Supplemental Materials Molecular Biology of the Cell

He et al.

Supplementary Material

Supplementary Figure Legends

Figure S1. (A) Western blotting of mTOR, Rictor and Raptor in undifferentiated HL-60 cells (uHL-60), differentiated HL-60 cells (dHL-60) and human primary neutrophils (1° neutrophil). GAPDH was a loading control. (B) Outlines (top) and migration speeds (bottom) of cells responding to the fMLP stimulation in the microfluidic chamber, as shown in Figure 2C. Each set of outlines represents a single cell observed at indicated intervals (denoted by different colors) after exposure to fMLP, and two representative cells are shown for each condition. Values for migration speeds are mean \pm SEM (n >40). (C) Cells containing non-target (NT) shRNA, mTOR shRNA-3, Rictor shRNA-1 or Raptor shRNA-1 were allowed to migrate toward chemoattractant-containing micropipette (fMLP, 10 µM) on a fibrinogen-coated substrate. The two images in each row show the positions of individual cells (identified with a superimposed letter) after exposure to fMLP. Bar. 10 µm. Movies for control and Rictor-depleted cells are available as Movie S4 and Movie S5. (D) Apoptotic assay of control cells or mTOR and Rictordepleted cells. Cells were infected with lenti-viral particles containing NT shRNA, mTOR shRNA-3 or Rictor shRNA-1 and differentiated for 5 days. Cells were prepared according to the manufacturer's instructions (FITC Annexin V Apoptosis Detection Kit I, BD Pharmingen) and analyzed by flow cytometry. (E) Flow cytometry analysis of surface expression of $\beta 2$ integrin in control, mTOR- and Rictor-depleted cells after fMLP stimulation (100 nM, 10 min). The black line indicates background fluorescence from the isotype control IgG. (F) Analysis of intracellular [Ca²⁺] in cells containing NT shRNA or Rictor shRNA in response to fMLP stimulation. Fluorescence was recorded using SpectraMax M2 spectrometer (excitation: 340-380 nm; emission: 510 nm). Results are plotted as emission ratio vs. time. Arrow indicates the time of addition of fMLP (100 nM). A representative experiment from eight separate experiments is shown.

Figure S2. (A) Western blotting of phosphorylated AKT (p-T308) in dHL-60 cells with or without Rictor depletion. Cells were stimulated with 100 nM fMLP for 1 minute or unstimulated. Total AKT was the loading control for each condition. The Rictor blot is also shown. (B) Western blotting of mSin1 in dHL-60 with or without the treatment of mSin1 shRNAs. α -tubulin was a loading control. (C) Cells containing NT shRNA, mSin1 shRNA-1 or mSin1 shRNA-2 were allowed to migrate toward chemoattractant-containing micropipette (fMLP, 10 μ M) on a fibrinogen-coated substrate. The three images in each row show the positions of individual cells after exposure to fMLP for indicated times. Bar, 10 μ m. (D) Top: Western blotting of AKT (p-S473) phosphorylation in cells with or without mSin1 depletion. Cells were stimulated with fMLP (100 nM) for 1 min. Total AKT was a loading control. Bottom: Quantification of relative levels of p-S473 AKT in cells with and without mSin1 depletion. Each bar represents the mean±SEM (n=4). Values are normalized to the level of p-S473 AKT (=100%) in cells treated with NT shRNA.

Figure S3. (A) dHL-60 cells were stimulated by fMLP (100 nM) for indicated times in suspension and lysed. AKT phosphorylation at serine 473 (p-S473) was assessed by western blotting. Total AKT was a loading control. (B) Quantification of relative p-S473 AKT levels after fMLP stimulation for indicated times. Values are normalized to the

level in cells 60 sec after fMLP stimulation (=100%) and are means±SEM (n=4). (C) Western blotting of p-S473 AKT and total AKT in cells with or without Rictor depletion. dHL-60 cells were stimulated with 100 nM of fMLP for 1 or 5 min in suspension and lysed. The blot for Rictor is also shown. (D) Quantification of relative p-S473 AKT levels in dHL-60 cells with or without Rictor depletion 1 min after fMLP stimulation. Each bar represents the mean±SEM (error bars, n=4). Values are normalized to the level of p-S473 AKT in cells without fMLP stimulation (*, p<0.001). (E) Western blotting of p-S473 AKT and p-T308 AKT in dHL-60 cells treated with AKTi-1/2 of indicated concentrations. Cells were pretreated with AKTi-1/2 for 30 min, stimulated with 100 nM fMLP for 1 minute and lysed. Total AKT was used as a loading control. (F) The number of polarized cells with or without AKTi-1/2 treatment (1 μ M) in an fMLP gradient produced by the microfluidic device. 51 control cells and 43 AKTi-1/2 treated cells were analyzed. Values are normalized to the number (100%) of cells without AKTi-1/2 treatment. (G) Migration speeds of control and AKTi-1/2 treated dHL-60 cells (1 µM) in an fMLP gradient produced by the microfluidic device. 42 control cells and 39 AKTi-1/2 treated cells were analyzed.

