Supporting information

Interfacial cavity filling to optimize CD4-mimetic

miniprotein interactions with the HIV-1 surface protein

Laurence Morellato-Castillo,^{†,∞} Priyamvada Acharya,^{§,∞} Olivier Combes,[†] Johan Michiels,[‡] Anne Descours,[†] Oscar H. P. Ramos,[†] Yongping Yang,[§] Guido Vanham,[‡] Kevin K. Ariën,[‡] Peter D. Kwong,[§] Loïc Martin,^{*,†} and Pascal Kessler^{*,†}

[†]CEA, iBiTec-S, Service d'Ingénierie Moléculaire des Protéines, F-91191 Gif-sur-Yvette, France [§]Vaccine Research Center, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, United States [‡]Institute of Tropical Medicine of Antwerp, Department Microbiology, Unit Virology, Nationalestraat 155, Antwerp 2000, Belgium

Table of contents

Page

Experimental section	. S 3
Table S1ELISA IC50 values, obtained by competition against sCD4 on gp120SF162 and gp120CN54the miniCD4s belonging to the M33 (16) series	. S7 , of
Table S2 Characterization of the M33 (16) miniCD4 series	. S8
Table S3 Characterization of the M48 (1) miniCD4 series	. S9
Table S4	. S10
Figure S1 Schematic diagram of the folding pattern of miniprotein 1	S11
Figure S2 Surface plasmon resonance (SPR) analysis of the binding of miniCD4s 2 and 13 to HIV-1 g	S12 p120
Figure S3 Comparison of 2 and 13 bound to the gp120 Phe43 cavity	. S13
Figure S4 Definition of the insert side chain of 13 bound to the gp120 Phe43 cavity	. S14
Figure S5 Extent of Phe43 cavity filling by 13	. S15
Figure S6	. S16

Experimental section

Loaded resins 6' to 13':

N-allyloxycarbonyl-O-(c-alkyl or c-aryl-alkyl chain)-L-tyrosine immobilized on Wang resin (6' to 13'). N-allyloxycarbonyl-O-(2-cyclopentylethyl)-L-tyrosine immobilized on Wang resin (6') was synthesized according to the procedure G1 using 3.06 g of 2-cyclopentylethanol (4 equiv, 18 mmol) with 4 equiv of PPh₃ and DIAD.

N-allyloxycarbonyl-O-(2-phenylethyl)-L-tyrosine immobilized on Wang resin (7') was synthesized according to the procedure G1 using 4.3 mL of 2-phenylethanol (8 equiv, 36 mmol) with 8 equiv of PPh_3 and DIAD.

N-allyloxycarbonyl-O-(2-cyclohexylethyl)-L-tyrosine immobilized on Wang resin (8') was synthesized according to the procedure G1 using 5 mL of 2-cyclohexylethanol (8 equiv, 36 mmol) with 8 equiv of PPh₃ and DIAD.

N-allyloxycarbonyl-O-(3-cyclohexyl-1-propyl)-L-tyrosine immobilized on Wang resin (9') was synthesized according to the procedure G1 using 3.42 mL of 3-cyclohexyl-1-propanol (5 equiv, 22.5 mmol) with 5 equiv of PPh₃ and DIAD.

N-allyloxycarbonyl-O-(4-benzyloxy-1-butyl)-L-tyrosine immobilized on Wang resin (10') was synthesized according to the procedure G1 using 6.44 g of 4-benzyloxy-1-butanol (41') (8 equiv, 36 mmol) with 8 equiv of PPh₃ and DIAD.

N-allyloxycarbonyl-O-(5-benzyloxy-1-pentyl)-L-tyrosine immobilized on Wang resin (11') was synthesized according to the procedure G1 using 6.98 g of 5-benzyloxy-1-pentanol (42') (8 equiv, 36 mmol) with 8 equiv of PPh₃ and DIAD.

N-allyloxycarbonyl-O-(((2-(benzyloxy)ethyl)thio)ethyl)-L-tyrosine immobilized on Wang resin (12') was synthesized according to the procedure G1 using 4.01 g of ((2-(benzyloxy)ethyl)thio)ethanol (43') (4.2 equiv, 18.9 mmol) with 4.2 equiv of PPh₃ and DIAD.

N-allyloxycarbonyl-O-((N-Cbz)-(S)-(+)-2-pyrrolidinemethyl)-L-tyrosine immobilized on Wang resin (13') was synthesized according to the procedure G1 using 4.98 g of (N-Cbz)-(S)-(+)-2-pyrrolidinemethanol (48') (4.7 equiv, 21.2 mmol) with 4.7 equiv of PPh₃ and DIAD.

N-(9-fluorenylmethoxycarbonyl)-O-(c-alkyl or c-aryl-alkyl chain)-L-tyrosine (33' to 40').

Loaded resins 15' to 22':

O-(2-cyclopentylethyl)-L-tyrosine immobilized on Wang resin (15') was synthesized according to the procedure G2 using resin 6'.

O-(2-phenylethyl)-L-tyrosine immobilized on Wang resin (16') was synthesized according to the procedure G2 using resin 7'.

