

Increased Waist Circumference and Prevalence of Type 2 Diabetes and Hypertension in Chinese Adults: Two Population-based Cross-sectional Surveys in Shanghai, China

Journal:	BMJ Open
Manuscript ID:	bmjopen-2013-003408
Article Type:	Research
Date Submitted by the Author:	24-Jun-2013
Complete List of Authors:	Ruan, Ye; Shanghai Municipal Center for Disease Control and Prevention, Department of Diabetes Prevention and Control Mo, Miao; School of Public Health, Fudan University, Department of Epidemiology Joss-Moore, Lisa; University of Utah, Division of Neonatology Li, Yan Yun; Shanghai Municipal Center for Disease Control and Prevention, Department of Diabetes Prevention and Control Yang, Qun Di; Shanghai Municipal Center for Disease Control and Prevention, Department of Diabetes Prevention and Control Shi, Liang; Shanghai Municipal Center for Disease Control and Prevention, Department of Diabetes Prevention and Control Shi, Liang; School of Public Health, Fudan University, Department of Epidemiology Li, Rui; Shanghai Municipal Center for Disease Control and Prevention, Department of Diabetes Prevention and Control Zhang, Hua; School of Public Health, Fudan University, Department of Epidemiology Li, Rui; Shanghai Municipal Center for Disease Control and Prevention, Department of Diabetes Prevention and Control Xu, Wang Hong; Fudan University, Department of Epidemiology, School of Public Health
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Epidemiology, Public health
Keywords:	Hypertension < CARDIOLOGY, General diabetes < DIABETES & ENDOCRINOLOGY, EPIDEMIOLOGY, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts Page 1 of 26

BMJ Open

Increased Waist Circumference and Prevalence of Type 2 Diabetes and Hypertension in

2	1
3 4 5	2
5 6 7	3
8 9	4
10 11	5
12 13	6
14 15	7
16 17 18	8
19 20	9
21 22	10
23 24	11
25 26	12
27 28 29	13
30 31	14
32 33	15
34 35	16
36 37	17
38 39 40	18
40 41 42	19
43 44	20
45 46	21
47 48	22
49 50 51	23
51 52 53	24
54 55	25
56 57	26
58 59 60	20

2 Chinese Adults: Two Population-based Cross-sectional Surveys in Shanghai, China 3 Ye Ruan, MD, PhD¹, Miao Mo, MD², Lisa Joss-Moore, PhD³, Yan Yun Li, MD¹, Qun Di Yang, 4 MD, MPH¹, Liang Shi, MD¹, Hua Zhang, MD², Rui Li, MD^{1*}, Wang Hong Xu, MD, PhD^{2*} 5 6 **AFILIATIONS:** 7 ¹ Department of Diabetes Prevention and Control, Shanghai Municipal Center for Disease Control 8 and Prevention, 1380 Zhong Shan Xi Road, Shanghai, 200336, People's Republic of China 9 ² Department of Epidemiology, School of Public Health, Fudan University; Key Laboratory of 0 1 Public Health Safety, Ministry of Education (Fudan University), 138 Yi Xue Yuan Road, Shanghai, 2 200032, People's Republic of China ι Lak ³ Division of Neonatology, University of Utah, Salt Lake City, Utah 84108, USA 3 4 5 Correspondence to: 6 Wang Hong Xu, MD, Ph.D, Associate professor 7 8 Department of Epidemiology 9 School of Public Health 0 Fudan University 138 Yi Xue Yuan Road 1 Shanghai 200032 2 P. R. China 3 4 Tel: 86-21-54237679 Fax: 86-21-54237334 5 6 Email: wanghong.xu@fudan.edu.cn

1 2	27	
3 4 5	28	or
5 6 7	29	Rui Li, MD
, 8 9	30	Department of Diabetes Prevention and Control
10 11	31	Shanghai Municipal Center for Disease Control and Prevention
12 13	32	1380 Zhong Shan Xi Road
14 15 16	33	Shanghai 200336
17 18	34	P. R. China
19 20	35	Tel: 86-21-62758710
21 22	36	Email: rli@scdc.sh.cn
23 24 25	37	
26 27	38	RUNNING HEADER: Obesity and prevalence of hypertension and T2DM in Chinese adults
28 29	39	
30 31	40	Word Count:
32 33	41	Abstract: 249
34 35 36	42	Word Count: Abstract: 249 Text: 2,533
37 38	43	
39 40		
41 42		
43 44		
45		
46 47		
48		
49		
50 51		
52		
53		
54		
55 50		
56 57		
58		
59		
60		

