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SUPPLEMENTARY INFORMATION

Contribution of doomed lineages to a fitness class:

In deriving the transition probabilities, we argue that the frequency of competing mutant

lineages is frozen by the time a fitness class begins feeding mutants that are destined to

establish into the nose. We arrive at this conclusion by calculating the number of establishing

mutant lineages by the (typical) time this occurs. Since this number is typically large, and

the contribution of each subsequent establishing lineage vanishes (despite the fact that these

lineages arrive more and more quickly), the conclusion follows that the frequencies of lineages

by this timepoint are frozen. This comes from the fact that the deterministic lineage size

fraction, nL/n1 ∼ 1/Lq/(q−1) is convergent.

What could be the contribution of mutants that will not establish in a class, but may still

contribute establishing mutants to the next fitness class? There are many more mutants

introduced that will not establish relative to those that will, and these mutants grow roughly

proportionally to the size of the class below them (i.e., at rate (q − 1)s). By the time the

population starts supplying establishing mutants, if these doomed lineages still comprise

a significant fraction of the population, the result will be a deterministic drifting of the

frequency, as these doomed lineages (which, because they are plentiful, will typically be split

as x0) become less and less of a contributing factor. We would like to determine if these

combined lineages are negligible by the time a class begins feeding establishing mutants or

still constituting some non-trivial fraction of the class.

The total number of individuals at time t derived from lineages that are destined to go

extinct is given by

Ndoomed(t) =

∫ t

0

dTUb(1− qs)
1

qs
e(q−1)sT︸ ︷︷ ︸

(a)

〈n(t− T )|n(t→∞) = 0〉︸ ︷︷ ︸
(b)

, (1)

where (a) is the expected number of non-establishing mutants occurring in a small interval

dτ , and (b) is the expected number of these mutants that still persist at a time t− τ later,

given that these mutants are going to eventually go extinct. Here, 〈n(t− τ)|n(t→∞) = 0〉

is derived from standard branching process analyses.

1



The probability distribution of doomed (but not yet extinct) lineages at time t is given

by

P (n > 0, t|doomed) = Pext(n)P (n, t)/Pext(t), (2)

where Pext(n) is the probability of extinction of a lineage composed of n individuals, Pext(t)

is the probability that a lineage destined to go extinct is not yet extinct by time t, and

P (n, t) is the probability that a single mutant created at t = 0 has n descendants at time t.

Note that by a “doomed” lineage we mean a lineage that is destined to vanish.

Now, following standard branching process analysis, a new mutant at fitness qs will have

the following distribution of ancestors a time t later (Desai and Fisher, 2007; Eq. 11):

P (n = 0, t) =
eqst − 1

(1 + qs)eqst − 1
, (3)

so that

P (n = 0, t|doomed) =
(1 + qs)(eqst − 1)

(1 + qs)eqst − 1
, (4)

and furthermore (Desai and Fisher, 2007; Eq. 10)

P (n > 0, t) =
(qs)2eqst

((1 + qs)eqst − 1)((1 + qs)eqst − 1− qs)

(
((1 + qs)eqst − 1− qs)

(1 + qs)eqst − 1

)n
. (5)

In the branching process analysis, all lineages are independent, so

Pext(n) = Pext(1)n =

(
1

1 + qs

)n
. (6)

Furthermore,

Pext(t) = 1− P (n = 0, t|doomed) =
qs

(1 + qs)eqst − 1
. (7)

Thus, using Eq. (2) gives

P (n > 0, t|doomed) =
qseqst

(1 + qs)eqst − 1− qs

[
eqst − 1

(1 + qs)eqst − 1

]n
. (8)

Finally, this gives us

〈n(t)|n(t) 6= 0, n(t→∞) = 0〉 =
∞∑
n=1

nP (n, t|doomed) =
qseqst

(1 + qs)eqst − 1− qs

∞∑
n=1

nξn (9)
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with

ξ =
eqst − 1

(1 + qs)eqst − 1
. (10)

This reduces to

〈n(t)|n(t) 6= 0, n(t→∞) =
((1 + qs)− e−qst)

qs
(11)

Now, we include the possibility that the lineage has gone extinct by time t:

〈n(t)|n(t→∞) = 0〉 =
((1 + qs)− e−qst)

qs
P [n 6= 0|doomed] = e−qst. (12)

A fitness class, naively, has O(1/Ub) individuals when it typically starts creating estab-

lishing mutants. Hence,

Ndoomed(t1 + τk)

nk((t1 + τk))
= U2

b

∫ (t1+τk)

0

(1− qs) 1

qs
e(q−1)sT e−qs((t1+τk)−T )dT

≈ U2
b e

qs(t1+τk)

2qs

≈ s

2
. (13)

Thus, given our assumption that s� 1, the contribution of doomed lineages is indeed small

and can be ignored.

