

A mutation in the FHA domain of *Coprinus cinereus* Nbs1 leads to Spo11-independent meiotic recombination and chromosome segregation

K. Nicole Crown^{*,1}, Oleksandr P. Savytskyy^{*}, Shehre-Banoo Malik^{**}, John Logsdon^{**}, R. Scott Williams[§], John A. Tainer^{§§}, Miriam E. Zolan^{*}

*Department of Biology, Indiana University, Bloomington, Indiana 47405 **Department of Biology, University of Iowa, Iowa City, Iowa 52242 [§]National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709 ^{§§}The Scripps Research Institute, La Jolla, California 92037 ¹Current address: Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599

DOI: 10.1534/g3.113.007906

Figure S1 PHYRE2 alignment of *C. cinereus* Nbs1 and *S. pombe* Nbs1 (Kelley and Sternberg 2009). The query sequence is *C. cinereus* Nbs1 and the template sequence is *S. pombe* Nbs1. Predicted secondary structures are made by the PHYRE2 program, and the *S. pombe* known secondary structure is from the crystal structure (Williams et al. 2009). Blue arrows represent beta sheets and green spirals represent alpha helices. Amino acids highlighted in red represent insertions in the *C. cinereus* protein sequence relative to *S. pombe* and those highlighted in yellow represent deletions in the *C. cinereus* protein sequence relative to *S. pombe*. Amino acids 1-115 of *C. cinereus* Nbs1 correspond to the FHA domain of *S. pombe* Nbs1.

Figure S2 PHYRE2 alignment of *C. cinereus* Nbs1 and human Bard1 BRCT tandem repeat (Kelley and Sternberg 2009). The query sequence is *C. cinereue* Nbs1 and the template sequence is the human Bard1 BRCT tandem repeat . Predicted secondary structures are made by the PHYRE2 program, and human known secondary structure is from the crystal structure. Blue arrows represent beta sheets and green spirals represent alpha helices. Amino acids highlighted in red represent insertions in the *C. cinereus* protein sequence relative to human and those highlighted in yellow represent deletions in the *C. cinereus* protein sequence relative to human. The BRCT1 domain of *C. cinereus* Nbs1 is from amino acids 119-237 and the BRCT2 domain is from amino acids 246-345 of *C. cinereus*.

Coprinus	GKKREDEFDREFNRLKISKPDLDAQNGREPEEDWKV	LADFGDDSGIRGNFMTICELEVFK	749
	GKKRE + D ++ +IS D	DDS + + + E	
Human	GKKRELKEDSLWSAKEISNND	KLQDDSEMLPKKLLLTEFRSLV	663
Coprinus	EKNGRNAKSAGEMRPEWEGKPNFKKFKRKNVPRSG	784	
-	KN + +G + ++ NFKKFK+ P +G		
Human	IKNSTSRNPSG-INDDYGQLKNFKKFKKVTYPGAG	697	

Figure S3 Alignment of the Mre11 binding motif (amino acids 770-776) and surrounding sequence from *C. cinereus* and human Nbs1. The *C. cinereus* protein sequence was used as a query in a BLAST against the human protein sequence to produce an alignment.

Figure S4 Phylogenetic tree showing the evolutionary relationships among eukaryotic orthologs of *nbs1* from animals, fungi, plants and protists. *C. cinereus* Nbs1 groups with its closest relative *Laccaria* and other Basidiomycete fungi. Branch support is indicated by numbers at the base of branches, the percent boostrap support \geq 50%. The scale bar represents the distance of 0.5 amino acid substitutions per site. 186 aligned amino acid sites were analyzed using the LG+25 γ substitution model implemented in RAxML version 7.3.1, resulting in this tree with an optimized LnL=-41564.91. The parameter describing the γ -distributed amino acid substitution frequencies is α =1.58. The GenInfo Identifier numbers for each sequence from Genbank are indicated.

Figure S5 Map lengths of individual intervals along chromosome 3 from the homozygous and heterozygous nbs1-2 crosses. Grey bars are the homokaryon nbs1-2 cross and black bars are the heterokaryon wild type x nbs1-2 cross. No interval is statistically significantly different, nor is the total map lengths.