Figure S4. (A) Quantification of S6K1 phosphorylation (p-T389) in dHL-60 cells with or without rapamycin or Torin1 treatment. The values are normalized to the level of S6K1 phosphorylation 5 min after stimulation and are means \pm SEM (n = 4). (B) Quantification of AKT phosphorylation (p-S473) in dHL-60 cells with or without rapamycin or Torin1 treatment. The values are normalized to the level of AKT phosphorylation in control cells 1 min after fMLP stimulation and are means \pm SEM (n = 4).

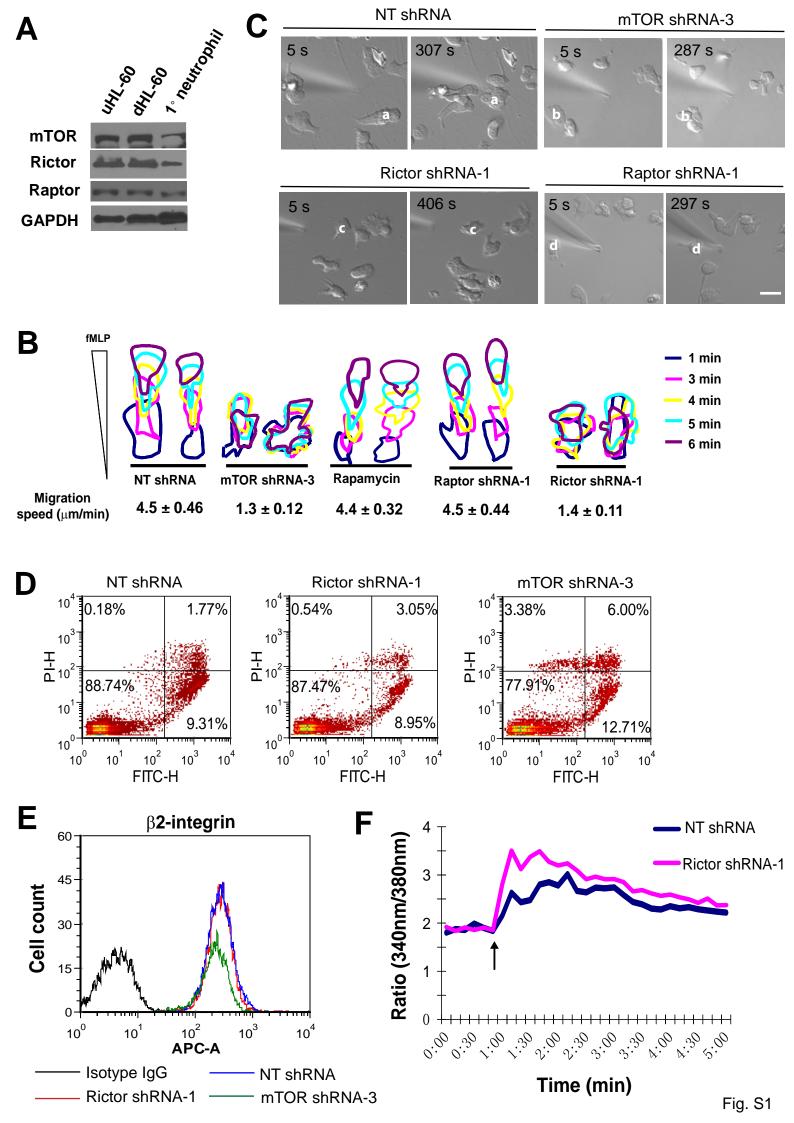
Figure S5. (A) Quantification of F-actin levels in suspended dHL-60 cells. Cells with or without mTOR depletion were stimulated with fMLP (100 nM) for various times in suspension and fixed for staining with fluorescently-labeled phalloidin. Fluorescence in stained cells was determined by flow cytometry. Values are mean \pm SEM (n = 4). (B) Western blotting of Rictor in differentiated PLB-985 (dPLB-985) cells transfected with Rictor or non–targeting (NT) shRNAs. GAPDH was a loading control. PLB-985 cells were infected with lentiviruses containing the various shRNAs and were differentiated for 5 d in the presence of DMSO. (C-D) Quantification of F-actin levels in suspended dPLB-985 cells. Cells with or without Rictor depletion were stimulated with 100 nM (C) or 1 μ M fMLP (D) for various times in suspension and fixed for staining with fluorescently-labeled phalloidin. Fluorescence in stained cells was determined by flow cytometry. Values are mean \pm SEM (n = 4).

