Structure 16

Supplemental Data

Solution NMR Structure of a Designed Metalloprotein

and Complementary Molecular Dynamics Refinement

Jennifer R. Calhoun, Weixia Liu, Katrin Spiegel, Matteo Dal Peraro, Michael L. Klein, Kathleen G. Valentine, A. Joshua Wand, and William F. DeGrado

Table S1. Interatomic Distances (A) at the Metal Center in di-Zn(II) DF Proteins						
Atoms	NMR	QM/MM -MD	classic-MD	DF2	DF1	_
OE2(E44)—OE2(E104)	1.93	3.26	3.57	2.92	3.31	
OE1(E44)—OE2(E104)	3.25	4.05	4.17	3.04	3.73	
OE1(E11)—OE1(E104)	2.97	3.72	3.47	3.35	2.40	
OE2(E11)—OE1(E104)	1.60	3.13	3.16	2.68	3.55	
OE1(E44)—OE1(E74)	2.46	3.14	2.94	3.22	2.79	
OE2(E44)—OE1(E74)	3.74	4.26	3.96	2.66	4.05	
OE1(E11)—OE2(E74)	2.40	3.47	3.35	3.00	3.71	
OE2(E11)—OE2(E74)	3.74	3.25	3.16	2.91	2.87	
OE1(E104)—OE1(E74)	4.19	3.85	3.32	4.09	3.54	
OE2(E104)—OE1(E74)	3.74	3.25	2.96	3.01	3.62	
OE1(E104)—OE2(E74)	3.18	3.57	3.96	2.92	3.55	
OE2(E104)—OE2(E74)	3.80	4.25	4.53	3.03	3.74	

Table S1. Interatomic Distances (Å) at the Metal Center in di-Zn(II) DF Proteins

** DF2 E11'=DFsc11, DF2 E11=DFscE44 DF2 E37=DFscE74, DF2 E37'=DFscE104 DF1 PDB 1EC5, DF2 1u7J1

Table S2. Upper and Lower Limits of Bond Lengths Used to Calculate the di-Zn(II) DFsc Structure (All Measurements in Å)

n1	Zn	12
2.10 ± 0.40	E11-OE1	2.10 ± 0.40
2.10 ± 0.40	E11-OE2	2.10 ± 0.40
2.10 ± 0.40	E74-OE2	2.10 ± 0.40
2.10 ± 0.20	H107-ND1	2.10 ± 0.20
2.10 ± 0.40	E104-OE1	2.10 ± 0.40
	$\begin{array}{c} 1 \\ \hline 2.10 \pm 0.40 \\ 2.10 \pm 0.40 \\ 2.10 \pm 0.40 \\ 2.10 \pm 0.20 \\ 2.10 \pm 0.20 \\ 2.10 \pm 0.40 \end{array}$	$\begin{array}{c ccccc} n1 & Zr \\ \hline 2.10 \pm 0.40 & E11-OE1 \\ \hline 2.10 \pm 0.40 & E11-OE2 \\ \hline 2.10 \pm 0.40 & E74-OE2 \\ \hline 2.10 \pm 0.20 & H107-ND1 \\ \hline 2.10 \pm 0.40 & E104-OE1 \\ \hline \end{array}$

Zn-Zn bond length 4.0 ± 0.20

Zn 1	Distance (Å)	Zn 2	Distance (Å)
E44-OE1	2.19 ± 0.10	E11-OE1	3.37 ± 0.33
E44-OE2	2.10 ± 0.07	E11-OE2	2.06 ± 0.06
E74-OE1	2.10 ± 0.06	E74-OE2	2.07 ± 0.06
H77-ND1	2.32 ± 0.13	H107-ND1	2.29 ± 0.12
E104-OE2	2.07 ± 0.07	E104-OE1	2.11 ± 0.07
$Zn1-Zn2 = 3.59 \pm 0.19$			

Table S3. Average Zn(II) Ligand Distances after Classical MD Simulation (See for Comparison with Table 1 in the Manuscript)

Table S4. Charges at the Dizinc Site

Zn	1.35 (2.0)		
His		Glu	
ND1	-0.6532 (-0.5432)	OE1	-0.7400 (-0.8188)
CE1	0.1835 (0.1635)	OE2	-0.8400 (-0.8188)
HE1	0.1535 (0.1435)	CD	0.7600 (0.8054)
NE2	-0.3395 (-0.2795)	CG	0.1200 (0.0136)
HE2	0.3339 (0.3339)	HG	-0.0200 (-0.0425)
CD2	-0.1407 (-0.2207)	CB	0.0860 (0.0560)
HD2	0.1962 (0.1862)	HB	-0.0053 (-0.0173)
CG	0.2568 (0.1868)	CA	0.0597 (0.0397)
CB	0.0874 (-0.0074)	HA	0.1305 (0.1105)
HB2	0.0467 (0.0367)	Total charge	-0.74 (-1.0)
Total charge	0.13 (0.00)		

Original parm99 (AMBER) charges are shown in parenthesis.