O-(2-cyclohexylethyl)-L-tyrosine immobilized on Wang resin (17') was synthesized according to the procedure G2 using resin 8'.

O-(3-cyclohexyl-1-propyl)-L-tyrosine immobilized on Wang resin (18') was synthesized according to the procedure G2 using resin 9'.

O-(4-benzyloxy-1-butyl)-L-tyrosine immobilized on Wang resin (19') was synthesized according to the procedure G2 using resin 10'.

O-(5-benzyloxy-1-pentyl)-L-tyrosine immobilized on Wang resin (20') was synthesized according to the procedure G2 using resin 11'.

O-(2'-benzyloxyethyl-sulfid-2-ethyl)-L-tyrosine immobilized on Wang resin (21') was synthesized according to the procedure G2 using resin 12'.

O-[(N-benzyloxycarbonyl)-(S)-(+)-2-pyrrolidinemethyl]-L-tyrosine immobilized on Wang resin (22') was synthesized according to the procedure G2 using resin 13'.

Loaded resins 24' to 31':

N-(9-fluorenylmethoxycarbonyl)-O-(2-cyclopentylethyl)-L-tyrosine immobilized on Wang resin (24') was synthesized according to the procedure G3 using resin 15'.

N-(9-fluorenylmethoxycarbonyl)-O-(2-phenylethyl)-L-tyrosine immobilized on Wang resin (25') was synthesized according to the procedure G3 using resin 16'.

N-(9-fluorenylmethoxycarbonyl)-O-(2-cyclohexylethyl)-L-tyrosine immobilized on Wang resin (26') was synthesized according to the procedure G3 using resin 17'.

N-(9-fluorenylmethoxycarbonyl)-O-(3-cyclohexyl-1-propyl)-L-tyrosine immobilized on Wang resin (27') was synthesized according to the procedure G3 using resin 18'.

N-(9-fluorenylmethoxycarbonyl)-O-(4-benzyloxy-1-butyl)-L-tyrosine immobilized on Wang resin (28') was synthesized according to the procedure G3 using resin 19'.

N-(9-fluorenylmethoxycarbonyl)-O-(5-benzyloxy-1-pentyl)-L-tyrosine immobilized on Wang resin (**29**') was synthesized according to the procedure G3 using resin **20**'.

N-(9-fluorenylmethoxycarbonyl)-O-(2'-benzyloxyethyl-sulfid-2-ethyl)-L-tyrosine immobilized on Wang resin (**30**') was synthesized according to the procedure G3 using resin **21**'.

N-(9-fluorenylmethoxycarbonyl)-O-[(N-benzyloxycarbonyl)-(S)-(+)-2-pyrrolidinemethyl]-L-tyrosine immobilized on Wang resin (**31**') was synthesized according to the procedure G3

Compounds 33' to 40':

using resin 22'.

N-(9-fluorenylmethoxycarbonyl)-O-(2-cyclopentylethyl)-L-tyrosine (33'). Procedure G4 was applied on **24'** and the crude residue was purified according to FC1 to yield 1.17 g of **33'** (52%) as a white solid: Rf (DCM/MeOH: 96/4) = 0.29; mp 133 °C; ¹H NMR (CDCl₃) δ 1.11-1.19 (m, 2H), 1.52-1.65 (m, 4H), 1.76-1.81 (m, 4H), 1.90-1.99 (m, 1H), 3.11 (ddt, *J* = 13.8, 18.8, 5.3 Hz, 2H), 3.93 (t, *J* = 6.6 Hz, 2H), 4.21 (t, *J* = 6.8 Hz, 1H), 4.37 (dd, *J* = 10.2, 6.8 Hz, 1H), 4.45 (dd, *J* = 10.0, 7.2 Hz, 1H), 4.67 (dt, *J* = 7.3, 5.5 Hz, 1H), 5.20 (d, *J* = 8.1 Hz, 1H), 6.82 (d, *J* = 8.2 Hz, 2H), 7.05 (d, *J* = 8.2 Hz, 2H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.41 (t, *J* = 7.3 Hz, 2H), 7.56 (t, *J* = 6.5 Hz, 2H), 7.77 (d, *J* = 7.5 Hz, 2H); ¹³C NMR (CDCl₃) δ 25.03, 32.67, 35.38, 36.85, 47.10, 54.61, 67.02, 67.38, 114.63, 119.98, 125.03, 127.05, 127.72, 130.32, 141.29, 143.64, 155.72, 158.36, 175.71; ES/MS for C₃₁H₃₃NO₅ (negative ionization): Mol.wt calcd: 499.2, found: 499.3; Rt (HPLC-A): 4.99 (100%).

