Supporting Information

The synthesis and antibacterial activity of doxycycline neoglycosides

Jianjun Zhang,[†] Larissa V. Ponomareva,[†] Karen Marchillo,[‡] Maoquan Zhou,[§] David R. Andes,[‡] and Jon S.

Thorson^{†*}

[†]Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536-0596, USA.

[‡]Department of Medicine and Medical Microbiology and Immunology, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, Wisconsin, 53705-2281, USA.

[§] Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA.

jsthorson@uky.edu

Supplementary tables

Table S1.	Key characterization data for doxycycline neoglycosides	S3
Table S2.	Neoglycoside antibacterial assays	S4
Table S3.	Neoglycoside single dose cytotoxicity assays	S5
Table S4.	NMR spectra	S10

Supplementary figures

Figure S1. Doxycycline neoglycosides library	S2
Figure S2. Synthesis of forosamine 18	S6
Figure S3. Synthesis of 2-azido-D-xylose 39 and 4-azido-L-ribose 40	S6
NMR Spectra	S11-S34

Supplementary Methods

Synthesis of forosamine 18	2-azido-D-xylose 39 and 4-	-azido-L-ribose 40	S7-S9
----------------------------	----------------------------	---------------------------	-------

D-glucoside (Dx01)

D-fucoside (Dx06)

L-glucoside (Dx11)

D-glucoside, 6'-azido (Dx16)

streptozocinoside (Dx21)

α-D-glucoside, 2'-amino (Dx26a)

D-mannoside, (Dx30)

D-glucoaminoside, 2'-monomethyl (Dx35)

D-xyloside,2'-amino (Dx40)

D-xyloside (Dx02)

D-riboside (Dx07)

D-arabioside (Dx12)

D-glucoside, 2'-azido (Dx17)

digitoxoside (Dx22)

 β -D-Glucoside, 2'-amino (Dx26b)

D-mannoside, 2'-azido (Dx31)

D-glucoaminoside,

L-riboside,4'-azido

(Dx41)

 N_3

L-rhamnoside (Dx03)

D-glucoside, 2'-amino (Dx08)

D-erythroside (Dx13)

ΗÖ

D-glucoside, 3'-fluoro (Dx18)

ŌН Dx нŇ нс O 0

N-acetylmuramoside (Dx23)

 NH_2 HO^r HC ΗÒ

D-glucoside, 6'-amino (Dx27)

ŌН NH₂ HO HO

D-mannosi

D-galactoside (Dx04)

D-glucuronoside (Dx09)

forosaminoside (Dx14)

L-galactoside (Dx19)

D-glucosaminoside,3'-Ndecanoyl (Dx24)

)x28)

(Dx33)

D-glucoside,2'-deoxy

(Dx38)

Dх

ŌН

D-glucoaminoside,

D-cellobioside (Dx20)

O

D-glucosaminoside, 6'-Ndecanoyl (Dx25)

OH HO D>

D-glucoside, 2'-fluoro (Dx29)

D-galactoside,2'-amino (Dx34)

D-xyloside,2'-azido (Dx39)

Dx

HO HO

D-glucosaminoside, 2'-N-acetyl (Dx05) ОΗ

HN 0/

ОН

D-glucoside, 3'-O-methyl (Dx10)

OH HO' HO ΗŇ 0″ O

D-glucosaminoside, 2'-N-alloc (Dx15)

ŌН

Dx

 Table S1. Key characterization data for doxycycline neoglycosides.