BMJ Open

44	Abstract:
45	Objective: To evaluate the changes in body mass index (BMI) and waist circumference (WC)
46	and their associations with the prevalence of hypertension and type 2 diabetes (T2DM) in Chinese
47	adults.
48	Design: Two consecutive population-based cross-sectional surveys.
49	Setting: A total of 12 districts and 7 counties in Shanghai, China.
50	Participants: 12,329 randomly selected participants of the survey in 2002-2003, and 7,423
51	randomly selected participants of the survey in 2009. All subjects were residents of Shanghai aged
52	35-74 years old.
53	Outcome measures: Measured BMI and WC. Previously-diagnosed and newly-identified
54	hypertension and T2DM by measured blood pressure, fasting and post-load glucose.
55	Results: While the participants of the two surveys were comparable in BMI in each age group,
56	the participants of the 2009 survey had significantly larger WC than those of the 2002-03 survey,
57	with an annual percentage change (APC) being higher among subjects aged 45-49 years old in both
58	men and women. The increase in prevalence of T2DM was observed in all age groups and also
59	appeared more evident in subjects aged 45-49 years old. The prevalence of hypertension was
60	observed to increase more rapidly in elderly men and middle-aged women. Obesity, both overt and
61	central, was associated with the risk of the two diseases, but BMI was more strongly linked to
62	hypertension while WC appeared more evidently related with T2DM.
63	Conclusion: The prevalence of central obesity and related chronic diseases has been
64	increasing in Shanghai, China. Our findings provide useful information for the projection of a more
65	rapidly growing burden of T2DM than hypertension in Chinese adults.
66	
67	Keywords: type 2 diabetes; hypertension; prevalence; body mass index; waist circumference

Article summary

Article focus

- The shift in BMI and WC among Chinese adults over past one decade.
- The contribution of changes in overall and central obesity to the increasing burden of chronic disease in China.

Key messages

- The WC increased in Chinese adults over the decade spanning 2002-2009, while BMI did not change over the same period.
- BMI was more strongly linked to hypertension while WC appeared more evidently related with T2DM in Chinese adults.
- Our findings provide useful information for the projection of a more rapidly growing burden of T2DM than hypertension in Chinese adults.

Strengths and limitations of this study

- The strengths of this study include the strict process of multistage sampling in adult population of Shanghai, anthropometric measurement according to a standardized protocol and fasting and postprandial blood glucose tests for the participants.
- The nature of the cross-sectional study design limits our ability to directly evaluate the influence of overall and central obesity as well as the change of their prevalence on the risk of hypertension and T2DM.
- The differences in several demographic characteristics between the participants of the two surveys indicate the possibility of selection bias.

BMJ Open

1 2 3 4		
5 6		
7 8 9		
10 11 12		
13 14 15		
16 17		
12 13 14 15 16 17 18 19 20 21 22 23		
21 22 23		
24 25 26		
27 28		
29 30 31		
32 33 34		
35 36 37		
38 39 40		
41 42 43		
44 45		
46 47 48		
49 50 51		
52 53 54		
55 56		
57 58 59		
60		

Introduction 71 A rising worldwide prevalence of chronic disease, manifested primarily as hypertension and 72 type 2 diabetes (T2DM), has been well documented [1-4]. In Chinese aged 15-74 years old, the 73 prevalence of hypertension increased from 5.11% in 1959, 7.73% in 1979 [5] and 13.58% in 1991[6] 74 75 to 17.65% in 2002 [7]. The prevalence of T2DM tripled between 1980 (about 1.0%) and 1996 (3.2%) [89], and reached 9.7% in 2008 among adults at 20 years old or above [10]. It is estimated 76 77 that over 92 million people in China have T2DM. This represents approximately half of the world's diabetic population, and places China at the "global epicenter of the diabetes epidemic" [4]. 78 79 Both hypertension and T2DM are associated with obesity [11 12]. Obesity is often measured 80 by body mass index (BMI). Across the entire range of BMI, the risk of hypertension and T2DM 81 increases, making a higher BMI a strong predictor of both hypertension and T2DM [4 12-14]. However, a significant proportion of Asian adults diagnosed with T2DM are with the normal BMI, 82 ie.18.5-25.0 kg/m² [15 16]. BMI is a general indicator of overt obesity, but does not give 83 84 information about the distribution of obesity. Central obesity, often assessed via waist circumference (WC), is also strongly correlated with T2DM in both European and Asian adults [11] 85 86 17]. While changes in BMI have been well documented in China over past several decades [2 18], 87 changes in WC, and thus central obesity, are not well described. 88 In this study, we took advantage of the data from population based cross-sectional surveys conducted in Shanghai in 2002-03 and in 2009. We used the data from the two surveys to evaluate 89 90 correlations between shifts in BMI and WC with the prevalence of hypertension and T2DM in 91 Chinese adults. Our results may help to better understand the contribution of overall obesity and 92 central obesity in the increasing burden of chronic disease in China.