N-(9-fluorenylmethoxycarbonyl)-O-(2-phenylethyl)-L-tyrosine (34'). Procedure G4 was applied on **25'** and the crude residue was purified according to FC1 to yield 1.44 g of **34'** (63%) as a white solid: Rf (DCM/MeOH: 95/5) = 0.26; mp 110-111 °C; ¹H NMR (CDCl₃) δ 2.99-3.17

(m, 4H), 4.12 (t, J = 7.1 Hz, 2H), 4.20 (t, J = 6.9 Hz, 1H), 4.36 (dd, J = 10.7, 7.0 Hz, 1H), 4.44 (dd, J = 10.4, 7.3 Hz, 1H), 4.64 (dt, J = 7.8, 3.4 Hz, 1H), 5.20 (d, J = 8.5 Hz, 1H), 6.81 (d, J = 8.3 Hz, 2H), 7.04 (d, J = 8.3 Hz, 2H), 7.25-7.35 (m, 2H), 7.28 (s, 5H), 7.39 (t, J = 7.3 Hz, 2H), 7.55 (m, 2H), 7.76 (d, J = 7.6 Hz, 2H); ¹³C NMR (CDCl₃) δ 35.75, 36.86, 47.11, 54.54, 67.04, 68.55, 114.71, 119.99, 126.49, 127.06, 127.39, 127.73, 128.47, 128.98, 130.36, 138.14, 141.30, 143.64, 155.68, 158.02, 175.59; ES/MS for C₃₂H₂₉NO₅ (negative ionization): Mol.wt calcd: 507.2, found: 507.1; Rt (HPLC-A): 3.74 (85%).

N-(9-fluorenylmethoxycarbonyl)-O-(2-cyclohexylethyl)-L-tyrosine (**35**'). Procedure G4 was applied on **26**' and the crude residue was purified according to FC1 to yield 600 mg of **35**' (26%) as a beige solid: Rf (DCM/MeOH: 97/3) = 0.33; mp 88 °C; ¹H NMR (CDCl₃) δ 0.96 (dt, *J* = 11.7, 9.7 Hz, 2H), 1.15-1.30 (m, 6H), 1.63-1.77 (m, 5H), 3.11 (ddt, *J* = 14.0, 18.5, 5.5 Hz, 2H), 3.94 (t, *J* = 6.8 Hz, 2H), 4.21 (t, *J* = 7.0 Hz, 1H), 4.36 (dd, *J* = 10.6, 7.0 Hz, 1H), 4.45 (dd, *J* = 10.2, 7.3 Hz, 1H), 4.67 (dt, *J* = 6.9, 6.2 Hz, 1H), 5.21 (d, *J* = 8.5 Hz, 1H), 6.81 (d, *J* = 8.2 Hz, 2H), 7.04 (d, *J* = 8.1 Hz, 2H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.40 (t, *J* = 7.4 Hz, 2H), 7.55 (t, *J* = 6.6 Hz, 2H), 7.76 (d, *J* = 7.5 Hz, 2H); ¹³C NMR (CDCl₃) δ 26.23, 26.52, 33.28, 34.49, 36.64, 36.88, 47.11, 54.61, 65.88, 67.04, 114.65, 119.97, 125.04, 127.06, 127.72, 130.32, 141.30, 143.62, 153.3; Rt (HPLC-A): 5.35 (86%).

N-(9-fluorenylmethoxycarbonyl)-O-(3-cyclohexyl-1-propyl)-L-tyrosine (36'). Procedure G4 was applied on **27'** and the crude residue was purified according to FC1 to yield 1.30 g of **36'** (55%) as a yellow solid: Rf (DCM/MeOH: 96/4) = 0.23; mp 124 °C; ¹H NMR (CDCl₃) δ 0.90 (dt, *J* = 12.0, 9.1 Hz, 2H), 1.13-1.35 (m, 8H), 1.64-1.80 (m, 5H), 3.11 (ddt, *J* = 14.3, 17.6, 5.6 Hz, 2H), 3.89 (t, *J* = 6.7 Hz, 2H), 4.21 (t, *J* = 6.9 Hz, 1H), 4.38 (dd, *J* = 10.4, 6.9 Hz, 1H), 4.45 (dd, *J* = 10.4, 7.1 Hz, 1H), 4.67 (dt, *J* = 7.0, 5.8 Hz, 1H), 5.19 (d, *J* = 7.2 Hz, 1H), 6.81 (d, *J* = 7.8 Hz, 2H), 7.04 (d, *J* = 8.0 Hz, 2H), 7.29 (t, *J* = 7.4 Hz, 2H), 7.41 (t, *J* = 7.5 Hz, 2H), 7.55 (t, *J* = 6.3 Hz, 2H), 7.76 (d, *J* = 7.5 Hz, 2H); ¹³C NMR (CDCl₃) δ 26.35, 26.63, 26.64, 33.31, 33.67, 36.83, 37.44, 47.09, 54.61, 67.13, 68.33, 114.68, 119.99, 125.02, 127.07, 127.75, 130.31, 141.30, 143.61, 155.82, 158.40, 175.65; ES/MS for C₃₃H₃₇NO₅ (negative ionization): Mol.wt calcd: 527.3, found: 527.3; Rt (HPLC-A): 5.49 (88%).