Moments of the jump probability: The moments of the jump probability ρ are cal-

culated as follows, analogous to the method used in Desai et al. (2013). Using the fact

that (
1

σk

)n
=

∫ ∞
0

zn−1

(n− 1)!
e−zσkdz, (14)

the n-th moment (for the step k → k + 1) is derived as

〈xn〉 =

〈(
ν

σk

)n〉
=

〈∫ ∞
0

zn−1

(n− 1)!
e−zσkνndz

〉
=

∫ ∞
0

zn−1

(n− 1)!

〈
e−zσkνn

〉
dz

=

∫ ∞
0

zn−1

(n− 1)!

〈
e−z(ν+ν̃)νn

〉
dz
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=

∫ ∞
0

zn−1

(n− 1)!

〈
e−zν̃

〉 〈
e−zννn

〉
dz

=

∫ ∞
0

zn−1

(n− 1)!
e−(1−x0)z

(1−1/q) 〈
e−zννn

〉
dz. (15)

Now,

〈νne−zν〉 = (−1)n
dn

dzn
〈e−zν〉 (16)

and

〈e−zν〉 = e−x0z
(1−1/q)

. (17)

We can thus compute a general formula for the n-th derivative:

dn

dzn
e−x0z

(1−1/q)

= e−x0z
(1−1/q)

n−1∑
i=0

(−x0)n−i(1− 1/q)n−iz−(n−i)/q−i(−1)i
Γ(1/q + i)

Γ(1/q)
. (18)

Thus,

〈νne−zν〉 = e−x0z
1−1/q

n−1∑
i=0

xn−i0 (1− 1/q)n−iz−(n−i)/q−i
Γ(1/q + i)

Γ(1/q)
. (19)

This gives for the moments,

〈xn〉 =

〈(
ν

σk

)n〉
=

∫ ∞
0

z(n−1)

(n− 1)!
e−(1−x0)z

1−1/q

e−x0z
1−1/q

n−1∑
i=0

xn−i0 (1− 1/q)n−iz−(n−i)/q−i
Γ(1/q + i)

Γ(1/q)
dz

=
n−1∑
i=0

xn−i0 (1− 1/q)n−i
Γ(1/q + i)

(n− 1)!Γ(1/q)

∫ ∞
0

z(n−1)e−z
1−1/q

z−(n−i)/q−idz

=
n−1∑
i=0

xn−i0

Γ(1/q + i)Γ(n− i)
(n− 1)!Γ(1/q)

(
q − 1

q

)n−1−i
. (20)

The first two moments are

〈∆x〉 = 0, (21)

〈(∆x)2〉 =
x0(1− x0)

q
. (22)

Equation (20) is readily generalized to k steps forward through the usual substitution,
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1− 1/q = α⇒ αk, which gives

〈xnk〉 =
n−1∑
i=0

xn−i0

Γ(1− αk + i)Γ(n− i)
(n− 1)!Γ(1− αk)

(
αk
)n−1−i

. (23)

Site Frequency Spectrum of Nearly Private Variants:

In this supplement we flesh out the derivation of the site frequency spectrum of nearly

private variants. As noted in the text, several of the difficulties that arise in the derivation

of the site frequency spectrum of common mutations may be neglected when dealing with

rare variants. Specifically, the problem is vastly simplified with the inclusion of two approx-

imations. First, since the lineage sizes of extremely rare variants are small and destined to

go extinct, the lineages can be assumed to experience no further (establishing) beneficial

mutations (specifically, this approximation holds if nyUb � 1, where n is the lineage size

and y the fitness of the mutant created by the lineage). Second, we assume that muta-

tions are fed into a given fitness class k deterministically at rate Ubnk−1(t). This holds if

Ubnk−1(t)� 1 (certainly true in the bulk of the distribution), in which case fluctuations of

incoming mutants around the expected number are small.