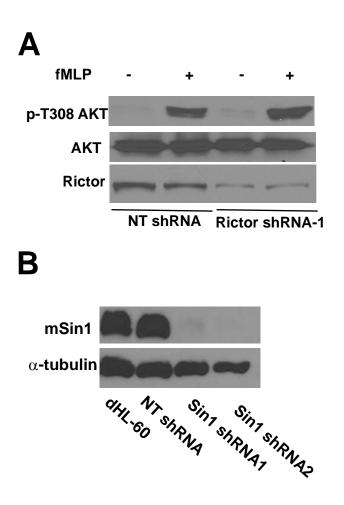
Figure S6. (A) The levels of Rac-GTP in suspended dHL-60 cells with or without mTOR depletion. Cells were stimulated with 100 nM of fMLP for 30 sec and lysed for the pull-down assay. Levels of total Rac were used to show cell lysate input. (B) Quantification of relative levels of Rac-GTP level with and without mTOR depletion. Each bar represents the mean \pm SEM (error bars). Values are normalized to the level of Rac-GTP (=100%) in cells without mTOR depletion (*, p<0.001). (C) The levels of Cdc42-GTP in dHL-60 cells with or without mTOR depletion were stimulated with 100 nM of fMLP for 30 sec in suspension and lysed for the pull-down assay. Levels of total Cdc42 were used to show cell lysate input. (D) Quantification

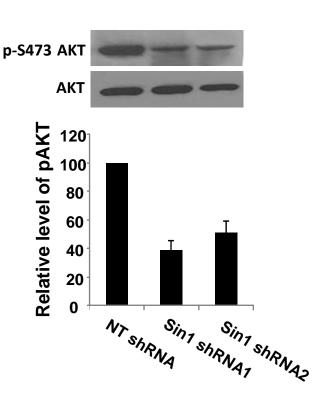
of relative levels of Cdc42-GTP with and without mTOR depletion. Each bar represents the mean \pm SEM (n=4). Values are normalized to the level of Cdc42-GTP (=100%) in cells without Rictor depletion (*, p<0.001).

Figure S7. (A) Quantification of RhoA-GTP in suspended dHL-60 cells with or with Rictor depletion. Cells were stimulated with fMLP (100 nM) for times indicated and lysed. The level of RhoA-GTP was determined by the use of an absorbance-based RhoA G-LISA kit. The y axis represents the normalized level of RhoA-GTP. Each bar represents the mean \pm SEM (error bars) (n=4). Student's t test was performed. The asterisk indicates that the level of Rctor-depleted cells differ statistically from the control cells (*, p < 0.01). (B) Quantification of RhoA-GTP in adherent dHL-60 cells with or with Rictor depletion. Cells were plated on fibrinogen-coated plates for 30 minutes. Cells were then stimulated by 100 nM fMLP for indicated times and lysed. The level of RhoA-GTP was determined as described above. Each bar represents the mean \pm SEM (error bars) (n=4). (C) Western blotting of Rictor and RhoGDI2 in dHL-60 cells with or without Rictor depletion. Two separate Rictor shRNAs were used. α -tubulin was a loading control

Text for Supplementary Movies

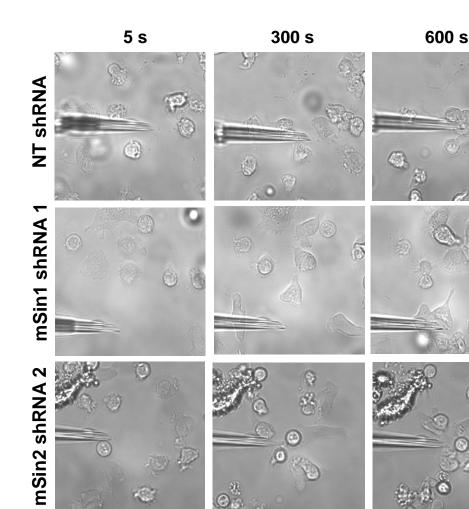

Supplementary Movie S1 shows the responses of control dHL-60 cells (NT shRNA) to a gradient of fMLP generated by the microfluidic device. Two time points are shown in Figure 2C.