N-(9-fluorenylmethoxycarbonyl)-O-(4-benzyloxy-1-butyl)-L-tyrosine (**37**'). Procedure G4 was applied on **28**' and the crude residue was purified according to FC1 to yield 1.34 g of **37**' (52.5%) as a pale yellow solid: Rf (DCM/MeOH: 97/3) = 0.48; mp 88 °C; ¹H NMR (CDCl₃) δ 1.76-1.88 (m, 4H), 3.11 (ddt, *J* = 14.1, 19.2, 5.8 Hz, 2H), 3.54 (t, *J* = 6.2 Hz, 2H), 3.93 (t, *J* = 6.2 Hz, 2H), 4.21 (t, *J* = 7.0 Hz, 1H), 4.36 (dd, *J* = 10.8, 7.2 Hz, 1H), 4.45 (dd, *J* = 10.5, 7.1 Hz, 1H), 4.52 (s, 2H), 4.67 (dt, *J* = 7.9, 5.9 Hz, 1H), 5.23 (d, *J* = 8.1 Hz, 1H), 6.80 (d, *J* = 8.6 Hz, 2H), 7.04 (d, *J* = 8.4 Hz, 2H), 7.26-7.35 (m, 7H), 7.40 (t, *J* = 7.4 Hz, 2H), 7.56 (t, *J* = 6.7 Hz, 2H), 7.76 (d, *J* = 7.5 Hz, 2H); ¹³C NMR (CDCl₃) δ 26.06, 26.25, 36.83, 47.06, 54.59, 66.99, 67.51, 69.83, 72.82, 114.58, 119.92, 124.99, 127.00, 127.17, 127.54, 127.68, 128.33, 130.30, 138.31, 141.24, 143.60, 155.69, 158.19, 175.57; ES/MS for C₃₅H₃₅NO₆ (negative ionization): Mol.wt calcd: 565.2, found: 565.1; Rt (HPLC-A): 4.66 (90%).

N-(9-fluorenylmethoxycarbonyl)-O-(5-benzyloxy-1-pentyl)-L-tyrosine (**38**'). Procedure G4 was applied on **29**' and the crude residue was purified according to FC2 to yield 0.91 g of **38**' (35%) as a yellow solid: Rf (DCM/AcOH: 9.8/0.2) = 0.45; mp 66 °C; ¹H NMR (CDCl₃) δ 1.42-1.51 (m, 2H), 1.56-1.73 (m, 4H), 3.03 (ddt, *J* = 14.3, 7.7, 5.7 Hz, 2H), 3.42 (t, *J* = 6.4 Hz, 2H),

3.83 (t, J = 6.3 Hz, 2H), 4.13 (t, J = 6.9 Hz, 1H), 4.27 (dd, J = 10.6, 6.8 Hz, 1H), 4.37 (dd, J = 10.1, 7.3 Hz, 1H), 4.44 (s, 2H), 4.58 (dt, J = 8.0, 5.6 Hz, 1H), 5.14 (d, J = 8.2 Hz, 1H), 6.72 (d, J = 8.5 Hz, 2H), 6.96 (d, J = 8.4 Hz, 2H), 7.18-7.35 (m, 9H), 7.46-7.50 (m, 2H), 7.69 (d, J = 7.4 Hz, 2H); ¹³C NMR (CDCl₃) δ 23.34, 29.64, 30.03, 37.43, 47.67, 55.20, 67.58, 68.29, 70.76, 73.47, 115.18, 120.56, 125.61, 125.67, 127.63, 127.72, 128.13, 128.24, 128.29, 128.94, 130.91, 138.99, 141.86, 144.23, 155.69, 158.84, 177.49; Rt (HPLC-A): 4.77 (93%).

N-(9-fluorenylmethoxycarbonyl)-O-((2(2-benzyloxyethyl)thio)ethyl)-L-tyrosine (39'). Procedure G4 was applied on 30' and the crude residue was purified according to FC2 to yield 0.79 g of 39' (29%) as a yellow solid: Rf (DCM/AcOH: 99/1) = 0.17; mp 68 °C; ¹H NMR (CDCl₃) δ 2.75 (t, J = 6.4 Hz, 2H), 2.84 (t, J = 5.2 Hz, 2H), 3.02 (ddt, J = 14.2, 9.3, 5.5 Hz, 2H), 3.60 (t, J = 6.6 Hz, 2H), 4.01 (t, J = 6.7 Hz, 2H), 4.12 (t, J = 6.8 Hz, 1H), 4.25-4.41 (m, 2H), 4.47 (s, 2H), 4.57 (dt, J = 7.5, 5.9 Hz, 1H), 5.15 (d, J = 8.3 Hz, 1H), 6.71 (d, J = 8.4 Hz, 2H), 6.96 (d, J = 8.3 Hz, 2H), 7.18-7.27 (m, 7H), 7.32 (t, J = 7.3 Hz, 2H), 7.47 (t, J = 7.1 Hz, 2H), 7.69 (d, J = 7.4 Hz, 2H); ¹³C NMR (CDCl₃) δ 32.04, 32.79, 37.45, 47.67, 55.19, 67.58, 68.35, 70.46, 73.66, 115.26, 120.57, 125.59, 125.66, 127.63, 128.30, 128.31, 129.01, 131.00, 138.47, 141.86, 144.21, 156.29, 158.22, 177.45; Rt (HPLC-A): 4.61 (93%).