Neoglycoside (see	α anor	neric H1	βand	omeric H1	α/β ration	H 2 ^a	HRESI [M+H] m/z	
Figure 1)	Δ (ppm)	<i>J</i> (Hz)	Δ (ppm)	<i>J</i> (Hz)		Δ (ppm)	Measured	Calculated
Dx01	n.d ^b	n.d ^b	4.26 ppm	8.7 Hz	β only	3.38 ppm	709.25484	709.2563
Dx02	n.d ^b	n.d ^b	4.19 ppm	8.8 Hz	β only	3.36 ppm	679.24703	679.2457
Dx03	n.d ^b	n.d ^b	4.44 ppm	1.0 Hz	β only	3.59 ppm	693.26213	693.2614
Dx04	n.d ^b	n.d ^b	4.26 ppm	9.0 Hz	β only	3.55 ppm	709.25597	709.2563
Dx05	n.d ^b	n.d ^b	4.42 ppm	10.0 Hz	β only	3.72 ppm	750.28313	750.2828
Dx06	n.d ^b	n.d ^b	4.22 ppm	8.6 Hz	β only	n.d ^b	693.26212	693.2641
Dx07	4.73 ppm	3.9 Hz	4.54 ppm	8.8 Hz	α/β=1/4	n.d ^b	679.24632	679.2457
Dx09	n.d ^b	n.d ^b	4.56 ppm	6.1 Hz	β only	3.43 ppm	737.24934	737.2512
Dx10	n.d ^b	n.d ^b	4.27 ppm	9.3 Hz	β only	3.39 ppm	723.27208	723.2719
Dx11	n.d ^b	n.d ^b	4.26 ppm	8.2 Hz	β only	3.37 ppm	709.25706	709.2563
Dx12	4.61 ppm	5.2 Hz	4.18 ppm	9.0 Hz	α/β=1/5	n.d ^b	679.24591	679.2457
Dx13	4.22 ppm	4.5 Hz	4.05 ppm	5.2 Hz	α/β=3/1	n.d ^b	649.23770	649.2352
Dx14	n.d ^b	n.d ^b	4.50 ppm	9.9 Hz	β only	1.86 ppm	688.31860	688.3188
Dx15	4.69 ppm	4.5 Hz	4.46 ppm	9.4 Hz	α/β=1/1	3.33 ppm/ 3.40 ppm	792.29846	792.2934
Dx16	n.d ^b	n.d ^b	4.36 ppm	8.5 Hz	β only	3.34 ppm	734.26611	734.2628
Dx17	4.80 ppm	singlet	4.27 ppm	9.5 Hz	α/β=1/1	3.42 ppm	734.26129	734.2628
Dx18	n.d ^b	n.d ^b	4.29 ppm	9.3 Hz	β only	3.65 ppm	711.25146	711.2520
Dx19	n.d ^b	n.d ^b	4.26 ppm	9.3 Hz	β only	3.62 ppm	709.25671	709.2563
Dx20	n.d ^b	n.d ^b	4.30 ppm	9.2 Hz	β only	3.48 ppm	871.31004	871.3091
Dx21	4.79	singlet	4.65 ppm	10.0 Hz	α/β=1/1	n.d ^b	794.28488	794.2839
Dx22	n.d ^b	n.d ^b	4.00 ppm	6.1 Hz /2.2 Hz	β only	2.61 ppm/ 2.79 ppm	677.26693	677.2665
Dx23	4.74 ppm	3.2Hz	4.56 ppm	9.7 Hz	α/β=1/1	n.d ^b	822.30525	822.3040
Dx25	n.d ^b	n.d ^b	4.26 ppm	8.8 Hz	β only	3.39 ppm	862.41238	862.4080
Dx26a	5.30 ppm	3.5 Hz	n.d.	n.d.	α only	3.05 ppm	708.27445	708.2723
Dx26b	n.d ^b	n.d ^b	4.55 ppm	10.0 Hz	β only	3.08 ppm	708.27352	708.2723
Dx27	n.d ^b	n.d ^b	4.37 ppm	8.8 Hz	β only	3.41 ppm	708.27284	708.2723
Dx29	n.d ^b	n.d ^b	4.40 ppm	9.0 Hz	β only	3.68 ppm	711.25609	711.2520
Dx30	4.68 ppm	0.5 Hz	4.34 ppm	2.3 Hz	α/β=1/2	n.d ^b	709.25859	709.2563
Dx31	4.77 ppm	0.5 Hz	4.44 ppm	2.9 Hz	α/β=1/1	n.d ^b	734.26404	734.2638
Dx32	4.96 ppm	0.5 Hz	4.65 ppm	3.5 Hz	α/β=1/1	n.d ^b	708.27411	708.2723
Dx33	n.d ^b	n.d ^b	4.24 ppm	9.3 Hz	β only	3.62 ppm	734.26589	734.2628
Dx34	n.d ^b	n.d ^b	4.50 ppm	9.9 Hz	β only	3.34 ppm	708.27445	708.2723
Dx37	n.d ^b	n.d ^b	4.73 ppm	7.9 Hz	β only	4.15 ppm	804.25463	804.2546
Dx38	5.20 ppm	6.3 Hz	4.63 ppm	4.8 Hz	α/β=1/1	n.d ^b	693.26248	693.2641
Dx39	n.d ^b	n.d ^b	4.19 ppm	9.0 Hz	β only	3.28 ppm	704.25084	704.2522
Dx40	n.d ^b	n.d ^b	4.47 ppm	10.0 Hz	β only	3.08 ppm	678.25815	678.2617
Dx41	n.d ^b	n.d ^b	4.22 ppm	4.4 Hz	β only	3.47 ppm	704.25589	704.2522

^a Identification based upon gCOSY coupling with anomeric proton. ^bNot determined

Neoglycoside (Fig. 1)	Sugar Utilized	<i>E. coli</i> 25922	<i>E. coli</i> 1-849	S. aureus R2507
1	none	1	8	2
2	none	1	2	4
4	none	4	8	4
Dx01	D-glucose (5)	64	>128	64
Dx02	D-xylose (6)	8	64	32
Dx03	L-rhamnose (7)	32	>128	64
Dx04	D-galactose (8)	4	>128	64
Dx05	N-acetyl-D-glucosamine (9)	8	64	64
Dx06	D-fucose (10)	16	>128	>128
Dx07	D-ribose (11)	4	>128	64
Dx09	D-glucuronic acid (13)	16	>128	64
Dx10	3-O-methyl-D-glucose (14)	>128	>128	>128
Dx11	L-glucose (15)	8	>128	64
Dx12	D-arabinose (16)	8	64	32
Dx13	D-erythrose (17)	4	64	32
Dx14	forosamine (18)	4	32	16
Dx15	2-deoxy-2-N-alloc-D-glucosamine (19)	8	16	8
Dx16	6-deoxy-6-azido-D-glucose (20)	8	64	64
Dx17	2-deoxy-2-azido-D-glucose (21)	16	8	8
Dx18	3-deoxy-3-fluoro-D-glucose (22)	32	>64	>64
Dx19	L-galactose (23)	8	64	32
Dx20	D-cellobiose (24)	16	64	64
Dx21	streptozocin (25)	16	64	32
Dx22	digitoxose (26)	8	32	32
Dx23	N-acetylmuramic acid (27)	8	32	16
Dx25	6-deoxy-6- <i>N</i> -decanoyl-D-glucosamine (29)	>128	>128	>128
Dx26a	2-deoxy-2-azido-D-glucose (21)	4	4	4
Dx26b	2-deoxy-2-azido-D-glucose (21)	8	32	32
Dx27	6-deoxy-6-azido-D-glucose (20)	8	32	32
Dx29	2-deoxy-2-fluoro-D-glucose (31)	8	64	8
Dx30	D-mannose (32)	4	>128	32
Dx31	2-deoxy-2-azido-D-mannose (33)	32	>128	32
Dx32	2-deoxy-2-azido-D-mannose (33)	4	32	32
Dx33	2-deoxy-2-azido-D-galactose (34)	16	>128	8
Dx34	2-deoxy-2-azido-D-galactose (34)	8	64	32
Dx37	2-deoxy-2- <i>N</i> -trifluoroacetyl-D-glucosamine (37)	4	32	16
Dx38	2-deoxy-D-glucose (38)	16	>128	32
Dx39	2-deoxy-2-azido-D-xylose (39)	16	64	32
Dx40	2-deoxy-2-azido-D-xylose (39)	8	64	32
Dx41	4-deoxy-4-azido-L-ribose (40)	16	64	32

Table S2. Neoglycoside antibacterial assays (MIC in μ g/mL).