Figure S6 Map lengths of individual hotspot intervals on chromosome 8. Light grey bars are the homokaryon nbs1-2 cross and black bars are the heterokaryon wild type x nbs1-2 cross. Total map lengths are not statistically significantly different.

Figure S7 anti-gamma-H2AX localization on *spo11-1* meiotic chromosome spreads from unirradiated mushrooms at 2 hours past karyogamy (n=31), and one hour (n=32) and three hours(n=32) after irradiation with 60 krads. Images in the left hand column are DAPI stained chromosome spreads, images in the middle column are anti-gamma-H2AX counter-stained with a TRITC conjugated secondary antibody and images in the right hand column are the color combined images. Scale bars represent 2 µm.

Primer sequence
TGTTGGGCCCGTTCGACGG
AAGATGCCCAAATCCTTGTG
ACGTTTGACCCAGCTAAGGA
GCCTCCTGTCAGCAAGTACC
ATTCGGGTGTGACCAAATTC
CCCTCCTATCAAGGTGTGGA
CTTTGACGATGGGTTCCATT
TGAGACGAACAGGGTTGTGA
AGATGATTCGGGGATTAGGG
AAAAATGTCCCGAGAAGTGG
CAAGGCTGTTGCTTCGATTC
GAATTTGGTCACACCCGAAT
GACGAGTCTGCTGGTGGTTC
TCGAGACAGTTGCAGTGGAC
TCGGGTTTGGAAATCTTGAG
TTCTCGCCCTAGTCCTCGTA

Table S1 Primer sequences used to amplify C. cinereus nbs1

Table S2	Primers used to	amplify simple	sequence repea	ts on chromosome	s 3 and 8
----------	-----------------	----------------	----------------	------------------	-----------

SSR	Forward Primer (with M13 tail)	Reverse Primer
tssr53	TGTAAAACGACGGCCAGTTGCCGGCGTTGTAAGTTTTA	AGAACTCGAATGGTTCAACG
tssr63	TGTAAAACGACGGCCAGTTTCGCTCTTCCAAACAACAA	TGGGACTTTGCAACCTATCC
tssr64	TGTAAAACGACGGCCAGTCTTCCACTTCCGTTTCCTCA	TCCCTATGTCGGATGACGAT
tssr65	TGTAAAACGACGGCCAGTCAATCGTAAACGCAAACGAA	GAGAGGAAGAGGAGGAGGA
tssr70	TGTAAAACGACGGCCAGTGCGGCCAGACATAACAGAAT	CGATGCCCTTCTGATCTCTT
tssr73	TGTAAAACGACGGCCAGTGAGAAGGTCCACCGGTTTG	GATCACGTGCGGTCAATG
tssr74	TGTAAAACGACGGCCAGTGGAGAGTATCGAGGCGGATG	AGCAATAGCATCGTCAATCG
tssr77	TGTAAAACGACGGCCAGTGCAGCGTCACTCACCACTT	GCAGCTCTCCTGCTCAAACT
tssr78	TGTAAAACGACGGCCAGTCTTCAGTCGCGCAAGTTTC	ATATTGGCTTCGGACAATGC
tssr89	TGTAAAACGACGGCCAGTAAATACCCGGTCCATGATGA	CAATTGGGGAGGGTGTAAAG
tssr93	TGTAAAACGACGGCCAGTTGGGAGGAAGCCATAACTGT	GGGTTGTTGTTTTTGGGTGT
tssr98	TGTAAAACGACGGCCAGTAACAACGACAACACCGTCTG	GCCTAATACCGACGACGACA
tssr108	TGTAAAACGACGGCCAGTGAACGACACCTCCACTCCTC	TGTGTGTTTGTCTCGTCGAA
tssr286	TGTAAAACGACGGCCAGTTACCACCCTGTTGACGTTGA	TGGTACACACCGTTGAAGGA
tssr287	TGTAAAACGACGGCCAGTCTACACCAGTCGAACCGTCA	CATGGTTCACCACACGATTC
tssr292	TGTAAAACGACGGCCAGTTACATCACGGTGGTCTTGGA	ATCGCGACAGCTGTTTATGA
tssr295	TGTAAAACGACGGCCAGTCTCGCTGCCAATACCTCTTC	TGCTTCCCGAACATCTTCTC
tssr298	TGTAAAACGACGGCCAGTCGAGTCTTGGGCGTCATAGT	TGGACTCGGAAACGAGCTTA
tssr500	TGTAAAACGACGGCCAGTGCTTTTGGTGCAGGCTATGA	GGGTTCCTCCCCACTTCTAC
tssr502	TGTAAAACGACGGCCAGTCCTTACCCGATTTCCTAGCC	GACGTGGTAGAAGCAGTGTCC