N-(9-fluorenylmethoxycarbonyl)-O-[(N-benzyloxycarbonyl)-(S)-(+)-2-pyrrolidinemeth-yl]-L-tyrosine (40'). Procedure G4 was applied on **31'** and the crude residue was purified according to FC2 to yield 0.89 g of **40'** (32%) as a pale yellow powder: Rf (DCM/AcOH: 99/1) = 0.14; mp 99 °C; ¹H NMR (CDCl₃) δ 1.77-1.95 (m, 4H), 2.90-3.06 (m, 2H), 3.29-3.38 (m, 2H), 3.59-3.96 (m, 1H), 4.00-4.15 (m, 3H), 4.24-4.41 (m, 2H), 4.57 (m, 1H), 5.07 (s, 2H), 5.16 (d, *J* = 8.4 Hz, 1H), 6.63 (d, *J* = 8.0 Hz, 1H), 6.78 (d, *J* = 8.0 Hz, 1H), 6.88 (d, *J* = 7.8 Hz, 1H), 6.95 (d, *J* = 7.8 Hz, 1H), 7.22-7.35 (m, 9H), 7.47-7.49 (m, 2H), 7.69 (d, *J* = 7.4 Hz, 2H); ¹³C NMR (CDCl₃) δ 24.34, 28.55, 37.49, 47.39, 47.67, 55.25, 57.12, 67.60, 67.86, 68.04, 115.19, 120.56, 125.64, 125.70, 127.64, 128.30, 128.43, 128.58, 128.75, 128.80, 129.06, 129.16, 131.00, 136.94, 137.16, 141.85, 144.26, 155.86, 156.36, 158.41, 177.45; Rt (HPLC-A): 4.59 (100%).

5-benzyloxy-1-pentanol (45'). It was synthesized according to the same procedure than **44'**, with 3.84 g (96 mmol) of sodium hydride (60% in mineral oil), 50 g of 1,5-pentanediol (**42'**) (5 equiv, 480 mmol) and 11.42 mL of benzyl bromide (96 mmol). After purification by column chromatography on silica gel (eluted with DCM and DCM/MeOH: 97/3), 9.5 g (51%) of **45'** were obtained as a slightly yellow oil: Rf (DCM/MeOH: 97/3) = 0.33; ¹H NMR (CDCl₃) δ 1.29-1.60 (m, 6H), 2.37 (s, 1H), 3.39 (t, *J* = 6.4 Hz, 2H), 3.49 (t, *J* = 6.4 Hz, 2H), 4.41 (s, 2H), 7.16-7.24 (m, 5H); ¹³C NMR (CDCl₃) δ 22.97, 29.98, 32.97, 63.04, 70.90, 73.49, 128.15, 128.27, 128.95, 138.99.

2-((2-benzyloxyethyl)thio)ethanol (46'). It was synthesized according to the same procedure than **44'**, with 3.27 g (82 mmol) of sodium hydride (60% in mineral oil), 50 g of 2,2'-thiodiethanol (**43'**) (5 equiv, 410 mmol) and 9.73 mL of benzyl bromide (82 mmol). After purification by column chromatography on silica gel (eluted with DCM and DCM/MeOH: 98/2), 6.2 g (36%) of **46'** were obtained as a colorless oil: Rf (DCM/MeOH: 98/2) = 0.41; ¹H NMR (CDCl₃) δ 2.70 (t, *J* = 6.0 Hz, 2H), 2.73 (t, *J* = 6.9 Hz, 2H), 2.87 (s, 1H), 3.61 (t, *J* = 6.4 Hz, 2H), 3.67 (t, *J* = 6.0 Hz, 2H), 4.52 (s, 2H), 7.24-7.32 (m, 5H); ¹³C NMR (CDCl₃) δ 32.11, 36.31, 61.48, 70.43, 73.69, 128.58, 128.99, 138.67.

· ·	0 H CH-C H CH2 R	Ж	$\begin{array}{l} gp120SF162\\ IC_{s0}\\ (nM\pm SEM) \end{array}$	$gp120CN54 \\ IC_{s0} \\ (nM \pm SEM)$	A: gp120SF162 IC ₅₀ M33x IC ₅₀ M33AI	B: gp120CN54 IC ₅₀ M33x IC ₅₀ M33AI	IC50 _{CN54} IC50 _{SF162}	B/A
$M33^b$			3 ± 0.4	41 ± 4	0.9	0.6	14	0.7
M33A1	q	\sum_{i}	3.2 ± 0.3	66 ± 1	1	1	21	1
M33A2	*		146 ± 18	12600 ± 1300^{a}	46	192	87	4.2
M33A3	*~	, D	44 ± 4	3882 ± 735	14	59	88	4.2
M33A	* 4	ß	5.6 ± 0.5	1321 ± 133	1.8	20	236	11
M33A	¢۳	C II	78 ± 8	1866 ± 202	24	28	24	1.2
M33A	*9	Ø	14 ± 1	1946 ± 188	4.4	29	139	6.6
M33A	<i></i> *	ر پر پر	13 ± 2	1730 ± 331	4.1	26	133	6.3
M33A	*89		471 ± 98	21400 ± 1000^a	147	325	46	2.2

Table S1. ELISA IC_{50} values, obtained by competition against sCD4 on gp120SF162 and gp120CN54, of the miniCD4s belonging to the M33 (**16**) series

^{*a*}Extrapolated values (maximum concentration tested was 10 mM). ^{*b*}Mentioned in reference (13); MiniCD4 **17** was previously called [Phe23]M33.¹⁶ *New compounds. IC₅₀ values are presented as the mean \pm SEM values from three independent experiments.

