Genotype Strain name Description Source or reference $mc^2 155$ Wild type ept1 (1) $mc^{2}155 \ ligD:: ligD(\Delta 202-2391)$ Mgm140 $\Delta ligD$ (2) Mgm154 $mc^{2}155 ku::ku(\Delta 90-947)$ (2) Δku Mgm177 $mc^{2}155 recBCD::recC(\Delta 76 \Delta recBCD$ (3) 3264) $\Delta recB \Delta recD$ Mgm199 $mc^{2}155 \ recA::recA(\Delta 49-1014)$ $\Delta recA$ (3) Mgm1601 Wild type; *lacZ*(I-SceI) with mc²155 *attB*::pRGM9 This work 'no' homology mc²155 attB::pRGM10 Mgm1602 Wild type: *lacZ*(I-SceI) with This work 'nearby' homology mc²155 *attB*::pRGM9 Mgm1603 Wild type; *lacZ*(I-SceI) This work substrate with 'far away' MSMEG 5848 Ω (1425: lacZhomology ΔN, MSMEG 5848(706-1425)) Mgm1604 Δku ; *lacZ*(I-SceI) with 'no' Mgm154 attB::pRGM9 This work homology Mgm1605 $\Delta ligD$; *lacZ*(I-SceI) with 'no' Mgm140 *attB*::pRGM9 This work homology Mgm199 attB::pRGM9 Mgm1606 $\Delta recA$; *lacZ*(I-SceI) with 'no' This work homology Mgm154 attB::pRGM10 Mgm1607 Δku ; *lacZ*(I-SceI) with This work 'nearby' homology Mgm140 *attB*::pRGM10 Mgm1608 $\Delta ligD$; *lacZ*(I-SceI) with This work 'nearby' homology $\Delta recA$; *lacZ*(I-SceI) with Mgm199 *attB*::pRGM10 Mgm1609 This work 'nearby' homology Mgm177 attB::pRGM9 Mgm1610 $\Delta recBCD$; *lacZ*(I-SceI) with This work 'no' homology $\Delta recBCD$; *lacZ*(I-SceI) with Mgm177 *attB*::pRGM10 Mgm1611 This work 'nearby' homology Mgm1964 $mc^{2}155 adnAB::adnA(\Delta 81-$ This work $\Lambda adnAB$ 3138) $adnB(\Delta 1-3255)$ Mgm1965 $\Delta adnAB \Delta recBCD$ Mgm177 adnAB::adnA(Δ81-This work 3138)*adnB*(Δ1-3255) Mgm1612 $\Delta adnAB$; *lacZ*(I-SceI) with Mgm1964 attB::pRGM9 This work 'no' homology $\Delta adnAB \Delta recBCD; lacZ(I-$ Mgm1965 attB::pRGM9 Mgm1613 This work SceI) with 'no' homology Mgm1964 attB::pRGM10 $\Delta adnAB$; lacZ(I-SceI) with Mgm1614 This work 'nearby' homology Mgm1615 $\Delta adnAB \Delta recBCD; lacZ(I-$ Mgm1965 attB::pRGM10 This work SceI) with 'nearby' homology mc²155 *attB*::pMV306kan Mgm1616 Wild type; pMV306kan This work Mgm1964 attB::pMV306kan Mgm1617 $\Delta adnAB$; pMV306kan This work Mgm1965 attB::pMV306kan Mgm1618 $\Delta adnAB \Delta recBCD;$ This work pMV306kan Mgm1619 $\Delta adnAB; adnAB$ Mgm1964 attB::pRGM23 This work

Table S1: Bacterial Strains

Table S1: Bacterial Strains

	complemented		
Mgm1620	$\Delta adnAB \Delta recBCD; adnAB$	Mgm1965 attB::pRGM23	This work
	complemented		

Strain table references

- 1. Snapper SB, Melton RE, Mustafa S, Kieser T, & Jacobs WR, Jr. (1990) Isolation and characterization of efficient plasmid transformation mutants of *Mycobacterium smegmatis*. Mol Microbiol 4(11):1911-1919.
- 2. Gong C, et al. (2005) Mechanism of nonhomologous end-joining in mycobacteria: a low-fidelity repair system driven by Ku, ligase D and ligase C. Nat Struct Mol Biol 12(4):304-312.
- 3. Stephanou NC, et al. (2007) Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks. J Bacteriol 189(14):5237-5246.