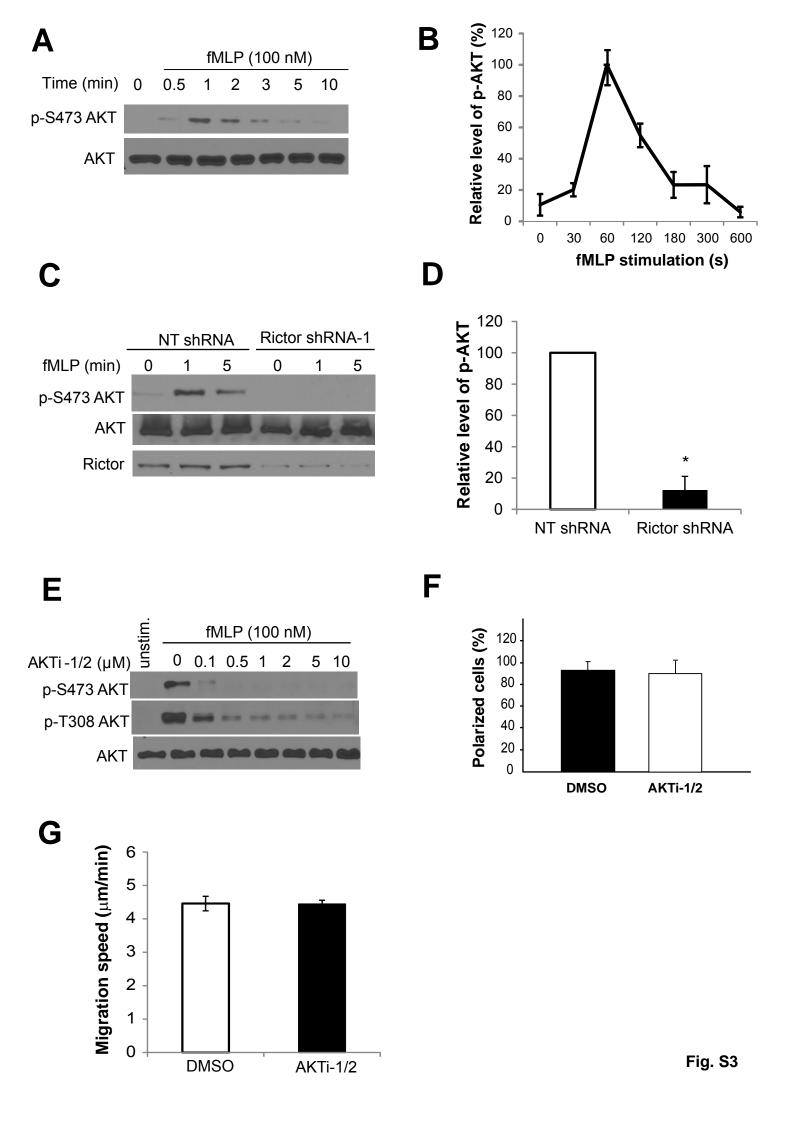

Supplementary Movie S2 shows the responses of dHL-60 cells with mTOR depletion (mTOR shRNA-3) to a gradient of fMLP generated by the microfluidic device. Two time points are shown in Figure 2C.

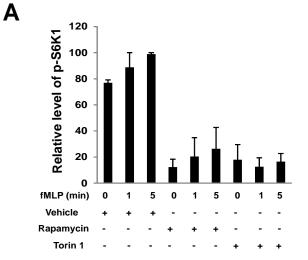

Supplementary Movie S3 shows the responses of dHL-60 cells with Rictor depletion (Rictor shRNA-1) to a gradient of fMLP generated by the microfluidic device. Two time points are shown in Figure 2C.

Supplementary Movie S4 shows the responses of dHL-60 cells to a gradient of fMLP generated by the micropipette. Two time points are shown in Figure S1C.

Supplementary Movie S5 shows the responses of dHL-60 cells with Rictor depletion (Rictor shRNA-1) to a gradient of fMLP generated by the micropipette. Two time points are shown in Figure S1C.