MiniCD4	Rt (min)	Formula	MW calc.	MW found	Purity % (214 nm) ^{<i>a</i>}
16	22.48	$C_{128}H_{198}N_{36}O_{31}S_6$	2929.6	2929.6 ± 0.2	98.4
17	18.08	$C_{122}H_{194}N_{36}O_{31}S_6$	2853.5	2853.5 ± 0.1	97.0
18	19.35	$C_{123}H_{196}N_{36}O_{31}S_6$	2867.5	2867.1 ± 0.4	98.7
19	19.45	$C_{124}H_{196}N_{36}O_{31}S_6$	2879.5	2879.5 ± 0.3	99.8
20	20.54	$C_{126}H_{196}N_{36}O_{31}S_6$	2903.5	2903.5 ± 0.3	99.4
21	19.70	$C_{124}H_{195}N_{37}O_{31}S_6$	2892.5	2892.5 ± 0.1	96.3
22	18.84	$C_{123}H_{196}N_{36}O_{31}S_6$	2867.5	2867.6 ± 0.2	98.3
23	19.24	$C_{123}H_{196}N_{36}O_{32}S_6$	2883.5	2883.5 ± 0.2	98.2
24	22.80	$C_{126}H_{202}N_{36}O_{31}S_6$	2909.6	2909.5 ± 0.2	95.1

Table S2: Characterization of the M33 (16) miniCD4 series

^aPurity was checked by measurements of peak area at 214 nm on reverse-phase HPLC.

MiniCD4	Rt (min)	Formula	MW calc.	MW found	Purity % (214 nm) ^b
1	18.73	$C_{126}H_{200}N_{38}O_{31}S_6$	2935.6	2935.7 ± 0.1	99.7
2	28.80	$C_{133}H_{212}N_{38}O_{32}S_6$	3047.7	3047.6 ± 0.2	97.2
3	28.92	$C_{133}H_{212}N_{38}O_{32}S_6$	3047.7	3047.8 ± 0.1	99.2
4	26.50	$C_{134}H_{208}N_{38}O_{32}S_6$	3055.7	3055.5 ± 0.2	98.5
5	30.45	$C_{134}H_{214}N_{38}O_{32}S_6$	3061.8	3061.7 ± 0.3	100
6	32.13	$C_{135}H_{216}N_{38}O_{32}S_6$	3075.8	3075.6 ± 0.2	96.0
7	17.54	$C_{130}H_{208}N_{38}O_{33}S_6$	3023.7	3023.7 ± 0.1	97.4
8	19.08	$C_{131}H_{210}N_{38}O_{33}S_6$	3037.7	3037.5 ± 0.2	97.2
9	18.55	$C_{130}H_{208}N_{38}O_{33}S_7$	3055.7	3055.6 ± 0.2	95.8
10	15.50	$C_{131}H_{209}N_{39}O_{32}S_6$	3034.7	3034.8 ± 0.1	99.8
11	23.45	$C_{129}H_{206}N_{38}O_{31}S_6$	2977.7	2977.7 ± 0.1	97.1
12	24.80	$C_{130}H_{208}N_{38}O_{31}S_6$	2991.7	2991.7 ± 0.2	97.6
13	20.11	$C_{133}H_{213}N_{39}O_{31}S_6$	3046.7	3046.5 ± 0.2	99.4
14	24.84	$C_{132}H_{204}N_{38}O_{31}S_6$	3011.7	3011.8 ± 0.2	99.4
15	15.72/15.92 ^a	$C_{130}H_{208}N_{38}O_{34}S_7$	3071.7	3071.6 ± 0.3	96.3

Table S3: Characterization of the M48 (1) miniCD4 series

^{*a*} **15** was purified as a racemic product engendered by the sulfoxyde group. ^{*b*} Purity was checked by measurements of peak area at 214 nm on reverse-phase HPLC.