Plasmid name	Description	Genotype	Source or reference
pMV206hyg	Mycobacterial extrachromosomal plasmid (vector control)	hyg oriE oriM	(1)
pRGM1	I-Scel expression plasmid	P_{MOP} I-SceI hyg oriE oriM	This work
pRGM9	DSB repair substrate with 'no' homology	attP P_{MOP} lacZ (I-SceI) aph oriE	This work
pRGM10	DSB repair substrate with 'nearby' homology	attP P_{MOP} lacZ (I-SceI) aph lacZ ΔN oriE	This work
pRGM5	Plasmid used to generate the strain with 'far away' <i>lacZ</i> homology sequence	loxP hyg loxP oriE MSMEG_5848(706-1425) Ω (1425: lacZ-ΔN)	This work
pMV306kan	Mycobacterial integrative vector	attP int aph oriÉ	(2)
pRGM23	pMV306kan complemented with full-length <i>adnAB</i> operon under its native promoter	attP int aph oriE adnAB	This work

Table S2: Plasmids used in the study

Plasmid table references

- 1. Delogu G, et al. (2004) Expression and purification of recombinant methylated HBHA in *Mycobacterium smegmatis*. FEMS Microbiol Lett 239(1):33-39.
- 2. Kong D & Kunimoto DY (1995) Secretion of human interleukin 2 by recombinant *Mycobacterium bovis* BCG. Infect Immun 63(3):799-803.

	Mean % NHEJ frequency (SEM; p value vs WT)	Mean % GC frequency (SEM; p value vs WT)	Mean % SSA frequency (SEM; p value vs WT)	Mean % I-Scel inactivation (SEM; p value vs WT)
Strain				
WT	0.0055(0.00029)	0.017 (0.00058)	0.005 (0.0005)	0.017(0.00088)
∆ ku	0	0.0287 (0.002;	0.008(0.0011;	0.0002(0.00002
		p=0.0039)	p=0.083)	; p< 0.0001)
∆ligD	0	0.022	0.0011 (.00005;	0.0030(0.00058
		(0.0021; p=0.08)	p=0.001)	; p=0.0002)
∆recBCD	0.00093(0.00006	0.0457 (0.0012;	0	0.0033(0.00088
	; p=0.0001)	p<0.0001)		; p=0.0004)
∆ adnAB	0.0037(0.00067;	0.0091(0.0001;	0.0018 (0.0003;	0.023(0.0023;
	p=0.0651))	p=0.0002)	p=0.004)	p=0.0557)
∆recBCD∆adnAB	0.0067(0.00006;	0.0078	0	0.0268(0.00025
	p=0.0170)	(0.00003;p<0.0001)		; p=0.0004)
∆recA	0.0014(0.00008;	0	0.0005 (0.00007;	0.0057(0.00033
	p=0.0002)		p=0.0006)	; p=0.0003)

Gupta et al Table S3

Absolute repair frequencies calculated for all repair outcomes according to the formulas presented in the methods section. Each data cell contains the mean absolute repair frequency for three replicate experiments. In parentheses are the SEM and the p value compared to wild type, calculated by the Student's t-test.

Supplementary Figure Legends

Figure S1 Verification of I-SceI inactivation in surviving I-SceI transformants with unmodified I-SceI cleavage sites

A. I-SceI encoding plasmids were recovered from *M. smegmatis* colonies surviving I-SceI expression that demonstrated repaired I-SceI sites (I-SceI) or unmodified sites (I-SceI*1-5). I-SceI or I-SceI* plasmids were retransformed into *M. smegmatis* Mgm1601 and survival was quantitated. The top panel shows agar plates containing hygromycin-resistant colonies of *M. smegmatis* Mgm1601 transformed with I-SceI or I-SceI* and the bar graph in the bottom panel shows % survival on a logarithmic Y axis for each plasmid.

B. Sequencing of I-SceI* plasmids. The *I-SceI* gene was sequenced using an upstream primer which binds within the MOP promoter region in the I-SceI plasmid. For each plasmid, the mutation present in the DNA sequence and the corresponding protein alteration is listed.

Figure S2 Verification of repair outcomes by PCR

A. Verification of gene conversion (GC). The schematic shows the parental recombination construct with two internally deleted *lacZ* alleles, *lacZ*(I-SceI) and *lacZ*- Δ N, separated by a kanamycin-resistant cassette (green box). The GC outcome that reconstitutes a functional *lacZ* gene with a downstream kanamycin-resistance gene and *lacZ*- Δ N copy is also depicted. The positions of primers 1, 2, 3, 4 and 5, used to confirm the DSB repair outcomes after I-SceI cleavage are indicated by black rectangles. PCR products were resolved by agarose gel electrophoresis and visualized by ethidium bromide staining.