Because these lineages never comprise a significant fraction of the population, they can

be studied through a standard branching process analysis with a constant death rate d = 1

and a time-varying birth rate b(t) = 1 + y0 − vt, where t is time in generations, y0 is the

initial fitness of the mutant, and v the mean rate of adaptation of the population. First,

we are interested in deriving the expected (time-averaged) number of mutations carried by

n individuals with relative fitnesses y, Frare(n/N, y). This is obtained by considering the

expected number of mutants introduced when a given fitness class was at relative fitness

y0 > y, and multiplying by the probability that, in the time it took for the relative fitness

of the class to decrease to y, the lineage size of any of these mutants has increased to n.

Frare(n/N, y) is then the integral over all possible landing fitnesses y0.

Clearly, the number of mutants introduced at an initial fitness y0 is simply UbN(y0 − s)

where N(y) is the expected number of individuals at relative fitness y. So long as the

individual does not reside in the distribution’s high-fitness nose, N(y) is well approximated
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by a Gaussian with variance v (Desai and Fisher, 2007):

N(y) =
N√
2πv

e−y
2/2v. (24)

Furthermore, a mutant that is introduced at initial fitness y0 will be at fitness y in a time

t = (y0−y)/v. Finally, the distribution in lineage sizes of a mutant with an initial birth rate

1 + y0 that is decreasing at a rate v per generation is a classic branching process problem

that was solved by Kendall (1948). The distribution in lineage sizes is

P1(n > 0, t) =
e−y0t+

vt2

2

(
∫ t
0
e−y0τ+vτ2/2dτ + 1)2

(
1− e−y0t+

vt2

2∫ t
0
e−y0τ+vτ2/2dτ + 1

)n−1

. (25)

As a result, Frare(n/N, y) is given by

Frare(n/N, y) =
1

v

∫ (q−2)s

y

P1(n, (y0 − y)/v)UbN(y0 − s)dx0

=
1

v

UbN√
2πv

∫ ∞
y

e
y2+2y0s−2y20−s2

2v

(
∫ ((y0−y)/v)
0

e−y0τ+vτ2/2dτ + 1)2

1− e
y2−y20

2v∫ ((y0−y)/v)
0

e−y0τ+vτ2/2dτ + 1

n−1

dy0.

(26)

where an arbitrary upper limit of (q − 2)s is imposed to restrict to regions where the de-

terministic supply rate of mutants is guaranteed to hold, with contributions from mutants

founded when the class was at fitness greater than (q − 2)s already negligible for very rare

mutations. The total SFS of semi-private variants is then obtained by integrating over all

final fitnesses y:

Frare(n/N) =

∫ (q−2)s

−qs
Frare(n/N, y)dy

=
1

v

UbN√
2πv

∫ ∞
−∞

∫ ∞
y

e
y2+2y0s−2y20−s2

2v

(
∫ ((y0−y)/v)
0

e−y0τ+vτ2/2dτ + 1)2

×

1− e
y2−y20

2v∫ ((y0−y)/v)
0

e−y0τ+vτ2/2dτ + 1

n−1

dy0dy. (27)
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To extract the leading order behavior, we consider frequencies just at the mean, y = 0:

Frare(n/N, 0) =
1

v

UbN√
2πv

∫ ∞
0

e
2y0s−2y20−s2

2v

(
∫ y0/v
0

e−y0τ+vτ2/2dτ + 1)2

1− e
−y20
2v∫ y0/v

0
e−y0τ+vτ2/2dτ + 1

n−1

dy0.