93 Materials and Methods

94 Study Participants

A representative sample of the general population was randomly selected through a multistage
 sampling process in the 2002-03 survey. Firstly, 4 districts and 2 counties were randomly selected

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

from a total of 12 districts and 7 counties in Shanghai, China. And then, 1-2 sub-districts or towns were randomly selected from each selected district or county. Next, 1-2 communities or villages, usually 1,000-2,000 residents for each, were randomly selected from each selected sub-district or town. Finally, eligible subjects (permanent residents of Shanghai, 15-74 years old and having been in the city for at least 5 years) were randomly selected from the selected communities and villages and were invited for participation. Pregnant women, individuals with type I diabetes, and physically or mentally disabled persons were excluded from the participation. During the period of May 2002-October 2003, a total of 17,526 eligible subjects were recruited, and 14,401 (82.17%) participated the survey. The 2009 survey used the similar sampling method except that only 7 communities and

villages were randomly selected in the third stage of sampling. The inclusion and exclusion criteria of the 2009 survey were also similar to those for the 2002-03 survey, except that only those at the age of 35-74 years old were eligible for the 2009 survey. Among 7,627 eligible adults contacted during the period of May-July 2009, 7,414 (97.21%) were interviewed and donated blood samples. To make the two surveys comparable, we excluded 1,071 subjects younger than 35 years from the 2002-03 survey. After further excluding subjects with missing information, the final analysis included 5,050 men and 7,279 women in the 2002-03 survey and 3,461 men and 3,962 women in the 2009 survey. The Institutional Review Board at Shanghai Municipal Center of Disease Control and Prevention approved the study. Informed consent was obtained from each participant before data collection.

117 Data Collection

A similar survey approach was followed by the two investigations. In both surveys, information on demographic and socioeconomic factors, diagnosis of diabetes, tobacco and alcohol use, physical activity and family history of diabetes was collected by trained interviewers with a structured questionnaire at community clinics located in the residential areas of the participants. At the interview, each participant's blood pressure, body weight, standing height, and waist

BMJ Open

circumference (WC) were measured by trained staff. Blood pressure was measured on the right arm in the sitting position using standard mercury sphygmomanometer after at least 5 minutes of rest. The first and fifth Korotkoff sounds were recorded. Body weight and height were recorded while the subject was in light clothing and without shoes. Body weight was measured with electronic scales to the nearest 0.1 kg. Body height was measured to the nearest 0.1 cm by using a stadiometer. WC, recorded to the nearest 0.1 cm, was taken with a cloth tape and was measured on bare skin at the midline between the lower border of the ribs and the iliac crest in the horizontal plane after a normal expiration. Two measurements were taken and the mean of the replicates was used in the following analyses. Body mass index (BMI) was calculated as weight in kilograms divided by height in meters squared (kg/m^2) using the direct measurements.

133 Laboratory Measurements

After at least 10 hours of overnight fasting, 1-1.5 ml venous blood specimen was collected in a vacuum tube containing sodium fluoride. All participants with no history of diabetes and having a fasting plasma glucose level of < 7.0 mmol per liter (mmol/l) were then asked to have an oral glucose-tolerance test (OGTT). Blood samples were drawn at 0 and 120 minutes after a standard 75 gram glucose load. Plasma glucose was measured with Glucose oxidase-peroxidase (GOD-PAP) method.

140 Diagnosis of T2DM and Hypertension

Previously diagnosed T2DM and hypertension was identified by a positive response from the participant to the question of "Have you ever diagnosed with T2DM/hypertension by a doctor?" and confirmed by medical records in which prescriptions of anti-hypertensive or hypoglycemic medications were presented. The consistent rate was 100%. For those who had a negative response, the T2DM was diagnosed with measured glucose level by using the 1999 World Health Organization diagnostic criteria [Department of Noncommunicable Disease Surveillance. Definition, diagnosis and classification of diabetes mellitus and its complications: report of a WHO consultation. Part 1. Diagnosis and classification of diabetes mellitus. Geneva: World Health

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

149 Organization, 1999. (Accessed July 5, 2010, at_

150 <u>http://www.staff.ncl.ac.uk/philip.home/who_dmg.pdf.</u>] and hypertension referred to the subjects 151 with measured systolic blood pressure (SBP) \geq 140 mmHg or diastolic blood pressure (DBP) \geq 90 152 mmHg and confirmed by clinical visits. Total T2DM and hypertension included both previously 153 diagnosed and newly-diagnosed patients. 42.7% (1,110 of 2,598) diabetic patients and 10.3% (694 154 of 6,735) hypertensive patients were newly-diagnosed in the two surveys.