The first agarose gel in the bottom panel shows the PCR products obtained using primers 2 and 3. Lane 3 shows amplicons of sizes 850bp and 1350bp obtained from *lacZ*(I-SceI) and *lacZ*- Δ N loci, respectively, of the parental white colony that has not undergone I-SceI cleavage. Lanes 1, 2 and 4 show amplicons from 3 kanamycin-resistant blue colonies that arose after I-SceI cleavage. A single PCR product of the expected size (i.e. 1350 bp) was obtained from both the *lacZ* alleles (*lacZ*- Δ N and *lacZ*). The middle gel shows the PCR products obtained from the first *lacZ* allele exclusively using primers 1 and 2. Lanes 5, 6 and 8 represent amplicons of the expected size 1850bp from three GC outcomes and lane 7 shows the product of size 1350bp obtained from the parental construct. The third gel indicates the results of I-SceI digestion of the gel-purified PCR products attained from *lacZ*(I-SceI) in lanes 1-8. The 1350bp product (lanes 1, 2 and 4) and 1850 bp product (lanes 5, 6 and 8) obtained from the GC outcomes are resistant to I-SceI cleavage as they lack I-SceI sites, whereas the 850bp product (lane 3) and 1350bp product (lane 7) acquired from the parental colony show the expected cleavage pattern of 2 bands of sizes 450/350bp and 850/450bp respectively.

B. Confirmation of single-strand annealing (SSA). The schematic shows the outcome of SSA between the two parental *lacZ* alleles after DSB induction, resulting in the generation of the full-length functional *lacZ* gene with a concomitant loss of the intervening kanamycin-resistance gene. The SSA outcome was confirmed by PCR amplification using primers 4 and 5, which

generate an amplicon of 800bp from either the parental locus or a GC outcome but not from an SSA outcome. The PCR products were analyzed by agarose-gel electrophoresis as shown in the bottom panel. Lanes 1-3, PCR products from 3 independent blue kanamycin-sensitive colonies; lanes 4-6, PCR products from 3 independent blue, kanamycin-resistant colonies.

Figure S3 Influence of a distant homologous sequence on DSB repair.

- A. Reporter substrate with homology placed at a distance. The schematic shows the reporter strain wherein the homology donor lacZ- ΔN was positioned 1.2Mb away from the kanamycin-resistance cassette (green box) present downstream to the lacZ(I-SceI) copy.
- B. Table of DSB repair outcomes from cells bearing the construct pictured in (A) after transforming the strain (mgm1603) with the I-SceI plasmid *versus* vector, and selecting for transformants on plates containing hygromycin and X-gal. The % survival and repair outcomes for white and blue colonies from all the three wild-type strains with different reporter substrates (i.e. no homology, nearby homology, and far away homology) are tabulated.

Figure S4 Molecular outcomes of NHEJ in different strains.

The DSB generated after cleavage of the two I-SceI sites is shown at the top of the figure with left and right ends colored blue and red respectively. Molecular outcomes of NHEJ from WT, $\Delta recBCD$, $\Delta adnAB$, $\Delta adnAB\Delta recBCD$ and $\Delta recA$ backgrounds are listed, from both reporter strains (with and without homology). The number of deleted nucleotides from either end of the break is indicated. Nucleotides added by fill in synthesis of the 5' recessed ends are colored green and microhomology use is underlined.

Figure S5 Complementation of the clastogen sensitivity of the $\Delta adnAB$ strains by wild type adnAB.

The *M. smegmatis adnAB* operon along with 686bp of the 5' untranslated region containing the presumed native promoter was cloned in the mycobacterial integrative vector pMV306kan, to generate pRGM23. Complementation of the *adnAB* deletion phenotype was tested by integrating the kanamycin-resistant pRGM23 at the *attB* site in the chromosome of the *M. smegmatis* strains Δ *adnAB* and Δ *adnAB* Δ *recBCD*, and performing ionizing radiation (A) or hydrogen peroxide (B) killing assays. % survival is graphed on a logarithmic Y axis and the clastogen dose is indicated on the X axis. Each point on the graph represents the mean of biologic duplicates and error bars are SEM. When error bars are not visible, they are within the symbol. *M. smegmatis* strains tested in the assays are indicated next to curves in panel A.

- A. Ionizing radiation delivered by a cesium source. Pictures of untreated cells and cells after exposure to 222Gy are shown with the following strain legend: 1=wild type (mc²155) $2=\Delta adnAB$ (mgm1617) $3=\Delta adnAB$ + adnAB (mgm1619) $4=\Delta adnAB\Delta$ recBCD (mgm1618) $5=\Delta adnAB\Delta$ recBCD + adnAB (mgm1620).
- B. Hydrogen peroxide. Pictures of untreated cells and cells after exposure to 25mM hydrogen peroxide are shown with the same legend as panel A.