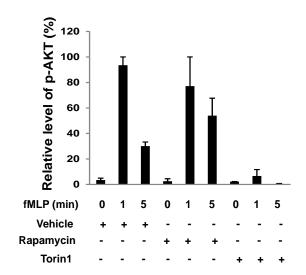
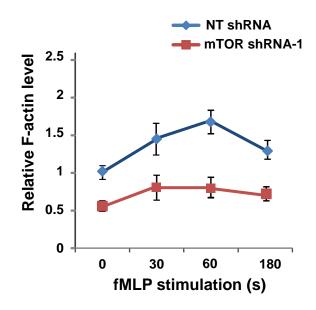


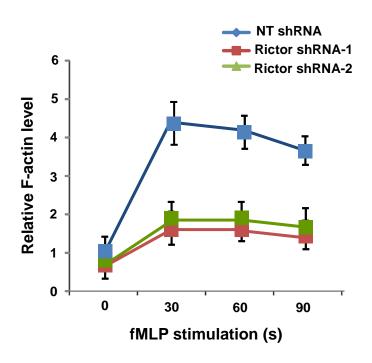


D

С

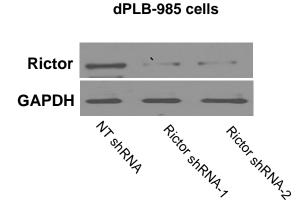
В


Fig. S4

С

dPLB-985 cells (100 nM fMLP)



Β

dPLB-985 cells (1 µM fMLP)

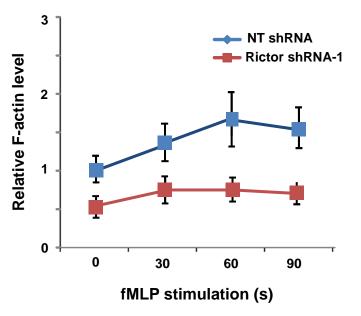


Fig. S5

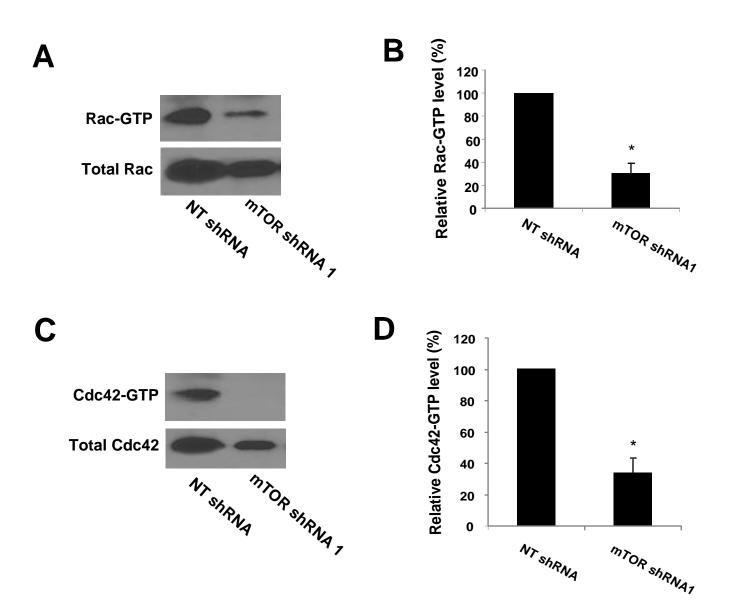
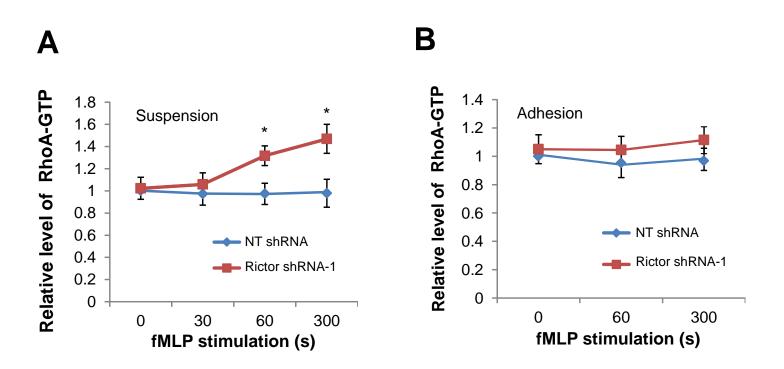



Fig S6

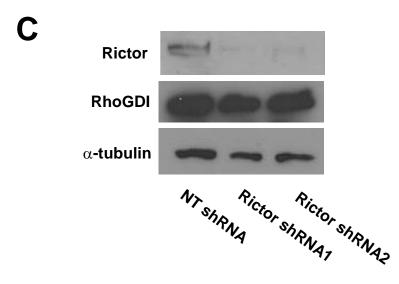


Fig. S7