	YU2gp120core _e + miniCD4 13
Data collection	
Space group	$C222_{1}$
Cell constants	
a, b, c (Å)	64.4, 163.4, 78.2
α, β, γ (°)	90.0, 90.0, 90.0
Wavelength (Å)	1.00
Resolution (Å)	50.0-1.90 (1.93-1.90)
$R_{ m sym}$	12.8 (55.8)
Ι σΙ	12.4 (1.3)
Completeness (%)	92.3 (51.9)
Redundancy	5.5 (1.9)
Refinement	
Resolution (Å)	17.5-1.79 (1.84-1.79)
Unique reflections	31,931 (517)
$R_{free} / R_{work} (\%)$	22.4/16.8
No. atoms	
gp120	3,208
MiniCD4 13	245
Ligand/ion	0
Water	236
<i>B</i> -factors ($Å^2$)	
Overall	43.27
gp120	41.96
MiniCD4 13	59.41
Residue 23 ₁₃	31.94
Water	44.38
R.m.s. deviations	
Bond lengths (Å)	0.010
Bond angles (°)	1.3
Ramachandran	
Favored (%)	98.0
Outliers (%)	0

Table S4: Crystallographic data collection and refinement statistics

Values in parentheses are for highest-resolution shell.

 $R_{sym} = \Sigma |I - \langle I \rangle | / \Sigma \langle I \rangle$, where I is the observed intensity, and $\langle I \rangle$ is the average intensity of multiple observations of symmetry-related reflections.

 $R = \Sigma hkl||Fobs| - |Fcalc|| / \Sigma hkl|Fobs|.$

 R_{free} is calculated from 5% of the reflections excluded from refinement.

Figure S1. Schematic diagram of the folding pattern of miniprotein 1

Tpa = thiopropionyl. Position 23 to be optimized in the M48 (1) series is marked in red. Disulfide bridges are shown by connecting lines.

Figure S2. Surface plasmon resonance (SPR) analysis of the binding of miniCD4s **2** and **13** to HIV-1 gp120. gp120 was immobilized at a level of 1000-2000 RU on CM5 chips. The black lines indicate independent injections of the miniCD4s. The red lines show the global fit of the data to a Langmuir 1:1 binding model. The following concentrations were sampled for **2**: YU2 gp120- 3 nM, 1.5 nM, 0.75 nM and 0.38 nM; TRO.11 gp120- 32 nM to 0.25 nM at 2-fold dilution; ZM135- 32 nM to 0.06 nM at 2-fold dilution; and for **13**: YU2 gp120- 3.6 nM, 1.8 nM, 0.45 nM, 0.11 nM, 0.056 nM and 0.028 nM, TRO.11 gp120- 3.6 nM to 0.028 nM at 2-fold dilution, ZM135 gp120- 3.6 nM to 0.028 nM at 2-fold dilution.

Figure S3. Comparison of 2 and 13 bound to the gp120 Phe43 cavity. (A and B) 90° rotated views of superposition of gp120 molecules in the 2-gp120 and 13-gp120 complex structures. gp120 chains are shown as grey cartoon, miniCD4 backbone is shown as ribbon, miniCD4 residue 23 side chain is shown in stick representation with 2 in green (with the ether oxygen colored red) and 13 in orange (with the aniline nitrogen colored blue). The water molecules occupying the conserved gp120 solvent channel are shown as blue spheres with the water molecules in the 2-gp120 complex shown in a lighter shade of blue than the waters from the 13-gp120 complex. Side chains of (C) 2 and (D) 13 bound to the Phe43 cavity. The blue mesh represents the 2Fo-Fc map electron density map contoured at 2.5 σ for the 2-gp120 structure and at 2.7 σ for the 13-gp120 structure.

Figure S4. Definition of the insert side chain of **13** bound to the gp120 Phe43 cavity. Zoomed-in view of **13** bound to gp120 shown in cartoon representation. MiniCD4 **13** is colored red, gp120 is colored by domain with the inner domain colored cyan, outerdomain green and the bridging sheet pink. The grey mesh represents the 2Fo-Fc electron density map defining the location of the side chain in the gp120 Phe43 cavity contoured at (A) 2.0 σ , (B) 2.5 σ and (C) 3.0 σ .

Figure S5. Extent of Phe43 cavity filling by 13. A cross-section of gp120 in grey surface representation shows (A-C) a view of 13 bound to the Phe43 cavity. MiniCD4 13 is shown as red cartoon with the side chain shown in stick representation with the carbon atoms colored orange, nitrogen blue and hydrogens white. Pocket-Finder was used to define the binding cavities. Ligand volume was calculated in the ChemBio3D module of ChemBioOffice 2010. (B) The side chain binding cavity (grid points shown as blue spheres) was defined by using gp120 coordinates from the 13-gp120 complex structure as input into the pocket detection algorithm. The volume of the ligand was determined for atoms spanning the phenyl ring and the cyclohexane ring. (C) The cavity that holds the cyclohexane ring was defined by using Coefficient (%) = (Volume of ligand/Volume of binding pocket) × 100.

Cavity volume: 239 Å³ Ligand volume: 192 Å³ Packing Coefficient (%) : 80 Cavity volume: 151 Å³ Ligand volume: 100 Å³ Packing Coefficient (%) : 66 **Figure S6.** Sequence alignment of gp120HXBc2, gp120SF162 and gp120CN54. The alignment was made with ClustalX software and uses therefore its three characters code to mark conserved residues. Asterisk stands for fully conserved; colon for strong groups conservation; dot for weaker groups conservation. The absence of character means no conservation. Residues are colored red when the side chain lines the cavity, and green when the main chain lines the cavity. An arrow points position 426 (HXBc2 numbering).