Mutant Plasmid	Gene Mutation /Nucleotide change ^a	Mutation in Protein ^b
I-Scel*-1	∆100-687	34fsX40
I-Scel*-2	139ins22bp	47fsX51
I-Scel*-3	∆355-362	119fsX128
I-Scel*-4	446ins27bp	148-149ins9a.a.
I-Scel*-5	∆75-149	Q24H∆26-50

a. numbering in relation to the 708bp coding sequence of I-Scel

b, Full length I-Scel endonuclease comprises 235 amino acids

fs, frameshift mutation

X, stop codon

ins, insertion (followed by the number of residues inserted)

a.a., amino acids

Gupta et al, Figure S2

Gupta et al, Figure S3

Β.

homology location	(%) Survival	% Blue	# White	NHEJ	Loss	# Blue	GC	SSA
-	0.029	0	60	15	45	0	0	0
+(Nearby)	0.044	50	70	16	54	75	60	15
+(Far away)	0.026	44	60	13	47	70	70	0

TACCATGGTAGGGATAACCCTAAGCTTATCATGGTACCATCCCAATAGGGATTCGAATAG

Gupta et al, Figure S4

Wild-type: no homology

1.

CCATCCGCTGTGG <u>TA</u>	Δ 39/ Δ 1	TCCCTAAGCTTATC
GGTAGGCGACACC		ATAGGGATTCGAATAG

2.

CTGCTGATGAAGCA	Δ 93/ Δ 287	AACGCGACCGCATGG
GACGACTACTTCGT		TTGCGCTGGCGTACC

3.

GCAGGATATCCTGCT	Δ 103/	TATCCCTAAGCTTAT
CGTCCTATAGGACG		AATAGGGATTCGAATA

4.

GATCGCGTCACACT	Δ 363/ Δ 511	GCCGCTGCGCGATCA
CTAGCGCAGTGTGA		CGGCGACGCGCTAGT

5.

CCCGAAACTGTGGA	Δ 331/ Δ 1068	AACAGCAACTGATGG
GGGCTTTGACACCT		TTGTCGTTGACTACC

6.

TACCATGGTAGGGA <u>TA</u>	Δ 1/ Δ 1	TCCCTAAGCTTATC
ATGGTACCATCCCT		ATAGGGAT TCGAATAG

7.

TACCATGGTAGGGATAA	$/\Delta 2$	TCCCTAAGCTTATC
ATGGTACCATCCCTAT		TAGGGAT TCGAATAG

CATCCGCTGTGGTA	∆39/∆435	ATAAGCGTTGGCA
GTAGGCGACA		<u>CCAT</u> TATTCGCAACCGT

TACCATGGTAGGGAT ATGGTACCATCCCT	∆2/	TATCCCTAAGCTTATC AATAGGGATTCGAATAG
10.		
ACGCAGGTCGCCAG TGCGTCCAGCGGTC	∆429/∆146	GCGCTGGATGGTAAG CGCGACCTACCATTC
11.		
AGCATCATCCT <u>CTG</u> TCGTAGTAGGA	∆149/∆431	GGTAATAAGCGTT <u>GAC</u> CCATTATTCGCAA
12.		
TACCATGGTAGGGAT ATGGTACCATCCCT	∆2/	TATCCCTAAGCTTATC AATAGGGATTCGAATAG
13.		
TCCTGTTATCCCTA AGGACAATAGGGAT	∆15/∆288	ACGCGACCGCATGGT TGCGCTGGCGTACCA
14.		
ATTTCAGCCGCGCT TAAAGTCGGCGCGA	∆521/∆81	TCGAAAGACTGGGCC AGCTTTCTGACCCGG
15.		
GGCACCGCGCCTTT CCGTGGCGCGGAAA	∆414/∆3	TCCCTAAGCTTATC AGGGATTCGAATAG
Wild-type: with	homology	(nearby)
1.		<u> </u>

