Supporting Information

High rate capability caused by surface cubic spinels in Lirich layer-structured cathodes for Li-ion batteries

Bohang Song¹, Hongwei Liu², Zongwen Liu², Pengfei Xiao¹, Man On Lai¹, Li Lu^{1,*}

¹ Materials Science Group, Department of Mechanical Engineering National University of Singapore, Singapore
² School of Chemical and Bimolecular Engineering The University of Sydney, Australia

* Correspondence to <u>luli@nus.edu.sg</u>

Fig. S1 XRD pattern of the P-350 powder.

Fig. S2 TGA plots of pristine, SP-5, SP-10 and SP-30 powders. (Heating rate = $5 \text{ °C} \cdot \text{min}^{-1}$ under an air atmosphere).

Fig. S3 Bright field TEM image of the pristine $Li(Li_{0.2}Mn_{0.54}Ni_{0.13}Co_{0.13})O_2$ particles.

Fig. S4 Charge/discharge curves of first two cycles of P-350 electrode cycled at 50 mA g^{-1} .

Fig. S5 First discharge curves from OCP to 2.0 V started from fresh cells containing these cathodes at 12.5 mA g^{-1} .

Fig. S6 10C-charge/1C-discharge curves after an initial forming cycle of both pristine and SP-5 cathodes cycled between 2.0 and 4.8 V where 1 C corresponds to 250 mA \cdot g⁻¹.

Fig. S7 Surface analysis of chemical composition using XPS technique with respect to pristine, SP-5, SP-10 and SP-30 samples.

Fig. S8 Charge/discharge curves and corresponding dQ/dV plots of SP-5, pristine, LiMn₂O₄ and LiNi_{0.5}Mn_{1.5}O₄ cycled between 2.0 and 4.8 V at 50 mA g⁻¹. As can be seen from dQ/dV plots of first cycle, although the additional peak (marked as \downarrow) in charging process of SP-5 located at 4.64 V is comparable to the peak (4.70 V) only observed for LiNi_{0.5}Mn_{1.5}O₄ sample, they are not located at the exactly same position (two electrodes possess similar loading density). Besides, upon first discharging process, two peaks (4.65 and 4.72 V) observed for LiNi_{0.5}Mn_{1.5}O₄ are both missing for SP-5 sample, indicating different intercalation mechanisms in this voltage region. Additionally, the newly-formed peak (2.76 V) upon discharge for SP-5 sample is in between 2.72 V (LiMn₂O₄) and 2.82

V (LiNi_{0.5}Mn_{1.5}O₄), also indicating spinel behavior rather than exact LiMn₂O₄ or LiNi_{0.5}Mn_{1.5}O₄. The second cycle also suggests similar conclusion.