ssr	172	J6;5-4	nbs1-2	nbs1-
			(172)	2;5-3
53	220.19	221.11	220.37	223.03
63	211.97	214.81	211.87	212.34
65	220.73	214.94	220.77	221.46
70	213.23	217.5	213.66	217.36
73	215.6	218	216.11	218.86
74	216.11	219.42	216.85	214.15
77	229.47	214	229.95	214.63
78	211.69	214	211.73	214.79
89	194.13	218	194.51	218.61
93	207.1	215.09	207.74	215.3
98	208.84	214.69	208.62	214.95
108	200.43	218	200.43	219.24
286	306.84	317.57	307.19	312.52
287	295.54	313.83	296.23	313.89
292	307.81	n/a	307.68	315.24
295	311.27	309.26	312.06	309.11
298	299.68	318.64	299.68	318.67
500	273.96	270.75	273.81	270.38
502	271.22	267.79	271	267.11

 Table S3
 Size of parental alleles used for genotyping.

SNP name	Forward primer sequence	Reverse Primer sequence
SNP .065M	TGTAAAACGACGGCCAGTAACCTTGCTTGTTTGGGCTA	TGTGTGCTTGAGTTTGGAATG
SNP .1M	GGTATCCGAGGGTTGAGAGG	CACTACCACCAGCACTACCG
SNP .3M	AGAGGCTTACTGACGCTTCG	TAATTCGCTCAAGGCATGTG
SNP .5M	GGACAAAGGACCAGGAATGA	CTTTCGGCTTTCAGTTCGAC
SNP .8M	GGCGAAGAATAAGCGTCAAG	ACCGCAAACTCAACCTATGG
SNP .153	GTCTACACCGGGTCTCTGGA	GAACGCAGTAATCGTGCTCA
SNP .205	CCGTCTCTGAAGAGCCTTTG	ATAACAAGCAGGGCGATGAC
SNP 2.28	TGTAAAACGACGGCCAGTTTGTTCCCCAGAGCTGACTT	ACGTGCCAATGGATGGTAAG

 Table S4
 Primers used to amplify single nucleotide polymorphisms on chromosomes 3 and 8.

SNP name	location on chromosome	sequence in J6;5-4 and nbs1-2;5-3	sequence in 172 and nbs1-2 (172)
SNP .065M	65309	AGGTCG	AGGC ACGAA TCG
SNP .1M	99606	CC GCC TTCG	CCTTCG
SNP .3M	299500	GTC C AGC	GTCAAGC
SNP .5M	553545	GAAATT T CTGGAGTC	GAAATT-CTGGAGTC
SNP .8M	798676	CATCGTTTCATTCAC	CATCATT CCCGCT TCATTCAC
SNP .153	153710	PCR fragment size 1000 bp	PCR fragment size 1300 bp
SNP .205	205249	GC C TGGGTTTATTTATG G A CG CTAA C CG	GC A TGGGTTTATTTATG C A GA CTAA A CG
SNP 2.28	2280834	AGAACGGA	AGA GA AC TTG GGA

Table S5 Single nucleotide polymorphisms used for genetic mapping

Table S6 Interference on chromosome 3

Genetic interval	Wild type	nbs1-2
A/B/C	0	0
B/C/D	0	3.33*
C/D/E	0	0
D/E/F	0	2.32
E/F/G	0	2.56
F/G/H	16.23	0
G/H/I	0	0
H/I/J	0	0
I/J/K	0	0
J/K/L	0	0
K/L/M	0	0.67
L/M/N	0	0

*statistically significant, p < 0.05

Interference was calculated as in Malkova et al (2004). Zero indicates complete interference, numbers greater than 1 indicate negative interference, and numbers between zero and one indicate loss of positive interference.

 Table S7
 Interference among chromosome 8 hotspots

Genetic interval	Wild type	nbs1-2
A/B/C	1.4	0
B/C/D	0	0.75
H/I/J	0	3.57