(28)

Examining the integral inside the integrand, we observe that

∫ y0/v

0

e−y0τ+vτ
2/2dτ =

√
2

v
e−y

2
1

∫ y1

0

ey
2

dy =

√
2

v
D(y1) (29)

for y1 = y0/
√

2v, and D(y1) is Dawson’s integral, a well-studied special function. If y1 is

small, then

D(y1) ≈ y1 −
2

3
y31 +

4

15
y51... (30)

Since we are considering only small lineage sizes n, the integral will obtain its main

contribution for y0 small (meaning that most nearly-private variants were founded recently

in the past). Thus we can use the first order expansion:

Frare(n/N, 0) ≈ UbN

v
√

2πv

∫ ∞
0

e
2y0s−2y20−s2

2v

(y0/v + 1)2

(
1− 1

y0/v + 1

)n−1
dy0

=
UbNve

−s2/(2v)
√

2πv

∫ ∞
0

exp

(
y0s− y20

v

)
yn−10

(y0 + v)n+1
dy0

≈ UbNve
−s2/(2v)

√
2πv

(∫ ∞
0

exp

(
−y20
v

)
yn−10

(y0 + v)n+1
dy0

+
s

v

∫ ∞
0

exp

(
−y20
v

)
yn0

(y0 + v)n+1
dy0

)
=
UbNe

−s2/(2v)
√

2π

(∫ ∞
0

e−ξ
2
ξn−1

(ξ +
√
v)n+1

dξ +
s√
v

∫ ∞
0

e−ξ
2
ξn

(ξ +
√
v)n+1

dξ

)
, (31)

where, in the last step, the substitution ξ = y0√
v

was performed. Performing each integration

separately:

∫ ∞
0

e−ξ
2
ξn−1

(ξ +
√
v)n+1

dξ ≈ 1

n
√
v
,∫ ∞

0

e−ξ
2
ξn

(ξ +
√
v)n+1

dξ ≈ −γ
2

+ log

(
1

n
√
v

)
+

1

n
(32)

for
√
v � 1. Note that the second approximation breaks down for n large; however, in the
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realm of validity of our approximation (derived below), the second term will generally be

much smaller than the first term because of the log dependence on n.

Thus, the leading order behavior is

Frare(n/N, y = 0) =
UbNe

−s2/(2v)
√

2πvn
. (33)

Small n approximation condition: We would like to derive a realm of validity for all of

our approximations. The primary assumption made in simplifying the Dawson’s integral and

exponential integrals is that y0/
√

2v � 1, which is justified if the dominant contribution

to the integral occurs for y0 satisfying this condition. Since we are integrating against a

Gaussian, the integral is sharply peaked around the maximum of

e
2y0s−2y20−s2

2v exp

− (n− 1)e
−y20
2v

e−y
2
0/2v

∫ y0/v
0

evy2/2dy + 1

 . (34)

Thus we would like to find the location of the maximum of the exponent’s argument:

2y0s− 2y20 − s2

2v
− (n− 1)e

−y20
2v

e−y
2
0/2v

∫ y0/v
0

evy2/2dy + 1
. (35)

Define

I = e−y
2
0/2v

∫ y0/v

0

evy
2/2dy. (36)

The equation to be solved for the peak ymax is

0 = s− 2ymax +
(n− 1)ymax

I + 1
e−y

2
max/(2v) +

(n− 1)ymaxIe
−y2max/(2v)

(I + 1)2
. (37)

Note that ymax = O(s/2), with some n dependent correction that necessarily increases the

location of the peak. Thus, for any of these Taylor expansions to hold for any n, we require

at minimum that s�
√
v.

In this case it is true that

ymax =
s

2
+

(n− 1)ymax
2(I + 1)

e−y
2
max/(2v)+

(n− 1)ymaxIe
−y2max/(2v)

2(I + 1)2
<
s

2
+

(n− 1)ymax
2(I + 1)

+
(n− 1)ymaxI

2(I + 1)2
.

(38)
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This may be solved numerically to find the exact location of the peak. However, if we

suppose that the n terms are a small perturbation on the s/2 peak, and (as we have already

assumed) s�
√
v, we are justified in a first order expansion of Dawson’s integral:

ymax <
s

2
+

(n− 1)ymax
2(ymax/v + 1)

+
(n− 1)y2max/v

2(ymax/v + 1)2

<
s

2
+ (n− 1)v. (39)

So long as (n − 1)v � 1, it is indeed true that the new maximum is a small perturbation

around the s/2 peak, and our original first order expansion of I was justified.

Thus, for the small n approximation to hold, we require that ymax <
s
2

+(n−1)v �
√

2v.