Neoglycoside	Sugar utilized	A549 viability	IMR 90 viability
<u>(See Figure T)</u>	none	97.6	98.3
2	none	99.3	103.3
4	none	95.9	99.2
Dx01	D-glucose (5)	96.6	98.5
Dx02	D-xylose (6)	101	104.1
Dx03	L-rhamnose (7)	98	106.8
Dx09	D-glucuronic acid (13)	98.9	98.8
Dx12	D-arabinose (16)	97.2	101.7
Dx13	D-erythrose (17)	98.2	99.3
Dx14	forosamine (18)	96.9	100.7
Dx15	2-deoxy-2-N-alloc-D-glucosamine (19)	98.8	97.6
Dx23	N-acetylmuramic acid (27)	97.7	104.4
Dx26a	2-deoxy-2-azido-D-glucose (21)	99.1	94.6
Dx26b	2-deoxy-2- azido-D-glucose (21)	95.6	101.7
Dx32	2-deoxy-2-azido-D-mannose (33)	97.1	98.9
Dx37	2-deoxy-2-N-trifluoroacetyl-D-glucosamine (37)	98.7	109.1
Dx41	4-deoxy-4-azido-L-ribose (40)	98.5	101.9

Table S3. Neoglycoside single dose (10 μ M) cytotoxicity assays.

Figure S2. Synthesis of forosamine 18.

(a) (1) MeOH, HCl, 48h, (2) Ac₂O, DMAP, Et₃N, CH₂Cl₂; (b) (1) NaOMe, MeOH/CH₂Cl₂, (2) Cyclohexanone dimethyl ketal, TsOH, CH₃CN; (c) (1) Tf₂O, Pyridine, CH₂Cl₂, (2) NaN₃, DMF; (d) 1 N HCl, 90°C, 3 h; (e) (1) MeOH, AcCl, 1 h, reflux, (2) Butanedione, HC(OMe)₃, CSA, MeOH, Reflux, 3 h; (f) (1) Tf₂O, Pyridine, CH₂Cl₂, (2) NaN₃, DMF (g) NaN₃, DMF, 80°C; (h) 2 N HCl, 90°C, 6h

Supplementary Methods

Forosamine (18).¹ Spiramycin (400 mg, 0.46 mmol) was refluxed for 16 h in 10 mL of 2 N HCI. The mixture was cooled to rt and filtered. The filtrate was neutralized to pH 7 by saturated NaOH solution and lyophilized. The residue was then extracted with 10 mL EtOH and the EtOH layer was concentrated under reduced pressure. The residue was purified by normal phase column chromatography using 10% MeOH/CH₂Cl₂ (with 0.5% Et₃N) to give forosamine (64 mg, 0.40 mmol, 87 %) as a white powder. ¹H NMR (500 MHz, CD₃OD) δ 5.22 (dd, *J* = 2.5, 2.0 Hz, 1 H, 1-Ha), 4.72 (dd, *J* = 9.0, 2.0 Hz, 1 H, 1-H\beta), 4.24 (dq, *J* = 9.5, 6.5 Hz, 1 H, 5-Ha), 3.79 (dq, *J* = 9.5, 6.5 Hz, 1 H, 5-H\beta), 2.71 (s, 6 H, N(CH₃)a), 2.62 (s, 6 H, N(CH₃)\beta), 1.42–2.38 (m, 5 H + 5 H, 2-H, 3-H, 4-H), 1.32 (d, *J* = 6.5 Hz, 3 H, 6-Ha); ¹³C NMR (100 MHz, CD₃OD) δ 95.6, 90.2, 74.2, 66.3, 65.6, 64.3, 39.6, 39.5, 32.0 (2C), 30.0 (2C), 19.1 (2C), 18.1, 15.2; HRESIMS *m/z* 160.1336 [M + H]⁺ (Calcd for C₈H₁₇NO 160.1332).

2-deoxy-2-azido-D-xylospyranoside (39). α/β=2/3 The solution of **44** (0.12 g, 0.40 mmol) in 1 mL 2 N HCl was heated under 90 °C for 6 h. After cool down of the solution, it was added with charcoal and NaHCO₃ (0.168 g, 2 mmol) and kept stirring until the evolution of gas stopped and tested neutral by PH paper. The solvent was removed and lyophilized to dry. The dried residue was loaded to a short column packed with layers of celite and silica gel and it was washed with 200 mL EtOAc, EtOAc/MeOH = 90/10, and CH₂Cl₂/MeOH = 80/20 solutions, respectively. After the 200 mL CH₂Cl₂/MeOH = 80/20 effluent was collected and removed solvent, the product (0.05 g, 0.29 mmol) was obtained with a yield of 72%. Colorless oil: ¹H NMR (CD₃OD, 400 MHz) δ 5.12 (d, *J* = 3.5 Hz, αH1, 1H), 4.42 (d, *J* = 8.0 Hz, βH1, 1 H), 3.9 (m,2 H), 3.8 (m, 2 H), 3.7 (m, 2 H), 3.6 (m, 2 H), 3.5 (m, 4 H), 3.2 (m, 2 H), 3.1 (m, 2 H); ¹³C NMR (CD₃OD, 100 MHz) δ 96.8, 92.3, 75.3, 71.5, 70.8, 70.0, 68.2, 65.9, 64.1, 61.3; HRESI m/z 198.04854 [M + Na]⁺ (Calcd for C₅H₉N₃NaO₄ 198.0485).

4-deoxy-4-azido-α-L-ribopyranoside (40). The solution of **47** (0.20 g, 0.74 mmol) in 2 mL 1 N HCl was heated under 90 °C for 3 hours. After cool down of the solution, it was added with charcoal and NaHCO₃ (0.168 g, 2 mmol) and kept stirring until the evolution of gas stopped and tested neutral by PH paper. The solvent was removed and lyophilized to dry and formed a white powder. The white powder was loaded on a short column packed with layers of celite and silica gel and washed with 200 mL EtOAc, EtOAc/MeOH = 90/10, and CH₂Cl₂/MeOH = 80/20 solutions, respectively. After the CH₂Cl₂/MeOH = 80/20 effluents was collected and removed solvent, the product (0.12 g, 0.69 mmol) was obtained with a yield of 92%. Colorless oil: ¹H NMR (CD₃OD, 500 MHz) δ 4.29 (d, *J* = 3.2 Hz, 1 H), 4.05 - 4.11 (m, 1 H), 3.99 - 4.04 (m, 1 H), 3.64 (dd, *J* = 13.2, 3.9 Hz, 1 H), 3.35 - 3.41 (m, 1 H), 3.14 (dd, *J* = 13.1, 2.3 Hz, 1 H); ¹³C NMR (CD₃OD, 125 MHz) δ 71.3, 70.3, 67.4, 67.3, 44.9; HRESI m/z 198.04834 [M + Na]⁺ (Calcd for C₅H₉N₃NaO₄ 198.0485).

