Supplemental Materials Molecular Biology of the Cell

Bharucha et al.

P. K. P. D. P. S.	pastoris lactis tropicalis stipitis hansenii guilliermondii cerevisiae	SSVFSEGESADFAELLKQEMTQTLDKPESVQNDRISNAQESTRLPENSFE-NKFSFLEDDDEILEADD -PVNDAIEKATGDEDTDLFNSEG-DDGAKEGLSWLNDQSNTQEIPSPSEEATKFSFLENDDDLLDDDE -PVEKSVEQLNPEIPSKEQPKSNLFADDKVDFFSELKPVTPPQEQEPDPLD-KLASLDLDDDLLDDE AGFFTERRPEQESETKQES-LDELFEKDEDFLPELKQPVEQSTQTSKPKEFNLPELDLDDDLLDDD DHFDDLFQNDDHDFLQEVGSSDNKSDPFKFPPDNSAPENKDSDKFETQNKSLDFLEMDDDLLDDE DELFAGDDDFLQEIVKDQEPVTSNGNQDTKTPSSQEPEPAEESQVKKKD-SFAFLELDDDLLLDDD -VTSKSQEKHEDLFAASGNDEKLPWEVSDGEVSSGKTENSMQTSTEKIAEQKFSFLENDDDLLDDDL
P. K. C. P. D. S.	pastoris lactis tropicalis stipitis hansenii guilliermondii cerevisiae	VQPYQPQQYTHSITSEPVYRQYGDSVGQMAAPYSEYGGGTTYRQNQPPQPRDQSRLDYNLSADVSTQTVI -SLLDSDEEVIVPQPQTAQAPKKSYLPSASSPVPQSVKHSYHPQSNPYSPQASSFSNSVSGQPPSFPQ -FLDEEFLNEPVSELPQLQVPQLQVPQQNLQPQPQVEPRM
P. K. P. D. S.	pastoris lactis tropicalis stipitis hansenii guilliermondii cerevisiae	RRPIRKSMPSDRYNPGGNNHAGLSTPVPDRTMIYPNILSPAQEFAGHPKLDALEQAKKKTDAYDFPPDML NPSSYTYPVASTVPASVAPGIVKPKLINNSNSSQSSVSDVNELHKKLDEAKHRTDAYDFPLDLV RKKSYVPVGPMKSPIYTPPSASAKLAQSNDFVKNLEQSKKKHDAYDFPDELM PRQTYIPTQPHHNMYAPQISRTDTGEYVKKLEENKKRNDAYDFPDILM NKQTYLPSTTNPSTTPVVPTQEKPKGSAMNKKKNDAYDFPDSLI YSRPLQPTSTSSSFSKPVAQEFNKKLEEAKKKHDAYDFPSNLL GLTKTGLGTPNQQVSVPNIVSPKPVVKDNRSNFKINEEKKKSDAYDFPLEII
P. K. P. D. S.	pastoris lactis tropicalis stipitis hansenii guilliermondii cerevisiae	KTRLQPSNKNLQTVSQNYTSAGYPPLRAASISTVGTDISFNNIDAQPPKRPQPNN KQEIKRGKPMHITSP-LPSIRQPSFSSVASEKPLIQPPVRPQPNN VNTTRPSLRHNASTSSASVRYGPPSGHQSASSISPSGPLAPP-SANVSGELKTISSAPHAPST PPKVKPAPRHHQPTTKYSQPVASPNLSNIPSAPPATTIPPPVSIGIEASKKELPTPQVAPG AHKFKPAARSTNKYAPGSSNHNSPPVASMPPKLHSPSMNAVGSVPVPNEKQATMSQPLSAAVST HLSIKPAPRTNNKYAAPSGSAGSPNSASASAPPPLLTTSLPLHPQAAPGVAQENRPPLQSHSSAPNQAPS SESSKKGHAKPVAVPTQRFGSGNSFSSLDKPIPQSRKGSNNSNRPPVIPLGTQEPRSSRTNSAISQSPVN
P. K. C. P. D. S.	pastoris lactis tropicalis stipitis hansenii guilliermondii cerevisiae	AVKKKQSFYSELPINNLTRNKP-SVHAKDPYAEIESIAYHNRSRSSTVRSTNINHVPP TKAPQKPFYAELPIPELKPTRAAPIRIASQNSFSGSSALPSQPIAAQSRRTSID ENAPKKSFFVEFPDEDIPKA-RRPVRAAPVKAVNQIHSPKVLNQQLQQLQQVPPSVPPKTTKT KPKSFFEELPVSMPKKA-ARAAPVKAVNQPH-IQKSPQISNTPISASSKP QGLQKKSFFEDLPIPVQKQP-VKPARA-ALPRSQMSQSISPTVNPAQPQLQK
P. K. C. D. P. S.	pastoris lactis tropicalis stipitis hansenii guilliermondii cerevisiae	PPVNPYAPVNKAQLQTPDLNPQTVPVPPPNNMFAPPPAITQHTGYASPSTHTQNQ PPVNPYAPKKNVAVVNPTIAPNSVAYGINNVPSKGQNLQANILSAPPRNTIVSPVGTIAHNPYTPS PPVNPYKPKSGTSPILQ-QHVPIIHQSGIAAPPSAIGSSTYAPPQQPPV-AGSAPPPPPPAAA APVNPYMPSNTQKQNPHSPLQGSQYSFPRKTSSGLAPPPALNQYAPPSSNQYATVSAQVQ PVVNPYAKPAMNTVVSPPMNYAQPPGMPQVTNNRGGSHLPAGMVAPPPPSQITGNNNVLP-HAQPQ PVVNPYAKPAMNTVVSPPMNYAQPPGMPQVTNNRGGSHLPAGMVAPPPPSQITGNNNVLP-HAQPQ NNGVPPVSPYGQATINLPTANKYAPVSPTVQQKQYPSVVQNLGAS