CAGACGATGGTGCA	Δ 114/ Δ 6	CTAAGCTTATCGATG
GTCTGCTACCACGT		GAT TCGAATAGCTAC

GATCGCGTCACACT CTAGCGCAGTGTGA	Δ 363/ Δ 511	GCCGCTGCGCGATCA CGGCGACGCGCTAGT	
3.			
CTGCTGATGAAGCA GACGACTACTTCGT	Δ 93/ Δ 287	AACGCGACCGCATGG TTGCGCTGGCGTACC	
4 . ACAACTTTAACGCC TGTTGAAATTGCGG	$\Delta 77/\Delta 1143$	TCCATATGGGGATTG AGGTATACCCCTAAC	
5. CCCGAAACTGTGGA GGGCTTTGACACCT	Δ331/C/Δ1144	C CCATATGGGGATTG G GGTATACCCCTAAC	C insertion
6. CTGCTGATGAAGCA GACGACTACTTCGT	Δ 93/ Δ 1183	AGTATCGGCGGAATT TCATAGCCGCCTTAA	
7.			
GCTGATTGAAGCAGA CGACTAACTTCGTCT	Δ258/	TTATCCCTAAGCTTA AATAGGGATTCGAAT	
8. CGATGGTGCAGGATA GCTACCACGTCCTAT	Δ109/Δ631	CGAAGCAGCGTTGTT GCTTCGTCGCAACAA	
9.			
CAGGTCGCCAG <u>CGGC</u> GTCCAGCGGTC	Δ425/Δ1037	GACTTCCAGTTC <u>CCG</u> CTGAAGGTCAAG	
10.			
ACGTCGAAAACCCG TGCAGCTTTTGGGC	Δ341/Δ1018	CCCACACCAGTGGCG GGGTGTGGGTCACCGC	
11.			
CCCGAAACTGTGGA GGGCTTTGACACCT	Δ 331/ Δ 366	TCCCCGCCGCGTCCC AGGGGCGGCGCAGGG	

ACTTTAACGCCGTG TGAAATTGCGGCAC	Δ 74/ Δ 998	ACGCGCGAATTGAAT TGCGCGCTTAACTTA
13.		
GAGCAGACGATGGT CTCGTCTGCTACCA	Δ117/Δ513	CGCTGCGCGATCAGT GCGACGCGCTAGTCA
14.		
ATTTCAGCCGCGCT TAAAGTCGGCGCGA	$\Delta 521/\Delta 81$	TCGAAAGACTGGGCC AGCTTTCTGACCCGG
15.		
CGGCACCGCGCCTTT GCCGTGGCGCGGAAA	∆414/∆3	TCCCTAAGCTTATC AGGGATTCGAATAG
16.		
CGCCGACGGC <u>ACGCT</u> GCGGCTGCCG	$\Delta 270/\Delta 367$	CCCCGCCGCGTC <u>TGCGA</u> GGGGGCGCGCAG
∆adnAB∆recBCD:	no homology	
1.		
TATCCTGTTATCCC ATAGGACAATAGGG	Δ 17/ Δ 1208	CCGGTCGCCTACCAT GGCCAGCGGATGGTA
2.		
TCCATGTTGCCACT AGGTACAACGGTGA	∆548/∆543	TGGATAACGACATTG ACCTATTGCTGTAAC

GTGATGGTGCTGCG CACTACCACGACGC	∆666/∆428	CTGGGTAATAAGCGT GACCCATTATTCGCA
4.		
GTGATGGTGCTGCG CACTACCACGACGC	∆666/∆428	CTGGGTAATAAGCGT GACCGATTATTCGCA
5.		
ACACCGCCGACGGC TGTGGCGGCTGCCG	∆275/∆270	TACGCGTAGTGCAAC ATGCGCATCACGTTG
6.		
CCGAACCATCCGCT GGCTTGGTAGGCGA	Δ 45/ Δ 302	TCAGAAGCCGGGCAC AGTCTTCGGCCCGTG
7.		
ATGGTCTGCTGCT TACCAGACGACGA	∆207/∆326	TGGCAGCAGTGGCGT ACCGTCGTCACCGCA
8.		
GAGCAGACGATGGT CTCGTCTGCTACCA	∆117/∆1128	TGAATATCGACGGTT ACTTATAGCTGCCAA
9.		
GGCGTTAACCGTCA CCGCAATTGGCAGT	∆165/∆798	GCGATACACCGC CGCTATGTGGCG
10.		
TCTGCTGCTGCTG <u>AA</u> AGACGACGACGAC	∆199/∆716	AACCTTATTTAT <u>TT</u> TTGGAATAAATA
11.		
CGAACCATCCGCTG GCTTGGTAGGCGAC	∆44/∆512	CCGCTGCGCGATCAG GGCGACGCGCTAGTC