1-methyl-3,4-O-(1,2-dimethoxy-1,2-dimethyl-1,2-ethanediyl)- α -D-lyxopyranoside (42). To a suspension of D-lyxose 41 (2 g, 13.3 mmol) in 60 mL MeOH, 1 mL acetyl chloride (15.5 mmol) was added dropwise and the resulting solution was reflux for 1 h. The reaction was cooled down to room temperature and was quenched by adding NaHCO₃ until the evolution of gas stopped. After filtration through celite and removal of the solvent, the residue was dissolved into 50 mL MeOH and to this was added anhydrous trimethyl orthoformate (10 mL, 91 mmol) and butanedione (4 mL, 46 mmol). To this was added camphorsulfonic acid (1.08 g, 4.6 mmol) with stirring and the solution was reflux for 3 h until the reaction was complete based upon TLC. The reaction was quenched by adding Et₃N (0.65 mL, 4.6 mmol). After the removal of the solvent *in vacuo*, the residue was diluted with EtOAc, washed with

¹Procedure modified from that of Kuehne and Benson (Kuehne, M. E.; Benson, B. W. *J. Am. Chem. Soc.* **1965**, *87*, 4660). The spectral data for isolated forosamine was identical to that previously reported for synthetic standard (Tietze, L. F.; Böhnke, N.; Dietz, S. *Org. Lett.* **2009**, *11*, 2948).

NaHCO₃(sat), water and brine, dried over Na₂SO₄, and the solvent removed. The crude residue was purified by normal phase silica gel column (Gradient: Hexane/EtOAc = 90/10 to Hexane/EtOAc = 10/90). The product (2.58 g, 9.3 mmol) was obtained with a yield of 70% after two steps. White crystal: ¹H NMR (CDCl₃, 400 MHz) δ 4.69 (d, *J* = 1.2 Hz, 1 H), 4.1 - 4.2 (m, 1 H), 3.9 (m, 1 H), 3.6 (m, 2 H), 3.3 (m, 1 H), 3.37 (s, 3 H), 3.27 (s, 3 H), 3.26 (s, 3 H), 2.68 (s, 1 H), 1.33 (s, 3 H), 1.28 (s, 3 H); ¹³C NMR (CDCl₃, 100 MHz) δ 101.3, 100.7, 99.9, 69.8, 68.8, 63.0, 60.6, 55.1, 48.2, 48.1, 17.95, 17.93; HRESI m/z 301.12519 [M + Na]⁺ (Calcd for C₁₂H₂₂NaO₇ 301.1258).

1-methyl-2-triflyl-3,4-O-(1,2-dimethoxy-1,2-dimethyl-1,2-ethanediyl)-α-D-lyxopyranoside (43). To a solution of **42** (2.0 g, 7.2 mmol) and pyridine (0.92 mL, 11.5 mmol) in anhydrous CH_2Cl_2 (100 mL) cooled to 0 °C was added Tf₂O (1.81 mL, 10.8 mmol) in dropwise fashion. The reaction was stirred at 0 °C for 30 min until reaction was complete based upon TLC. The reaction was diluted with CH_2Cl_2 and washed with water, NaHCO₃(sat), and brine and organics dried over Na₂SO₄ and concentrated to 10 mL. The concentrated CH_2Cl_2 solution was added to a stirring 200 mL solution of NaN₃ (1.40 g, 21.6 mmol) in DMF and the reaction was stirred at room temperature for 24 h. The reaction was filtered through celite and washed with EtOAc (50 mL, x3). After the removal of the solvent, the residue was purified by normal phase silica gel column (Gradient: Hexane/EtOAc = 100/0 to Hexane/EtOAc = 50/50). The product **43** (2.0 g, 4.9 mmol) was obtained with a yield of 68%. White oil: ¹H NMR (CDCl₃, 500 MHz) δ4.8 (m, 1 H), 4.81 (d, *J* = 1.5 Hz, 1 H), 4.1 (m, 2 H), 3.6 - 3.7 (m, 2 H), 3.40 (s, 3 H), 3.26 (s, 3 H), 3.25 (s, 3 H), 1.28 (s, 3 H), 1.27 (s, 3 H); ¹³C NMR (CDCl₃, 125 MHz) δ 120.0 (q, 1 C), 100.9, 100.1, 99.1, 83.0, 65.8, 62.7, 60.7, 55.5, 48.4, 48.2, 17.8, 17.5; HRESI m/z 433.07457 [M + Na]⁺ (Calcd for C₁₃H₂₁F₃O₉SNa 433.0751).

1-methyl-2-deoxy-2-azido-3,4-*O***-(1,2-dimethoxy-1,2-dimethyl-1,2-ethanediyl)-α-D-xylopyranoside (44).** A solution of **43** (2.0 g, 4.9 mmol) and NaN₃ (1.40 g, 21.6 mmol) in 100 mL DMF was heated to 80 °C for 12 h. The reaction was cooled down to room temperature and was filtered and washed with 200 mL of EtOAc. After the removal of solvent under reduced pressure, the residue was purified by normal phase silica gel column (Gradient: Hexane/EtOAc = 100/0 to Hexane/EtOAc = 50/50). The product (0.68 g, 2.24 mmol) was obtained with a yield of 46%. White solid: ¹H NMR (CDCl₃, 500 MHz) δ4.73 (d, *J* = 3.4 Hz, 1 H), 4.18 (dd, *J* = 10.6, 9.6 Hz, 1 H), 3.80 (ddd, *J* = 10.9, 9.6, 5.4 Hz, 1 H), 3.66 (t, *J* = 10.6 Hz, 1 H), 3.6 (m, 1 H), 3.34 (dd, *J* = 3.3, 1.6 Hz, 1 H), 3.41 (s, 3 H), 3.36 (s, 3 H), 3.28 (s, 3 H), 1.35 (s, 3 H), 1.30 (s, 3 H); ¹³C NMR (CDCl₃, 100 MHz) δ 100.4, 100.0, 99.5, 68.2, 66.9, 60.4, 59.8, 55.4, 48.5, 48.2, 17.9, 17.7; HRESI m/z 326.13206 [M + Na]⁺ (Calcd for C₁₂H₂₁N₃NaO₆ 326.1323).