Figure S1. Alignment of UCR sequences from various yeasts. The UCR of *P. pastoris* Sec16 (residues 500 - 868) was aligned with corresponding Sec16 sequences from the following yeasts: *Kluyveromyces lactis* (residues 313 - 673), *Candida tropicalis* (residues 403 - 744), *Pichia stipitis* (residues 479 - 793), *Debaromyces hansenii* (residues 467 - 771), *Pichia guilliermondii* (residues 307 - 620), and *S. cerevisiae* (residues 457 - 824). An initial ClustalW alignment was edited extensively by hand to highlight similarities identified by BLAST searches. Residues highlighted in yellow match the consensus.

- His

Figure S2

- His - Ade

Figure S2. Two-hybrid interaction of the UCR with Sec23 using *S. cerevisiae* proteins. In the yeast streaks on the left side of each plate, a "prey" vector encoding *S. cerevisiae* Sec23 was tested against "bait" vectors encoding *S. cerevisiae* versions of either the UCR (residues 457-977) or Sec24. Empty vectors ("---") were used as controls. In the yeast streaks on the right side of each plate, the "bait" and "prey" vector backbones were swapped. A weak interaction is sufficient for growth on the plate lacking histidine ("– His"), whereas a strong interaction is needed for growth on the plate lacking both histidine and adenine ("– His – Ade").

Figure S3A

Figure S3B

Figure S3. tER dispersal caused by an I1075D mutation in the Sec13-binding blade of the CCD. (A) Crystal structure of a chimera between *P. pastoris* Sec13 and the β -stranded blade of the CCD from *P. pastoris* Sec16 (CCD β). Shown on the left is a view from the top of the Sec13 β -propeller bound to CCD β , with the N-terminal portion of CCD β projecting into the foreground. A side view is shown on the right. Visible in the crystal structure are amino acids 1042-1076 of Sec16, colored in green, and 13-299 of Sec13, colored in yellow. The position of the I1075D mutation is indicated. (B) tER dispersal in a *sec16-I1075D* mutant at 36.5°C. This mutant allele was introduced by gene replacement into a strain expressing Sec13-GFP, and cells were imaged under the conditions described in Figure 4C. Scale bar, 5 µm.

Figure S4A

Fluorescence intensity (arbitrary units) WT sec16-P1092L

Figure S4B

Figure S4. Accelerated shrinkage and reduced fluorescence intensity of tER sites in the *sec16-P1092L* mutant. (A) Rapid shrinkage of tER sites after fusion events in *sec16-P1092L* cells. Two representative fused tER sites were analyzed by 4D microscopy at 36.5°C after fusion events in wild-type cells (top panel) or *sec16-P1092L* mutant cells (bottom panel). Fluorescence intensity is plotted as a function of time. In wild-type cells, a fused tER site typically requires tens of minutes to shrink to the steady-state size (Bevis *et al.*, 2002). (B) Quantitation of tER site fluorescence intensities in wild-type and *sec16-P1092L* cells at 36.5°C. 4D movie projections were examined, and fluorescence signals were measured for all resolvable tER sites. A total of 172 wild-type tER sites and 322 *sec16-P1092L* tER sites were analyzed. Each dot represents an individual tER site, and the horizontal line represents the average of the values obtained.

