Table S1: Cellular regulators that impact LNP trafficking and their known endocytic function.

Cellular Effectors	Influence on intracellular trafficking	References
Calcium Homeostasis	Acts as a signaling molecule to mediate exocytosis, calcium homeostasis in lysosomes necessary to maintain function, deregulation of such a homeostasis augments lysosomal storage disorders.	1–3
Arachidonic Acid Metabolism	Present as fatty acid in phospholipids of cell membrane is generated by activity of phospholipase A-2 and regulates signaling mediators like phospholipase C (PLC). Both regulate membrane fusion and tubule formation in the endolysosomal system. Arachidonic acid is a key inflammatory intermediary.	4–6
V _o -ATPase	Maintains acidic pH of endocytic vesicles Submembranous pH regulates micropinosome formation.	7,8
Cathepsins	Proteases in endocytic compartments (especially lysosomes) that degrade proteins or lipids. Involved in endosomal escape of viruses.	9–11
JNK1/MAPK8	Signaling molecule activated by growth factors known to induce macropinocytosis, Associated with cytoskeleton and endocytic vesicles	12,13
p38	Subset of MAPK pathway, signaling molecule that regulates formation of early endosomes.	14
РКС	PKC is involved in membrane ruffling and micropinosome formation.	12
NFkB	Main function in inflammation and cancer little known about impact to cellular trafficking.	15
mTOR	Late endosomes form an active site form mTOR mediated cell signaling and mTOR in turn regulates lysosomal biogenesis.	16,17
Chloride Homeostasis	Defects in chloride channels linked to defective endocytosis in renal tubules and also implicated in lysosomal neurodegenerative disorders.	18,19

Abbreviations: JNK1-c-Jun N-Terminal Kinase, MAPK8- Mitogen-activated protein kinase 8, PKC- Protein Kinase C, NFkB- Nuclear factor kappa B, mTOR- mammalian target of rapamycin.

REFERENCES:

- 1. Berridge, M. J., Lipp, P. & Bootman, M. D. The versatility and universality of calcium signalling. *Nat. Rev. Mol. Cell Biol.* 1, 11–21 (2000).
- 2. Berridge, M. J., Bootman, M. D. & Roderick, H. L. Calcium signalling: dynamics, homeostasis and remodelling. *Nat. Rev. Mol. Cell Biol.* **4**, 517–529 (2003).
- 3. Lloyd-Evans, E. *et al.* Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. *Nature Medicine* **14**, 1247–1255 (2008).
- 4. Brown, W. J., Chambers, K. & Doody, A. Phospholipase A2 (PLA2) enzymes in membrane trafficking: mediators of membrane shape and function. *Traffic* **4**, 214–221 (2003).
- 5. Marshall, J. C. Such stuff as dreams are made on: mediator-directed therapy in sepsis. *Nature Reviews Drug Discovery* **2**, 391–405 (2003).
- 6. Lemmon, M. A. Membrane recognition by phospholipid-binding domains. *Nature Reviews Molecular Cell Biology* **9**, 99–111 (2008).
- 7. Casey, J. R., Grinstein, S. & Orlowski, J. Sensors and regulators of intracellular pH. *Nature Reviews Molecular Cell Biology* **11**, 50–61 (2009).
- 8. Koivusalo, M. *et al.* Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. *J. Cell Biol.* **188**, 547–563 (2010).
- 9. Saftig, P. & Klumperman, J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. *Nature Reviews Molecular Cell Biology* **10**, 623–635 (2009).

10. Fineschi, B. & Miller, J. Endosomal proteases and antigen processing. *Trends in Biochemical Sciences* **22**, 377–382 (1997).

- 11. Schornberg, K. *et al.* Role of Endosomal Cathepsins in Entry Mediated by the Ebola Virus Glycoprotein. *J. Virol.* **80**, 4174–4178 (2006).
- 12. Mercer, J. & Helenius, A. Virus entry by macropinocytosis. *Nature Cell Biology* **11**, 510–520 (2009).
- 13.Mengistu, M., Brotzman, H., Ghadiali, S. & Lowe-Krentz, L. Fluid shear stress-induced JNK activity leads to actin remodeling for cell alignment. *J. Cell. Physiol.* **226**, 110–121 (2011).
- 14. Cavalli, V. *et al.* The Stress-Induced MAP Kinase p38 Regulates Endocytic Trafficking via the GDI:Rab5 Complex. *Molecular Cell* **7**, 421–432 (2001).
- 15. Ben-Neriah, Y. & Karin, M. Inflammation meets cancer, with NF-κB as the matchmaker. *Nature Immunology* **12**, 715–723 (2011).
- 16. Flinn, R. J., Yan, Y., Goswami, S., Parker, P. J. & Backer, J. M. The late endosome is essential for mTORC1 signaling. *Mol. Biol. Cell* **21**, 833–841 (2010).
- 17. Yu, L. *et al.* Termination of autophagy and reformation of lysosomes regulated by mTOR. *Nature* **465**, 942–946 (2010).
- 18. Christensen, E. I. *et al.* Loss of chloride channel CIC-5 impairs endocytosis by defective trafficking of megalin and cubilin in kidney proximal tubules. *PNAS* **100**, 8472–8477 (2003).
- 19. Kasper, D. *et al.* Loss of the chloride channel CIC-7 leads to lysosomal storage disease and neurodegeneration. *The EMBO Journal* **24**, 1079–1091 (2005).