GGCAGGGTGAAACG	Δ 440/ Δ 689	ACCGCTCACGCGTG
CCGTCCCACTT		<u>TGC</u> TGGCGAGTGCGCAC

∆ adnAB:	no homolo	<u>ada</u>
1.		
TCGATGAGCGTGGT AGCTACTCGCACCA	∆386/∆120	9 CGGTCGCCTACCATT GCCAGCGGATGGTAA
2.		
AACCCGAAACTGTG TTGGGCTTTGACAC	∆333/ ∆11	.69 TCCTGGAGCCCGTCA AGGACCTCGGGCAGT
3.		
CATGGTAGGGATAA GTACCATCCCTATT	/∆997	GACGCGCGAATTGAA CTGCGCGCTTAACTT
4.		
CGAACCATCCGCTG GCTTGGTAGGCGAC	∆44/ ∆103	3 CGGCGACTTCCAGTT GCCGCTGAAGGTCAA
5.		
TATCCTG <u>TTATCCCTA</u> ATAGGAC	∆24/	AGCTTATCGA <u>AATAGGGAT</u> TCGAATAGCT
6.		
TATCCTG <u>TTATCCCTA</u> ATAGGAC	∆24/	AGCTTATCGA <u>AATAGGGAT</u> TCGAATAGCT

CATGGTAGGGATAA IN GTACCATCCCTATT	NSERT/1169	TCCTGGAGCCCGTCA AGGACCTCGGGCAGT
INSERTED SEQUENCE	: CAGGGT	
8.		
TACCATGG <mark>TAGGGA<u>TA</u> ATGGTACC<mark>ATCCC</mark>T</mark>	$\Delta 1 / \Delta 1$	TCCCTAAGCTTATCG ATAGGGATTCGAATAGC

9.

CCCGAAACTGTGGA <u>GC</u>	∆329/∆169	AAGCGGTGAAGT
GGGCTTTGACACCT		<u>CG</u> TTCGCCACTTCA

10.

ATCGCGTCACACT	Δ 363/ Δ 1209	CGGTCGCCTACCA
TAGCGCAGTGTGA		GCCAGCGGATGGT

<u>∆adnAB:</u> with homology

1.		
ATCGATGAGCGTGG	∆387/∆224	CCTGAACTACCGCA
TAGCTACTCGCACC		GGACTTGATGGCGT

2.

GAGCAGACGATGGT	△117/△224	CCTGAACTACCGCA
CTCGTCTGCTACCA		GGACTTGATGGCGT

3.

TACCATGGTAGGGATAA	$/\Delta 2$	TCCCTAAGCTTATC
ATGGTACCATCCCTAT		TAGGGAT TCGAATAG

TATCCTG <u>TTATCCCTA</u>	∆24/	AGCTTATCGA
ATAGGAC		AATAGGGATTCGAATAGCT

CCTGCTGATGAAGC GGACGACTACTTCG	∆94/∆2	ATCCCTAAGCTTATC TAGGGATTCGAATAG
6. CCATCCGCTGTGGT GGTAGGCGACACCA	∆40/∆814	GGCGCGGATTGGCCT CCGCGCCTAACCGGA
7. CATGGTAGGGATAA	INSERT/1169	TCCTGGAGCCCGTCA
GTACCATCCCTATT INSERTED SEQUENC	E: CAGGGT	AGGACCTCGGGCAGT
TCCTGTTATCCCTA AGGACAATAGGGAT	∆15/∆288	ACGCGACCGCATGGT TGCGCTGGCGTACCA
9.	ADDC / AD17	
ATGGTCTGCTGCTG TACCAGACGACGAC	Δ206/Δ31/	ATCAGCGCCTGGCAG TAGTCGCGGACCGTC
10.		
GCAGACGATGG <u>TGC</u> CGTCTGCTACC	Δ115/Δ507 <u>Α</u>	TGACGCCGCTGCGC . <u>CG</u> ACTGCGGCGACGCG
∧adnAB∧rec8CD•	with homolog	v

ACAACTTTAACGCC	∆77/∆366	TCCCCGCCGCGTCCC
TGTTGAAATTGCGG		AGGGGCGGCGCAGGG

GACAGTCGTTTGCC CTGTCAGCAAACGG	∆732/∆245	AGCGCCGGGCAACTC TCGCGGCCCGTTGAG
3. TGCGTGACTACCTA ACGCACTGATGGAT	∆473/∆48	ACTGCCAGGCATCAA TGACGGTCCGTAGTT
4 . TATCCTG <u>TTATCCCTA</u>	∆24/	AGCTTATCGA
ATAGGAC 5.	<u>A1</u>	<u>ATAGGGAT</u> TCGAATAGCT
CGCTGTGGTACAC <u>GC</u> GCGACACCATGTG	∆34/∆148	GCTGGATGGTAAGCC <u>CG</u> CGACCTACCATTCGG
6 . TGAAGCAGAAGCCT ACTTCGTCTTCGGA	∆253/∆366	TCCCCGCCGCGTCCC AGGGGCGGCGCAGGG
7. GATCGCGTCACACT CTAGCGCAGTGTGA	∆363/∆1142	TCCATATGGGGATTG AGGTATACCCCTAAC
8. TTGACCTGAGCGC <u>AT</u> AACTGGACTCGCG	∆709/∆2	CCCTAAGCTTATCGA TAGGGATTCGAATAGCT
9.		_
GTTATCTGGAAGAT CAATAGACCTTCTA	∆638/∆1	TATCCCTAAGCTTAT ATAGGGATTCGAATA
10.		
CGTTAACTCGGCG <u>TT</u> GCAATTGAGCCGC	∆788/	ATCCCTAAGCTTATC AATAGGGATTCGAATAG

TTCCATGTTGCCAC	∆549/∆430	GGGTAATAAGCGTTG
AAGGTACAACGGTG		CCCATTATTCGCAAC

12.