	40	50	60	70	80	90	100
HXBCZ SF162	KLWVTVYYGV	PVWKEATTLE	CASDAKAIDT	EVHNVWATHA EVHNVWATHA	CVPTDPNPQE	VVLVNVTENFN IVI.ENVTENFN	MWKNDMVEQMHE
CN54	NLWVTVYYGV	PVWKGATTTLF	CASDAKAYDT	EVHNVWATHA	CVPADPNPOE	VLENVTENFNI	MWKNEMVNOMOE
01101	*******	**** *****	****	* * * * * * * * * * *	*** ******	** ******	********
	110	120	130	140	150	160	170 180
HXBc2	DIISLWDQSL	KPCVKLTPLCV	SLKCTDLKND	TNTNSSSGRM	IMEKGEIKNCS	SFNISTSIRGK	VQKEYAFFYKLD
SF162	DIISL <mark>W</mark> DQSL	KPCVKLTPLCV	TLHCTNLKNA	TNTKSSN-WK	EMDRGEIKNCS	SFKVTTSIRNK	MQKEYALFYKLD
CN54	DVISL <mark>W</mark> DQSL	KPCVKLTPLCV	TLECRNVSSN	SNDTYHETYH	ESMK-EMKNCS	SFNATTVVRDR	KQTVYALFYRLD
	* : * * * * * * * *	* * * * * * * * * * *	:*.* ::	:* • •	: *:***	**: :* :*.:	* • * * • * * • * *
	19	0	200	210	220	230	240
HXBC2	IIPIDNDTTS	YKLTS	CNTSVITQAC.	PKVSFEPIPI	HYCAPAGFAL	LKCNNKTFNGT	GPCTNVSTVQCT
SF16Z	VVPIDNDNTS	YKLIN	ICNTSVITQAC.	PKVSFEPIPI	HYCAPAGFAL		CPCTNVSTVQCT
CNJ4	··*· · *	*•*	**** *****	* **•*•**	*********	*****	• * * * * * * * * * * * *
	250	260 2	270 2	80 2	90 30)0 3 1(· · · · · · · · · · · · · · · · · · ·
	250			2			5 520
HXBc2	HGIRPVVSTQ	LLLNGSLAEEE	VVIRSVNFTD	NAKTIIVQLN	TSVEINCTRPI	NNNTRKRIRIQ	RGPGRAFVTIG-
SF162	HGIRPV VST Q	LLLNGSLAEEG	VVIRSENFTD	NAKTIIVÕLK	ESVEINCTRPI	NNNTRKSITI-	-GPGRAFYATGD
CN54	HGIKPV VST Q	LLLNGSLAEGE	IIIRSENLTN:	NVKTIIVHLN	QSVEIVCTRP	GNNTRKSIRI-	-GPGQTFYATGD
	:**	* * * * * * * * *	::*** *:*:	* . * * * * * : * :	**** ****	***** * *	***::* : *
	330	340	350	360	370	380	390
HXBc2	KIGNMRQAHC	NISRAKWNNTI	KQIASKLREQ	FGNNKTIIFK	QSSGGDPEIV	THSFNCGGEFF	YCNSTQLFNSTW
SF162	IIGDIRQAHC	NISGEKWNNTI	KQIVTKLQAQ	FG-NKTIVFK	QSSGGDPEIVI	MHSFNCGGEFF	YCNSTQLFNSTW
CN54	IIGDIRQAHC	NISEDKWNETI	QRVSKKLAEH	FQ-NKTIKFA	SSSGGDLEVT.	THSFNCRGEFF	YCNTSGLFNGAY
	::***	410	420	* **** * 400	• • • • • • • • • • • • • • • • • • • •		***:: ***.::
	400	410	420	430	440	450	460
HXBc2	FNSTWSTECS	NNTECSDTTT		MORNGRAMAA	PPTSCOTRCS		CCN_SNNESETE
SF162	NNTIGP	NNTNGTITI	PCRIKOI INR	WOEVGKAMYA	PPIRGOIRCS	SNITGLLLTRD	GGKEISNTTEIF
CN54	TPNG	TKSNSSSIITI	PCRIKOIINM	WOEVGRAMYA	PPIKGNITCK	SNITGLLLVRD	GGT-EPNDTETF
	•	.:::. **:	*******	**:**:****	*** *:* *.	*********	**. *:**
	470	480 4	l90 5	00 5	10		
HXBc2	RPGGGDMRDN	WRSELYKYKVV	KIEPLGVAPT	KAKRRVVQRE	KR		
SF162	RPGGGD <mark>M</mark> RDN	WRSELYKYKVV	KIEPLGVAPT	KAKRRVVQRE	KR		
CN54	RPGGGD <mark>M</mark> RNN	WRSELYKYKVV	EIKPLGVAPT	TTKRRVVERE	KR		
	********	* * * * * * * * * * *	********	. : * * * * * : * *	* *		