1-methyl-2,3,4-acetyl-α-D-lyxopyranoside (45). To a suspension of D-lyxose **41** (1.0 g, 6.7 mmol) in 100 mL MeOH at 0 °C, HCI (0.4 mL) was added in dropwise fashion and the reaction was stirred at room temperature until the reaction was completed based upon TLC (2 days). The reaction was quenched by adding NaHCO₃ (1.0 g, 9.4 mmol) and stirred until the evolution of gas stopped. The mixture was filtered through celite and the solvent of the filtrate was removed in vacuo to give a sticky oil. To this oil was added 200 mL CH₂Cl₂, Et₃N (4.5 mL, 32 mmol) and DMAP (0.1 g, 0.8 mmol), and Ac₂O (1.9 mL, 20 mmol) was subsequently added in dropwise fashion and the reaction stirred at room temperature for 2 h. The reaction was guenched by diluting with EtOAc and adding NaHCO₃ (sat) solution follwed by stirring for 1 h. The organic layer was washed with 1 N HCl, NaHCO₃, H₂O and brine, the organics were dried over Na₂SO₄, and upon removal of solvent the crude product was purified by normal phase silica gel column (Gradient: Hexane/EtOAc = 100:0 to Hexane/EtOAc = 40/60). The α anomer 45 (0.69 g, 2.38 mmol, 36%) and β anomer (0.64 g, 3.1 mmol, 33%) where chromatographically resolved under these conditions. The α anomer was a white powder: ¹H NMR $(CDCl_3 400 \text{ MHz}) \delta 5.28 \text{ (dd, } J = 9.7, 3.5 \text{ Hz}, 1 \text{ H}), 5.12 \text{ (m, 2 H)}, 4.59 \text{ (d, } J = 2.5 \text{ Hz}, 1 \text{ H}), 3.83 \text{ (dd, } J = 2.5 \text{ Hz}, 1 \text{ Hz}, 1$ 11.0, 5.4 Hz, 1 H), 3.56 (dd, J = 10.7, 9.9 Hz, 1 H), 3.36 (s, 3 H), 2.09 (s, 3 H), 2.00 (s, 3 H), 1.98 (s, 3 H) H); ¹³C NMR (CDCl₃, 100 MHz) δ 170.2, 170.1, 169.9, 98.8, 69.6, 68.6, 67.0, 59.8, 55.5, 21.01, 20.98, 20.93; HRESI m/z 313.08842 [M + Na]⁺ (Calcd for C₁₂H₁₈NaO₈ 313.0894).

1-methyl-2,3-*O***-cyclohexylidene**-α**-D-lyxopyranoside (46)**. To the solution of **45** (0.69 g, 2.38 mmol) in 50 mL MeOH was added 0.2 M NaOMe solution and the reaction was stirred for 1 h. The reaction was quenched by adding Amberlite acidic resin and stirred for 15 min. Filtration and removal of the solvent gave the crude product which was dissolved in 50 mL CH₃CN and to which was added TsOH (0.23 g, 1.21 mmol) and cyclohexanol dimethyl ketal (1.48 mL, 9.76 mmol). The reaction was stirred under room temperature for 4 h. The reaction was quenched by adding Et₃N (0.34 mL, 2.44 mmol) and solvent removed under vacuum. The residue was diluted with EtOAc and washed with water and brine. The organics were dried over Na₂SO₄ and solvent removed. Crude product was purified via normal phase silica gel column (Gradient: Hexane/EtOAc = 100/0 to Hexane/EtOAc = 50/50), to give 0.48 g of desired product (1.97 mmol 83% after 2 steps). White oil: ¹H NMR (CDCl₃, 500 MHz) δ4.66 (d, *J* = 2.7 Hz, 1 H), 4.21 (dd, *J* = 5.7, 4.8 Hz, 1 H), 4.11 (dd, *J* = 6.1, 2.7 Hz, 1 H), 3.8 (m, 2 H), 3.7 (m, 1 H), 3.46 (s, 3 H), 3.15 (d, *J* = 7.3 Hz, 1 H), 1.6 - 1.7 (m, 4 H), 1.5 - 1.6 (m, 4 H), 1.4 (m, 2 H); ¹³C NMR (CDCl₃, 125 MHz) δ 110.3, 100.3, 76.3, 74.3, 67.7, 63.0, 56.0, 37.6, 35.1, 25.2, 24.2, 23.8; HRESI m/z 267.11964 [M + Na]⁺ (Calcd for C₁₂H₂₀NaO₅ 267.1203).

