Supplementary information

G-rich VEGF aptamer with locked and unlocked nucleic acid modifications exhibits a unique G-quadruplex fold

Maja Marušič¹, Rakesh N. Veedu^{2,*}, Jesper Wengel³ and Janez Plavec^{1,4,5,*}

¹ Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia

School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Brisbane, 4072 Australia

³ Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark

⁴ EN-FIST Center of Excellence, SI-1000 Ljubljana, Slovenia

2

⁵ Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia

Supplementary Figures

Figure S1: The imino region of the 1D ¹H NMR spectra of RNV66 recorded at different concentrations of a) K^+ and b) Na⁺ ions and after fast annealing. Spectra were recorded at 600 MHz, 25 °C in 10% ²H₂O, 10 mM TE buffer with pH 7 and oligonucleotide concentration of 1.0 mM.

Figure S2: The imino region of 1D ¹H NMR spectra of RNV66 recorded after a) fast annealing, b) slow annealing with dilution from 1 to 0.5 mM oligonucleotide concentration c) after removal of K⁺ ions and d) upon increase of K⁺ ions concentration to 100 mM in a single step. Spectra were recorded at 600 MHz (a and d) or 800 MHz (b and c), 25 °C in 10% ²H₂O, 100 mM K⁺, 10 mM TE buffer with pH 7 and oligonucleotide concentration of 1.0 mM (a and c).

Figure S3: CD spectra of a) RNV66, b) RNV70 and c) V7t1 recorded at 25 °C in 10 mM KPi buffer with pH 7 and 5 μ M oligonucleotide concentration. Red, blue and orange curves represent CD spectra acquired at 0 mM K⁺, 50 mM K⁺ and 50 mM K⁺ after annealing, respectively.

Figure S4: Imino-H7, imino-aromatic and imino-imino regions of 2D NOESY spectrum ($\tau_m = 250 \text{ ms}$) of RNV66 with resonance assignment indicated along 1D traces. Cross-peaks labelled with red, blue and orange rectangles correspond to NOE interactions between imino and aromatic protons of G6-G8-G16-L21, L5-G7-G15-G20 and G4-G11-G14-G19 quartets, respectively. Cross-peaks labelled with black rectangles indicate connections between sequential residues in the G-quadruplex core. NMR spectrum was recorded at 600 MHz, 0 °C in 10% ²H₂O, 50 mM K⁺, 10 mM KPi buffer with pH 7 and oligonucleotide concentration of 0.5 mM.

Figure S5: Number of restraints per residue used in SA calculations. Intra-residue, sequential and long range restraints are shown in dark blue, light blue and magenta, respectively.

Figure S6: The imino region of 1D ¹H NMR spectra of a) V7t1 and b) RNV70 recorded at different concentrations of K⁺ ions and after slow annealing. Spectra were recorded at 600 MHz, 25 °C in 10% ²H₂O, 10 mM KPi buffer with pH 7 and oligonucleotide concentration of 0.8 (V7t1) and 1 (RNV70) mM.

Figure S7: 2D DQF- COSY spectrum of RNV66 at 800 MHz, 25 °C in 50 mM K⁺, 10 mM KPi buffer with pH 7 and oligonucleotide concentration of 1 mM.

Figure S8: UV melting curves of RNV66 (red), RNV70 (blue) and V7t1 (black) recorded in 10 mM KPi buffer with pH 7 and 5 μ M oligonucleotide concentration.

Figure S9: The imino region of 1D ¹H NMR spectra of RNV66 recorded after exchange from H_2O to ² H_2O . Spectra were recorded at 800 MHz, 25 °C in 50 mM K⁺, 10 mM KPi buffer with pH 7 and oligonucleotide concentration of 1 mM.