of 12
target genes of SNF5 in RWPE demonstrates an increase in SNF5 binding upon
SChLAP1 knockdown. KIAA0841, Chr6 Alu, and Chr 2 Alu serve as negative controls.
Data are represented as percent change in genomic binding relative to shNT after being
normalized to IgG controls. The inset western blot indicates immunoprecipitation
efficiency for SNF5. (b) Heatmap showing the showing the gene expression of RWPE-
SChLAPI cells (Isoform 1 is labeled as Iso-1 and Isoform 2 is labeled as Iso-2) across
250 genes that exhibited a >2-fold decrease in SNF5 binding upon SChLAPI
overexpression. Gene expression is shown as log, fold-change relative to RWPE-LacZ.

(c) A schematic of SChLAPI function in prostate cancer.
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