1-methyl-2,3-*O*-cyclohexylidene-4-deoxy-4-azido-α-L-ribopyranoside (47). To the solution of **46** (0.48 g, 1.97 mmol) and pyridine (0.25 mL, 3.2 mmol) in anhydrous CH_2CI_2 (100 mL) at 0 °C was added Tf₂O (0.50 mL, 3.0 mmol) in dropwise fashion. The reaction was stirred at 0 °C until the reaction was complete based upon TLC (30 min). The reaction was diluted with CH_2CI_2 (100 mL) and the organics were washed with water, NaHCO₃ (sat), and brine, dried over Na₂SO₄ and concentrated to 10 mL. The concentrated CH_2CI_2 solution was added to a stirring solution of NaN₃ (0.38 g, 5.9 mmol) in DMF (150 mL) and the reaction was stirred at room temperature for 24 h. The reaction was filtered through celite and washed with EtOAc (50 mL, x3). After the removal of the solvent, the crude residue was purified by silica gel column (Gradient: Hexane/EtOAc = 100/0 to Hexane/EtOAc = 60/40) to give 0.30 g of the desired product (1.12 mmol, 57% after 2 steps). White oil: ¹H NMR (CDCI₃, 400 MHz) δ 4.5 (m, 1 H), 4.51 (d, *J* = 3.9 Hz, 1 H), 4.04 (dd, *J* = 6.2, 3.9 Hz, 1 H), 3.8 (m, 1 H), 3.7 - 3.8 (m, 2 H), 3.45 (s, 3 H), 1.7 - 1.8 (m, 2 H), 1.5 - 1.7 (m, 6 H), 1.4 (m, 2 H); ¹³C NMR (CDCI₃, 100 MHz) δ 111.5, 101.3, 75.1, 72.8, 60.3, 56.5, 54.8, 36.8, 34.9, 25.2, 24.2, 23.8; HRESI m/z 292.12601 [M + Na]⁺ (Calcd for $C_{12}H_{19}N_3NaO_4$ 292.1268).

Table S4. NMR spectra

entry	spectra	page
1	¹ H NMR of compound 2	S11
2	gCOSY of compound 2	S12
3	¹³ C NMR of compound 2	S13
4	¹ H NMR of compound 4	S14
5	gCOSY of compound 4	S15
6	¹³ C NMR of Compound 4	S16
7	¹ H NMR of 2-deoxy-2-azido-D-xylospyranoside (39)	S17
8	¹³ C NMR of 2-deoxy-2-azido-D-xylospyranoside (39)	S18
9	¹ H NMR of α-4-deoxy-4-azido-L-ribopyranoside (40)	S19
10	¹³ C NMR of α-4-deoxy-4-azido-L-ribopyranoside (40)	S20
11	¹ H NMR of 1-methyl-3,4-O-(1,2-dimethoxy-1,2-dimethyl-1,2-ethanediyl)- α -D- lyxopyranoside (42)	S21
12	13 C NMR of 1-methyl-3,4-O-(1,2-dimethoxy-1,2-dimethyl-1,2-ethanediyl)- α -D-	S22
40	Ivxopyranoside (42)	000
13	H NMR of 1-methyl-2-thnyl-3,4-O-(1,2-dimethoxy-1,2-dimethyl-1,2-ethanediyl)- α -D- lyxopyranoside (43)	523
14	¹³ C NMR of 1-methyl-2-triflyl-3,4-O-(1,2-dimethoxy-1,2-dimethyl-1,2-ethanediyl)- α -D-	S24
15	¹ H NMR of 1-methyl-2-deoxy-2-azido-3,4-O-(1,2-dimethoxy-1,2-dimethyl-1,2- othanediyl) a D xylopyraposide (44)	S25
16	aCOSY of 1-methyl-2-deoxy-2-azido-3.4-0-(1.2-dimethoxy-1.2-dimethyl-1.2-	S26
10	ethanediyl)-α-D-xylopyranoside (44)	020
17	¹³ C NMR of 1-methyl-2-deoxy-2-azido-3,4-O-(1,2-dimethoxy-1,2-dimethyl-1,2-	S27
	ethanediyl)-α-D-xylopyranoside (44)	
18	¹ H NMR of 1-methyl-2,3,4-acetyl-α-D-lyxopyranoside (45)	S28
19	¹³ C NMR of 1-methyl-2,3,4-acetyl-α-D-lyxopyranoside (45)	S29
20	¹ H NMR of 1-methyl-2,3-O-cyclohexylidene-α-D-lyxopyranoside(46)	S30
21	¹³ C NMR of 1-methyl-2,3-O-cyclohexylidene-α-D-lyxopyranoside(46)	S31
22	¹ H NMR 1-methyl-2,3-O-cyclohexylidene-4-deoxy-4-azido-α-L-ribopyranoside (47)	S32
23	gCOSY of 1-methyl-2,3-O-cyclohexylidene-4-deoxy-4-azido-α-L-ribopyranoside (47)	S33
24	¹³ C NMR 1-methyl-2,3-O-cyclohexylidene-4-deoxy-4-azido- α -L-ribopyranoside (47)	S34

Archive directory: /export/home/jjzhang/vnmrsys/data Sample directory: Saminodox_28Mar2011

Pulse Sequence: s2pul

Solvent: CD3OD Temp. 25.0 C / 298.1 K File: PROTON INOVA-500 "nmr03"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 3.747 sec Width 8000.0 Hz 16 repetitions DBSERVE H1, 499.7307858 MHz DATA PROCESSING Line broadening 0.5 Hz FT size 65536 Total time 1 min, 16 sec

8

7

6

2

4

5

.

3

2

1

ppm

S12

Archive directory: /export/home/jjzhang/vnmrsys/data Sample directory: jj-i-89No107_11Jan2011 File: CARBON

Pulse Sequence: s2pul

Solvent: DMSO Temp. 25.0 C / 298.1 K INOVA-400 "ui400"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.197 sec Width 25157.2 Hz 512 repetitions OBSERVE Cl3, 100.5268572 MHz DECOUPLE H1, 399.7904313 MHz Power 41 dB continuously on WALT2-16 modulated DATA PROCESSING Line broadening 0.8 Hz FT size 65536 Total time 18 min, 49 sec

Archive directory: /export/home/jjzhang/vnmrsys/data Sample directory: jj-iii-137N290-1_12Sep2011 File: PROTON

Pulse Sequence: s2pul

Solvent: CD30D Temp. 25.0 C / 298.1 K INOVA-500 "ui500"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 3.747 sec Width 8000.0 Hz 8 repetitions OBSERVE H1, 499.7307855 MHz DATA PROCESSING Line broadening 0.5 Hz FT size 65536 Total time 0 min, 38 sec

9

8

7

2

1

ppm

5

4

3

jj-iii-40No202_10Jun2011

Archive directory: /export/home/jjzhang/vnmrsys/data Sample directory: jj-iii-40No202_10Jun2011