A. Sec23-GFP

Sar1(T34N) before temperature shift

B. Sec13-GFP Sar1(T34N) after temperature shift

Figure S5

Figure S5. Prevention or reversal of tER dispersal by expression of Sar1(T34N). Where indicated, a shift to methanol-containing medium induced expression of Sar1(T34N). (A) The procedure was the same as in Figure 6D-E, except that tER sites were labeled with Sec23-GFP. (B) The procedure was the same as in Figure 6D-E, except that the cells were first grown for 1 h at 36.5°C to cause tER dispersal, and then shifted to methanol medium for 2.5 h at 36.5°C.

Time (h)

Figure S6

Figure S6. Growth inhibition by rapamycin in anchor-away strains. (A) The Sec16 anchor-away strains used in Figure 7, plus the parental rapamycin-resistant Rpl17-FKBPx4 strain ("Parent"), were grown in YPD at 30°C to an OD₆₀₀ of 0.1. Then 1 μ g/mL rapamycin ("Rap") was added to half of each culture, and the cultures were incubated for an additional 25 h. At the indicated time points, OD₆₀₀ was measured. (B) Same as (A), except that the analysis was performed with the Sec23 anchor-away strains used in Figure 8.

Movie S1. tER dynamics in wild-type cells. tER sites in wild-type *P. pastoris* cells were labeled with Sec13-GFP, and cells were imaged by 4D confocal microscopy at intervals of 4 sec between each Z-stack. The fluorescence data for each time point were projected and merged with a DIC image of the cells. Time is indicated in min:sec format.

Movie S2. tER dynamics in *sec16-P1092L* mutant cells. Imaging and image processing were performed as for Movie S1, except that the cells carried the *sec16-P1092L* allele and the intervals between Z-stacks were 2 sec.

Data collection			
Space group	$P2_1$		
Cell dimensions			
<i>a</i> , <i>b</i> , <i>c</i> (Å)	70.51, 49.32, 90.90		
α, β, γ(°)	90.0, 111.7, 90.0		
Wavelength (Å)	1.1		
Resolution (Å)	50-1.55		
	(1.61-1.55)		
$R_{\rm sym}$ (%) ^a	8.5 (68.0)		
$\langle I / \sigma_{I} \rangle^{a}$	12.9 (1.9)		
Completeness (%) ^a	99.3 (93.2)		
Redundancy ^a	6.9 (5.6)		
,			
Refinement			
Resolution (Å)	44-1.6		
No. reflections	76777		
$R_{\rm work}$ / $R_{\rm free}$	0.180 / 0.212		
No. atoms			
Protein (non-H)	5033		
Riding hydrogens	4899		
Waters	306		
Ca^{2+} , Cl^{-} , EDO	25		
B-factors $(Å^2)^{b}$			
Main-chain	21.4		
Side-chain	28.9		
Non-protein	30.5		
R.m.s. deviations ^c			
Bond lengths (Å)	0.013		
Bond angles (°)	1.49		
B-factors (m/c) (Å ²)	3.8		
B-factors (s/c) $(Å^2)$	5.3		
Ramachandran			
Within favored (%)	96.6		
Within allowed (%)	99.7		
Outliers (%)	0.3		
× /			

Table S1. X-ray data collection and refinement statistics for CCD β -Sec13.

a: Values in parentheses are for the highest resolution shell.

b: $R_{sym} = \Sigma_h \Sigma_i | I_{h,i} - I_h | / \Sigma_h \Sigma_i I_{h,i}$, where I_h is the mean intensity of the *i* observations of symmetry related reflections of *h*. $R = \Sigma | F_{obs} - F_{calc} | / \Sigma F_{obs}$, where $F_{obs} = F_P$, and F_{calc} is the calculated protein structure factor from the atomic model (R_{free} was calculated with 5% of the reflections).

c: The r.m.s.d. values in bond lengths and angles are the deviations from ideal values, and the r.m.s.d. in B factors is calculated between bonded atoms.