TGACCTGAGCGCAT	∆709/∆338	CGTCTGGCGGAAAAC
ACTGGACTCGCGTA		GCAGACCGCCTTTTG

<u>∆recBCD:</u> no homology

1.

GGTTACGGCCAGGA	∆744/∆463	AGGCTTTCTTTCACA
CCAATGCCGGTCCT		TCCGAAAGAAAGTGT

2.

AATGGTCTGCTGCT	$\triangle 207 / \triangle 182$	CCTCTGGATGTCGCT
TTACCAGACGACGA		GGAGACCTACAGCGA

3.

TATCCTGTTATCCCTA	∆24/	AGCTTATCGA
ATAGGAC		AATAGGGAT TCGAATAGCT

4.

CGAAACTGTGGAGC	∆329/∆126	AGCTCCTGCACT
GCTTTGACACCTCG		TCGAGGACGTGA

5.

CCGAACCATCCGCT	∆45/∆132	TGCACTGGATGGTGG
GGCTTGGTAGGCGA		ACGTGACCTACCACC

TGAAGCAGAAGCC	$\triangle 254/\triangle 276$	TAGTGCAACCGAACG
ACTTCGTCTTCGG		ATCACGTTGGCTTGC

TACCATGGTAGGGATAA ATGGTACCATCCCTAT	Α /Δ2	TCCCTAAGCTTATC TAGGGATTCGAATAG
8.		
GGTGCAGGATATCC CCACGTCCTATAGG	∆106/∆290	GCGACCGCATGGTCA CGCTGGCGTACCAGT
9.		
CGAAACTGTGGA <u>GCG</u> GCTTTGACACCT	∆328/∆122	GTGGAGCTCCTGCAC <u>CGC</u> CACCTCGAGGACGTG
10.		
TTTAACGCCGTGCG AAATTGCGGCACGC	∆72/∆124	GGAGCTCCTGCACTG CCTCGAGGACGTGAC
11.		
CCGAACCATCCGCT GGCTTGGTAGGCGA	∆45/∆366	TCCCCGCCGCGTCCC AGGGGCGGCGCAGGG
<u>∆recBCD</u> : with]	homology	

1.

GAGCATCATCCTCT	$\triangle 150 / \triangle 255$	AACTCTGGCTCACAG
CTCGTAGTAGGAGA		TTGAGACCGAGTGTC

GGCACGCTGA <u>TT</u>	△264/	ATCCCTAAGCTTATC
CCGTGCGACT		AATAGGGATTCGAATAG

CCCGAATCTCTATC GGGCTTAGAGATAG	∆307/∆366	TCCCCGCCGCGTCCC AGGGGCGGCGCAGGG
4. AGCGGCACCGCGCC <u>TT</u> TCGCCGTGGCGCGG	∆417/	ATCCCTAAGCTTATC AATAGGGATTCGAATAG
5. TACCATGGTAGGGAT ATGGTACCATCCCT	∆2/	TATCCCTAAGCTTATC AATAGGGATTCGAATAG
6. GGTCTGCTGCTGCT CCAGACGACGACGA	∆204/∆171	GCGGTGAAGTGCCTC CGCCACTTCACGGAG
7. ATCCCGAATCTCTA TAGGGCTTAGAGAT	∆309/∆1183	AGTATCGGCGGAAT TCATAGCCGCCTTA
8. GACGCGAATTATTT <u>TT</u> CTGCGCTTAATAAA	∆808/	ATCCCTAAGCTTATC AATAGGGATTCGAATAG
9. AACAACTTTAACGC <u>CG</u> TTGTTGAAATTGCG	∆74/∆1033	GCGACTTCCAGTTCA <u>GC</u> CGCTGAAGGTCAAGT
10. ACCCGAAACTGTGG TGGGCTTTGACACC	∆332/∆289	CGCGACCGCATGGTC GCGCTGGCGTACCAG

GGCACCGCGCCTTT	$\triangle 414 / \triangle 108$	CCATCATGGCCGCGG
CCGTGGCGCGGAAA		GGTAGTACCGGCGCC

GAGCAGACGATGGT	$\Delta 117/\Delta 513$	CGCTGCGCGATCAGT
CTCGTCTGCTACCA		GCGACGCGCTAGTCA

∆recA: no homology

1	
т	٠

AACTTTAACGCCGT	$\triangle 75 / \triangle 4$	CCCTA AGCTTATC
TTGAAATTGCGGCA		GGGAT TCGAATAG

2.