Pulse Sequence: gCOSY

Solvent: CD3OD Temp. 25.0 C / 298.1 K File: gCOSY INOVA-500 "nmr03"

Relax. delay 1.000 sec Acq. time 0.128 sec Width 8000.0 Hz 2D Width 8000.0 Hz Single scan 128 increments OBSERVE H1, 499.7307855 MHz DATA PROCESSING Sq. sine bell 0.064 sec F1 DATA PROCESSING Sq. sine bell 0.016 sec FT size 4096 x 4096 Total time 2 min, 45 sec

S15

jj-iii-40No202_10Jun2011

Archive directory: /export/home/jjzhang/vnmrsys/data Sample directory: jj-iii-40No202_10Jun2011 File: CARBON

Pulse Sequence: s2pul

Solvent: CD3OD Temp. 25.0 C / 298.1 K User: 1-14-87 INOVA-500 "ui500"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.299 sec Width 31446.5 Hz 2000 repetitions OBSERVE Cl3, 125.6573720 MHz DECOUPLE H1, 499.7332686 MHz Power 48 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 0.5 Hz FT size 131072 Total time 1 hr, 17 min, 0 sec

Archive directory: /export/home/jjzhang/vnmrsys/data Sample directory: jj-iii-124N276_22Aug2011 File: PROTON

Pulse Sequence: s2pul

Solvent: CD30D Temp. 25.0 C / 298.1 K INOVA-400 "ui400"

1

10

9

8

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 3.754 sec Width 6387.7 Hz 8 repetitions OBSERVE H1, 399.7880981 MHz DATA PROCESSING FT size 65536 Total time 0 min, 57 sec

ppm

1

2

З

4

5

,

6

Archive directory: /export/home/jjzhang/vnmrsys/data Sample directory: jj-iii-124N276_22Aug2011-14:24:54 File: CARBON

made many builty instals

140

ملاؤاتات ويتعاده والترافي الأ

160

180

والمتكسر والماسك المتلال

120

AND HERE HALF HERE

100

Pulse Sequence: s2pul Solvent: CD30D

Temp. 25.0 C / 298.1 K INOVA-400 "ui400"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.197 sec Width 25157.2 Hz 112 repetitions DBSERVE C13, 100.5267758 MHz DECOUPLE H1, 399.7901075 MHz Power 41 dB continuously on WALT2-15 modulated DATA PROCESSING Line broadening 0.8 Hz FT size 65536 Total time 18 min, 49 sec N₃ он **39**

20

0

ppm

40

80

Archive directory: /export/home/jjzhang/vnmrsys/data Sample directory: jj-iii-123N275_19Aug2011 File: PROTON

Pulse Sequence: s2pul

8

7

6

Solvent: CD30D Temp. 25.0 C / 298.1 K INOVA-500 "ui500"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 3.747 sec Width 8000.0 Hz 8 repetitions OBSERVE H1, 499.7307855 MHz DATA PROCESSING Line broadening 0.5 Hz FT size 65536 Total time 0 min, 38 sec

 N_3 OH HO ÓН 40

ppm

4

3

2

1

.

jj-iii-123N275C13_19Aug2011

Archive directory: /export/home/jjzhang/vnmrsys/data Sample directory: jj-iii-123N275C13<u>-</u>19Aug2011

Pulse Sequence: s2pul Solvent: CD3OD Temp. 25.0 C / 298.1 K User: 1-14-87 File: CARBON INOVA-500 "nmr03"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.299 sec Width 31446.5 Hz 2000 repetitions OBSERVE C13, 125.6573720 MHz DECOUPLE H1, 499.7332686 MHz Power 48 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 0.5 Hz FT size 131072 Total time 1 hr, 17 min, 0 sec

160

140

120

 N_3 OF HO OH 40

hullularda

20

ppm

S20

80

60

40

ppm

Archive directory: /export/home/jjzhang/vnmrsys/data Sample directory: jj-iii-86N241_26Jul2011

.

.

6

Pulse Sequence: s2pul

Solvent: CDCl3 Temp. 25.0 C / 298.1 K File: PROTON INOVA-400 "ui400"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 3.754 sec Width 6387.7 Hz 8 repetitions OBSERVE H1, 399.7865157 MHz DATA PROCESSING FT size 65536 Total time 0 min, 57 sec

8

7

5

4

.

3

Т

2

Archive directory: /export/home/jjzhang/vnmrsys/data Sample directory: jj-iii-86N241Cl3_26Jul2011 File: CARBON

Pulse Sequence: s2pul

Solvent: CDCl3 Temp. 25.0 C / 298.1 K INOVA-400 "ui400"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.197 sec Width 25157.2 Hz 512 repetitions OBSERVE C13, 100.5263777 MHz DECOUPLE H1, 399.7885243 MHz Power 41 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 0.8 Hz FT size 65536 Total time 18 min, 49 sec

180

160

140

120

100

80

60

40

20

0

ppm

Archive directory: /export/home/jjzhang/vnmrsys/data Sample directory: jj-iii-93N243-A_29Jul2011 File: PROTON

Pulse Sequence: s2pul

8

7

6

Solvent: CDCl3 Temp. 25.0 C / 298.1 K INOVA-500 "ui500"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 3.747 sec Width 8000.0 Hz 8 repetitions OBSERVE H1, 499.7288114 MHz DATA PROCESSING Line broadening 0.5 Hz FT size 65536 Total time 0 min, 38 sec

T

ppm

4

3

2

1

Archive directory: /export/home/jjzhang/vnmrsys/data Sample directory: jj-iii-93N243_29Jul2011 File: CARBON

Pulse Sequence: s2pul

Solvent: CDC13 Temp. 25.0 C / 298.1 K User: 1-14-87 INOVA-500 "ui500"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.299 sec Width 31446.5 Hz 128 repetitions DBSERVE C13, 125.6568744 MHz DECOUPLE H1, 499.7312897 MHz Power 48 dB continuously on WALT2-16 modulated DATA PROCESSING Line broadening 0.5 Hz FT size 131072 Total time 19 min, 46 sec

Archive directory: /export/home/jjzhang/vnmrsys/data Sample directory: jj-iii-112N259-A_11Aug2011 File: PROTON

8

9

7

1

Pulse Sequence: s2pul Solvent: CDCl3 Temp. 25.0 C / 298.1 K INOVA-500 "ui500"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 3.747 sec Width 8000.0 Hz 16 repetitions OBSERVE H1, 499.7288143 MHz DATA PROCESSING Line broadening 0.5 Hz FT size 65536 Total time 1 min, 16 sec

ppm

1

2

3

S25

4

5

Archive directory: /export/home/jjzhang/vnmrsys/data Sample directory: jj-iii-114N263-12_15Aug2011

Pulse Sequence: gCOSY .

