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Supplementary Text S2: Structural identifiability analysis.

Structural parameter identifiability analysis is performed under the assumption of an ideal scenario where
noise-free time-continuous experimental data are available. The objective is to answer the question
whether under those ideal conditions the parameters can be given unique values within a given search
space (see also main text). It is worth remarking at this point, that structural identifiability analysis
is different to practical identifiability analysis in the sense that the actual experimental conditions and
available data are not considered, only model structure and an idealised version of the experimental design
is taken into account. Therefore, structural identifiability analysis answers the question whether model
parameters can be determined at all, given a certain type of model and a certain type of experimental
scheme (observed quantities and stimulation conditions).

The model in Eq.(1) in the main text can be rewritten in matrix form as follows:

M(θ) : ẏ = αBu(t− τ) + Ay (1)

where y ≥ 0, ẏ ∈ Rn correspond to the protein concentrations and their time derivatives; B ∈ Rn×n
is the control matrix, the identity matrix in this case; u(t − τ) ≥ 0 ∈ Rn corresponds to the vector of
delayed inputs and A ∈ Rn×n is the so called state matrix, defined as the following tridiagonal symmetric
matrix:

A =



a0 D
D a1 D

D a1 D
D a1 D

. . .
. . .

. . .

D a1 D
D a0


with a0 = −D − λ and a1 = −2D − λ.

Given a reference model M(θ∗) defined as:

M(θ∗) : ẏ = α∗Bu(t− τ∗) + A∗y (2)

in which the system parameters θ = [α, τ, λ,D] are replaced by θ∗ = [α∗, τ∗, λ∗, D∗], the system M(θ) is
said to be structurally globally identifiable (s.g.i) if M(θ) = M(θ∗) implies that θ = θ∗.

Given the linear nature of the model (Eq.1) both in the states and the (delayed) inputs and that ẏ,
y and u are piecewise continuous in time and of exponential order, the Laplace transform (L[.]) method
may be used to assess whether the s.g.i. condition holds (see [1] and the references cited therein). The
underlying idea is to compute the system transfer matrix H(s,θ) = Y(s)/U(s), with Y(s) = L[y(t)] and
U(s) = L[u(t)], and to check whether:

H(s,θ) = H(s,θ∗) ⇔ θ = θ∗; ∀s (3)

Note that Eq. 3 results in a set of equations binding θ and θ∗. If for almost any θ this set of equations
has a unique solution for θ∗, M(θ) is structurally globally identifiable (s.g.i.), if the set of solutions is
finite, M(θ) is said to be structurally locally identifiable (s.l.i).

Since the computation is symbolic, writing the transfer matrix in canonical form will simplify the
analysis. A canonical form may be obtained by writing down each entry of the transfer matrix as the
ratio of two polynomials ordered in s, provided that the numerator and the denominator are simplified by
their greatest common divisor and that the coefficient of the denominator monomial with highest degree
is set to one.

Taking into consideration that u(t− τ) = u(t)∗ δ(t− τ), the Laplace transform of the system 1 reads:

sIY(s) = αe−τsIU(s) + AY(s) (4)
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by means of the Gershgorin circle theorem, for example, it is straightforward to get a sufficient condition
for [sI−A] to be invertible and assuming that u(t)gt0 for some t values (before and after mitosis), the
system transfer matrix reads:

H(s) = αe−τs[sI−A]−1 (5)

In order to write each of the components of the transfer matrix as the ratio of two polynomials the
Padé formula is used to approximate the exponential term e−τs by a rational function. For the sake of
simplicity in the analysis a first order approximation will be used: e−τs = (2− τs)/(2 + τs).

Exploiting the fact that the matrix [sI−A] is tridiagonal and symmetric it is possible to analytically
obtain its inverse (see, for example, [2]) and therefore the elements of the transfer matrix result:

Hij(s) = α
2− τs
2 + τs

(−1)i+jDj−1γi−1βi+1

γn
(6)

with:

• γ0 = 1; γ1 = s− a0; γi = (s− a1)γi−1 −D2γi−2, i ≥ 2

• βn + 1 = 1; βn = s− a0; βi = (s− a1)βi+1 −D2βi+ 2, i ≤ n− 1

and Hij =Hji (the transfer matrix is symmetric).
It should be noted that, even though the matrix [sI−A] is tridiagonal and symmetric, its inverse will

be dense, thus Hij 6= 0,∀i, j ≤ n. In addition the complexity of the corresponding elements increases
with the size of the model, i.e. with n, due to the recursive nature of the expressions in Eq. 6.

We now limit the analysis to a simplified model with a reduced spatial domain of 3 nuclei. This
will not affect general conclusions and simplifies the symbolic manipulation. The canonical form of the
transfer matrix results:

H11(s) =
− 1

2
ταs3 − s2α(3Dτ2+2τ(τλ−1))

2τ
− sα(2D2τ+6D(τλ−2)+2λ(τλ−4))

2τ
− α(−2D2τ−6Dτλ−2τλ2)

2τ

s4 + s3(4Dτ+3τλ+2)
τ

+
s2(3D2τ+8Dτλ+8D+3τλ2+6λ)

τ
+

s(3D2τλ+6D2+4Dτλ2+16Dλ+τλ3+6λ2)
τ

+ 6D2λ+8Dλ2+2λ3

τ

H12(s) =
−sDα+2Dα

τ

s3 + s2(3Dτ+2τλ+2)
τ

+
s(3Dτλ+6D+τλ2+4λ)

τ
+ 6Dλ+2λ2

τ

H13(s) =
−sD2α+ 2D2α

τ

s4 + s3(4Dτ+3τλ+2)
τ

+
s2(3D2τ+8Dτλ+8D+3τλ2+6λ)

τ
+

s(3D2τλ+6D2+4Dτλ2+16Dλ+τλ3+6λ2)
τ

+ 6D2λ+8Dλ2+2λ3

τ

H22(s) =
−s2α+

s2α(−Dτ
2

− τλ
2

+1)
τ

+ 2α(D+λ)
τ

s3 + s2(3Dτ+2τλ+2)
τ

+
s(3Dτλ+6D+τλ2+4λ)

τ
+ 6Dλ+2λ2

τ

H23(s) =
−sDα+2Dα

τ

s3 + s2(3Dτ+2τλ+2)
τ

+
s(3Dτλ+6D+τλ2+4λ)

τ
+ 6Dλ+2λ2

τ

H33(s) =
− 1

2
ταs3 − s2α(3Dτ2+2τ(τλ−1))

2τ
− sα(2D2τ+6D(τλ−2)+2λ(τλ−4))

2τ
− α(−2D2τ−6Dτλ−2τλ2)

2τ

s4 + s3(4Dτ+3τλ+2)
τ

+
s2(3D2τ+8Dτλ+8D+3τλ2+6λ)

τ
+

s(3D2τλ+6D2+4Dτλ2+16Dλ+τλ3+6λ2)
τ

+ 6D2λ+8Dλ2+2λ3

τ

Using symbolic manipulation it is possible to asses condition in Eq. 3 is satisfied. Therefore the model
is structurally globally identifiable under a general input provided ui(t− τ) 6= 0, i.e. all parameters may
be given unique solutions provided protein are available for time points before or after mitosis (i. e. when
the production rate is not zero.
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