ATGTGCGGCGAGTT	$\triangle 486 / \triangle 881$	CCGCAAGAAAACTA
TACACGCCGCTCAA		GGCGTTCTTTTGAT

3.

CCATGGTAGGGATAA	/∆4	CCCTA AGCTTATC
AGTACCATCCCTATT		GGGAT TCGAATAG

4.

TACCATGGTAGGGA <u>TA</u> ATGGTACCATCCCT	$\Delta 1/\Delta 1$	TCCCTAAGCTTATC ATAGGGATTCGAATAG
5.		
GCTGTTCGCA <u>TTAT</u> CGACAAGCGT	Δ 59/	CCCTAAGCTTATC AATAGGGATTCGAATAG

TACCATGGTAGGGA <u>TA</u>	Δ 1/ Δ 1	TCCCTAAGCTTATC
ATGGTACCATCCCT		ATAGGGAT TCGAATAG

GAGCAGACGATGGT CTCGTCTGCTACCA	Δ 117/ Δ 97	TTCGTTTTATGCC AAGCAAAATACGG
8.		
CCGAACCATCCGCT GGGTTGGTAGGCGA	Δ 45/ Δ 245	AGCGCCGGGCAACT TCGCGGCCCGTTGA
9.		
ATCCTGTTATCCCT TAGGACAATAGGGA	Δ16/Δ92	GGCCTTTCGTTTT CCGGAAAGCAAAA
10.		
TACCATGGTAGGG ATGGTACCATCCC	∆4 /	TTATCCCTAAGCTTATC AATAGGGATTCGAATAG
11.		
TGTCGGTTTCC <u>GCG</u> ACAGCCAAAGG	∆235/∆561	TAAGTGAAGCGA <u>CGC</u> ATTCACTTCGCT
12.		
TTTATGGCAGGGTG AAATACCGTCCCAC	∆445/∆326	TGGCAGCAGTGGCGT ACCGTCGTCACCGCA
13.		
CCATCCGCTGTGG <u>TA</u> GGTAGGCGACACC	Δ 39/ Δ 1	TCCCTAAGCTTATC <u>AT</u> AGGGATTCGAATAG

$\Delta recA:$ with homology

ATCCCGAATCTCTA	Δ 307/	TTATCCCTAAGCTTATC
TAGGGCTTAGAGAT		AATAGGGATTCGAATAG
2.		
GTGCAGGATATCCT	Δ 105/ Δ 1183	AGTATCGGCGGAATT
CACGTCCTATAGGA		TCATAGCCGCCTTAA
3.		
GAACAACTTTAACG	Δ 79/ Δ 268	AGTACGCGTAGTGCA
CITGIIGAAAIIGC		TCATGCGCATCACGT
4.		
ATCGATGAGCGTGG	Δ 387/	TTAT <mark>CCCTA</mark> AGCTTATC
TAGCTACTCGCACC		AATAGGGATTCGAATAG
5.		
TACCATGGTAGGGATA	A $/\Delta 2$	TCCCTA AGCTTATC
ATGGTACCATCCCTAT		TAGGGATTCGAATAG
6.		
AACTGTGGAGCG <u>CC</u>	Δ 326/ Δ 370	CGCCGCGTCCCACGC
TTGACACCTCGC		<u>GG</u> GCGGCGCAGGGTGCG
7.		
TACCATGGTAGGGAT	∆2/	TATCCCTAAGCTTATC
ATGGTACCATCCCT		AATAGGGATTCGAATAG
8.		
TACCATGGTAGGG	$\triangle 4/$	TTATCCCTAAGCTTATC
ATGGTACCATCCC		AATAGGGATTCGAATAG

CGGTGATGGTGCTG GCCACTACCACGAC	∆668/∆470	CTTTCACAGATGTGG GAAAGTGTCTACACC
10.		
CAGACGATGGTGCA GTCTGCTACCACGT	Δ 114/ Δ 6	CTAAGCTTATCGATG GATTCGAATAGCTAC
11.		
TACCATGGTAGGGA <u>TA</u> ATGGTACCATCCCT	$\Delta 1/\Delta 1$	TCCCTAAGCTTATC ATAGGGATTCGAATAG