(a) Helix 1-2				
Origins	DFsc-NMR	DFsc MD	DFsc target	DF2
			designed model	l
6-10	8.9	11.1 ± 0.4	10.5	10.3
6-9	9.2	11.0 ± 0.4	10.5	10.7
7-9	8.7	11.0 ± 0.4	10.6	10.4
7-8	8.9	10.8 ± 0.4	10.4	10.6
8-8	8.8	10.8 ± 0.4	10.4	10.3
8-7	8.3	10.7 ± 0.4	10.4	10.5
8-6	8.0	10.8 ± 0.4	10.5	11.0
9-7	8.6	10.6 ± 0.4	10.6	10.3
9-6	8.0	10.6 ± 0.4	10.5	10.6
10-6	8.4	10.5 ± 0.4	10.6	10.5
10-5	8.2	10.4 ± 0.4	10.6	10.4
(b)Helix 3-4				
Distance	DFsc-NMR	DFsc MD	DFsc target	DF2
between			designed model	l
origins [Å]				
6-10	10.6	11.6 ± 0.3	11.3	10.4
6-9	10.6	11.5 ± 0.3	11.2	10.8
7-9	11.1	11.6 ± 0.3	11.3	10.5
7-8	11.1	11.6 ± 0.3	11.2	10.7
8-8	11.3	11.7 ± 0.3	11.4	10.4
8-7	11.3	11.5 ± 0.3	11.2	10.6
9-7	11.0	11.6 ± 0.3	11.4	10.3
9-6	10.9	11.4 ± 0.3	11.2	10.7
10-6	10.9	11.6 ± 0.3	11.3	10.6
10-5	11.0	11.3 ± 0.3	11.1	10.8

Table S5. Distances between Helix 1 and 2 and Helix 3 and 4 for Central 5 Origins [Å] (see Figure S2 and Experimental Procedures)

The closest distance found in the NMR-model is indicated in bold.

NOE violations: A total of sixteen violations of over 1 Å were observed relative to the NMR restraints. Of these, most all involved the sidechains of surface-exposed residues, although a few involved buried residues, which helped identify particularly flexible regions, in which sidechain conformations vary in different snapshots of the MD simulation. Table S6 lists the nine deviations that are greater than 2 Å. In particular, the flexibility of Y51 is interesting, as this residue appears to form an interaction with Fe(III) under some conditions (unpublished results).

Atoms	Distance	Apparent cause
	violation	
V41 (HG1) – K82 (HA)	2-3 Å	Surface-exposed
Q13 (H) – A43(HB)	2-3 Å	Surface-exposed
K76 (HE2) – H107(HE1)	3-4 Å	Surface-exposed
G88 (H) – L33(HD22)	3-4 Å	Gly in flexible, surface-exposed loop
N115(H) – D2(HA)	3-4 Å	N- and C-terminal residues, surface-exposed
I37(HA) – S85(HB)	2-3 Å	Internal dynamics
H107(H) – Y51(HE)	2-3 Å	Internal dynamics
L36(HD2) – F93(HE1)	2-3 Å	Internal dynamics
L101(HD2) – Y18(HE2)	3-4 Å	Internal dynamics, alternate rotamer of L101
		satisfies NOE restraint.

Table S6. NOE Violations Observed in NMR Structure Determination

Figure S1. Superposition of di-Zn(II) DFsc Calculated NMR Structure (Gray) and MD Model of di-Zn(II) DFsc (Green)

The helices are labeled H1-H4. The backbone rmsd for the calculated NMR structure and MD model is 1.1 Å.

Figure S2. DFsc Calculated NMR Structure Trace of C α of residues 4-21 (helix 1), 37-54 (helix 2), 67-84 (helix 3), and 95-112 (helix 4). Axis points are shown as spheres, and the central five axis points of helix 1 and 2 are enlarged and numbered.