Thus, the small n approximation holds for

n�
√

2

v
− s

2v
. (40)

Derivation of the Neutral Site Frequency Spectrum:

In this section we derive the asymptotic form of the neutral site frequency spectrum for

common alleles. To derive this, we start from the assumption of a class that is growing

exponentially (and deterministically), such that

nk−1(t) =
e(q−1)st

qs
. (41)

This class supplies neutral mutants at a rate Un. Thus the expected number of individuals

with lineage sizes n at time t, F (n, t), is simply the integral over the expected number of

mutants introduced at time τ multiplied by the probability for a mutant to reach a lineage

size n in time t− τ :

F (n, t) =

∫ t

−∞
Unnk−1(τ)P (n, t− τ)dτ. (42)

The probability for a lineage to reach size n in a time t is given in Desai and Fisher (2007)

and in the first section of this SI. This gives

F (n, t) = ((q − 1)s)2
∫ t

−∞

Undτ

qs
e(q−1)sτ

(
(1 + (q − 1)s)e(q−1)s(t−τ) − 1− (q − 1)s)

((1 + (q − 1)s)e(q−1)s(t−τ) − 1)

)n
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× e(q−1)s(t−τ)

((1 + (q − 1)s)e(q−1)s(t−τ) − 1)((1 + (q − 1)s)e(q−1)s(t−τ) − 1− (q − 1)s)
. (43)

Defining σ = (q − 1)s, y = (1 + σ)eσk − 1− σ, we obtain

F (n, t) =
σUne

σt

qs

∫ ∞
0

dyyn−1

(y + 1 + σ)(y + σ)n+1
. (44)

An explicit series expansion in powers of n may now explicitly be derived. First we note

that
1

y + 1 + σ
=

1

y + σ

(
1

1 + 1
y+σ

)
=
∞∑
k=0

(−1)k

(y + σ)k+1
, (45)

which gives

F (n, t) =
σUne

σt

qs

∫ ∞
0

∞∑
k=0

dyyn−1(−1)k

(y + σ)n+k+1
=
Une

σt

qs

∞∑
k=2

(−1)k(k − 1)!Γ(n)

σk−1Γ(k + n)
=
Une

σt

qs

∞∑
k=2

(−1)kβ(k, n)

σk−1
,

(46)

where the Beta function β(k, n) is defined as

β(k, n) =
Γ(k)Γ(n)

Γ(n+ k)
. (47)

The above is well approximated by the following expansion:

F (n, t) =
Une

σt

qs

∞∑
k=2

(−1)k(k − 1)!

σk−1nk
≈ Une

σt

qs

(
1

σn2
− 2

σ2n3
+

6

σ3n4
...

)
. (48)

As expected, for σ →∞ or n→∞ we recover the characteristic n−2 decay of an exponen-

tially expanding population. Keeping the leading order term, we obtain

F (n, t) =
Une

σt

qsσn2
⇒ f(x)dx =

Undx

σx2
. (49)

Details concerning forward-time Wright Fisher simulations:

We validate some of our results in the text by comparing theorized predictions to sim-

ulations. Toward this end, we implemented forward-time simulations that closely resemble

evolution in the Wright-Fisher model. The details of the implementation of these simulations
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is described in detail in our previous work (Good et al., 2012).

To measure the transition probabilities and sojourn times of mutations between fitness

classes, an initially clonal population is allowed to evolve for 2(q + 1)〈τk〉 generations until

it reaches its steady state distribution of fitnesses. At this point, a mutation is seeded in at

a frequency x = 0.5 in each fitness class. A new class k is allowed to establish, and shortly

afterwords the mutation reaches some steady frequency xk in this class. The population is

then allowed to evolve until a class containing dk + qe beneficial mutations establishes. At

this point, class k is (roughly) at the population’s mean fitness, and the frequency of the

mutant in this class is recorded. This prescription certifies that frequencies of mutations

attain their long-time steady values long before they are measured. Upon the establishment

of class dk+ q + 1e, the frequency of the mutant in class k+ 1 is recorded. Generally, when

class dk + q + ie establishes, the frequency of the mutant in class k + i is recorded. In this

way, a vector of transitions {xk, xk+1, ..., } is generated, until xi = 0 or xi = 1 in the mean

class for some i. The transition and sojourn probabilities are then collected from 60,000

such runs for each parameter set.

Implementation of our code in Python (used to obtain transition and sojourn times) and

C (used to obtain site frequency spectra) are freely available upon request.
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