Solvent: CDCl3 Temp. 25.0 C / 298.1 K File: gCOSY INOVA-400 "ui400"

Relax. delay 1.000 sec Acq. time 0.160 sec Width 6387.7 Hz 2D Width 6387.7 Hz 2D Width 6387.7 Hz Single scan 128 increments OBSERVE H1, 399.7865360 MHz DATA PROCESSING Sq. sine bell 0.080 sec F1 DATA PROCESSING Sq. sine bell 0.020 sec FT size 4096 x 4096 Total time 2 min, 50 sec

S26

Archive directory: /export/home/jjzhang/vnmrsys/data Sample directory: jj-iii-114N263-12_15Aug2011 File: CARBON

Pulse Sequence: s2pul

Solvent: CDCl3 Temp. 25.0 C / 298.1 K INOVA-400 "ui400"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.197 sec Width 25157.2 Hz 160 repetitions OBSERVE C13, 100.5263777 MHz DECOUPLE H1, 399.7885243 MHz Power 41 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 0.8 Hz FT size 65536 Total time 18 min, 49 sec

ere the international division of the international states and the state of the second states and the second s

T T T

200

a transfr

220

20

40

0

ppm

100

80

60

120

140

160

Archive directory: /export/home/jjzhang/vnmrsys/data Sample directory: jj-iii-55N215-61_28Jun2011

Pulse Sequence: s2pul

Solvent: CDCl3 Temp. 25.0 C / 298.1 K File: PROTON INOVA-500 "nmr03"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 3.754 sec Width 6387.7 Hz 8 repetitions OBSERVE H1, 399.7865251 MHz DATA PROCESSING FT size 65536 Total time 0 min, 57 sec

7

6

5

ų

0.96

ىپ ب 0.97

1.92

Aco 45 OMe

т

րրա

1

-

2

ւ դե

2.823.83

2.84

ىرى ب

1.01

2.95

لب

1.00

4

Archive directory: /export/home/jjzhang/vnmrsys/data Sample directory: jj-iii-55N217Cl3_03Jan2012 File: CARBON

180

.....

160

1

140

1.1.1.1

200

Pulse Sequence: s2pul

......

220

Solvent: CDCl3 Temp. 25.0 C / 298.1 K INOVA-400 "ui400"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.197 sec Width 25157.2 Hz 208 repetitions OBSERVE C13, 100.5263777 MHz DECOUPLE H1, 399.7885243 MHz Power 41 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 0.8 Hz FT size 65536 Total time 18 min, 49 sec

OAc OMe 45

Ē

40

20

ppm

0

100

120

80

Archive directory: /export/home/jjzhang/vnmrsys/data Sample directory: jj-iii-82N239_20Jul2011 File: PROTON

Pulse Sequence: s2pul

Solvent: CDCl3 Temp. 25.0 C / 298.1 K INOVA-500 "ui500"

8

7

6

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 3.747 sec Width 8000.0 Hz 8 repetitions OBSERVE H1, 499.7288082 MHz DATA PROCESSING Line broadening 0.5 Hz FT size 65536 Total time 0 min, 38 sec

ppm

1

4

3

2

Archive directory: /export/home/jjzhang/vnmrsys/data Sample directory: jj-iii-69N228_10Jul2011-20:30:18 File: CARBON

Pulse Sequence: s2pul

Solvent: CDC13 Temp. 25.0 C / 298.1 K User: 1-14-87 INOVA-500 "ui500"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.299 sec Width 31446.5 Hz 512 repetitions OBSERVE C13, 125.6568744 MHz DECOUPLE H1, 499.7312897 MHz Power 48 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 0.5 Hz FT size 131072 Total time 13 min, 46 sec

. .

Archive directory: /export/home/jjzhang/vnmrsys/data Sample directory: jj-iii-106N255-B_10Aug2011 File: PROTON

Pulse Sequence: s2pul

. 10

9

8

7

Solvent: CDCl3 Temp. 25.0 C / 298.1 K INOVA-400 "ui400"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 3.754 sec Width 6387.7 Hz 8 repetitions OBSERVE H1, 399.7865188 MHz DATA PROCESSING FT size 65536 Total time 0 min, 57 sec

N₃ 47 ÓMe

ppm

1

ż

5

4

3

Archive directory: /export/home/jjzhang/vnmrsys/data Sample directory: jj-iji-71N236-_14Jul2011

Pulse Sequence: gCOSY

Solvent: CDCl3 Temp. 25.0 C / 298.1 K File: gCOSY INOVA-500 "nmr03"

Relax. delay 1.000 sec Acq. time 0.160 sec Width 6387.7 Hz 2D Width 6387.7 Hz Single scan 128 increments OBSERVE H1, 399.7865175 MHz DATA PROCESSING Sq. sine bell 0.080 sec F1 DATA PROCESSING Sq. sine bell 0.020 sec FT size 4096 x 4096 Total time 2 min, 50 sec

S33

Archive directory: /export/home/jjzhang/vnmrsys/data Sample directory: jj-iii-71N236_14Ju12011-10:00:31 File: CARBON Pulse Sequence: s2pul

.

Solvent: CDC13 Temp. 25.0 C / 298.1 K INOVA-400 "ui400"

Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.197 sec Width 25157.2 Hz 512 repetitions DBSERVE C13, 100.5263777 MHz DECOUPLE H1, 399.7885243 MHz Power 41 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 0.8 Hz FT size 65536 Total time 18 min, 49 sec

 N_3 47 ÓMe

S34