155 Statistical Analysis

SAS software 9.2 was used for all the statistical analyses. Characteristics of the subgroups were described using summary statistics (median, 25th and 75th percentile, frequencies, and percentages) separately for men and women. The differences between two surveys were compared using χ^2 test (category variables) and Wilcoxon tests (continuous variables). The annual percentage changes (APC) in prevalence between two surveys were calculated as (prevalence in 2009 – prevalence in 2002-03) / number of years using logarithms for each age group. Percentile curves were constructed for BMI and WC values in the two surveys by gender using the LMS (lambda, mu, sigma) method. Restricted cubic splines (RCS) were used to model a potential curvilinear relationship of BMI and WC with hypertension and diabetes using the 5th, 25th, 75th and 95th percentiles as fixed knots and the 50th percentile as the reference. Polynomial logistic regression were used to estimate the odds ratios (OR) and 95% confidence intervals (95% CI) of BMI and WC with T2DM and hypertension. Meta-analysis was applied to obtain the combined ORs and 95% CI considering the potential heterogeneity of the populations in the two surveys. The residual method was used to derive the independent effect of BMI and WC with each other in the models. P value less than 0.05 was considered as a test of significance based on two sides.

Results

The male participants in two surveys were similar in age, resident site and cigarette smoking while the females were comparable in cigarette smoking (P > 0.05) (Table 1). Compared to the subjects in 2002-03 survey, the participants of 2009 survey, both men and women, had lower level

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

of education, higher level of income per capita, more prior history of T2DM, higher frequency of
alcohol drinking and lower frequency of leisure time activity, and were more likely to have a family
history of diabetes.

Figure 1 shows the shapes of the BMI and WC distribution curves among men and women changed over the period of the two surveys. After adjusting for age, education, per capita income, resident site, smoking, drinking, regular exercise, and family history of T2DM, the curves of BMI were almost overlapped in both men and women. However, the WC curves for men and women were shifted to the right between 2002-03 and 2009, with the mean WC increasing from 83.6 to 85.3 cm for men and from 78.4 to 80.6 cm for women.

As presented in table 2, the prevalence of obesity, both overall and central, increased with increasing age groups. While the prevalence of overall obesity (BMI $\geq 28 \text{ kg/m}^2$) did not changed between two surveys (all P values > 0.05), the prevalence of central obesity were significantly higher in 2009 survey in each age group (all P values < 0.001). A more pronounced increase in prevalence of central obesity and T2DM was observed among subjects aged 45-49 years old in both men and women; whereas the change in prevalence of hypertension between two surveys appeared more evident in older men and younger women over the period. Using the World Health Organization (WHO) criteria for obesity did not change the results substantially (data not shown in the tables).

BMI and WC were highly correlated with each other, with a correlation coefficient of 0.77 (P <(0.0001) among men and (0.78) ($P \le 0.0001$) among women after adjusting for age. Therefore, the residual method was used to test the potential respective non-linear relationships of BMI and WC with the risk of T2DM and hypertension (Figure 2). The dose-response analysis likewise showed a statistically significant increased risk of T2DM at high level of WC and a significant elevated risk of hypertension at high level of BMI in both men and women after adjusting for age, education, per capita income, resident site, smoking, drinking, regular exercise, family history of T2DM and phase of surveys, with P values for non-linear relationship tests < 0.05. No significant relationship was

observed between BMI and T2DM in men and between WC and hypertension in women. As shown in table 3, in both sexes, BMI adjusted for WC (residuals) appeared more strongly associated with hypertension while WC adjusted for BMI (residuals) was more evidently related with T2DM. Comparing with the lowest quartile of BMI residuals, the risk of hypertension increased 85% (95%CI: 1.59-2.15) in men and 1.23-fold (95%CI: 1.94-2.57) in women, whereas the risk of T2DM did not increase significantly in both sexes. On the other hand, the ORs of the highest versus the lowest quartile WC residuals for T2DM were 1.75 (95%CI: 1.33-2.30) in men and 2.37 (95%CI: 1.78-3.15) in women, higher than the OR of 1.57 (95%CI: 1.35-1.82) in men and 1.13 (95%CI: 0.98-1.30) in women for hypertension.

We further evaluated the potential joint effect of BMI and WC on T2DM and hypertension (table 4). The participants were classified into normal weight (BMI 18.5-23.9 kg/m²), overweight $(24.0-27.9 \text{ kg/m}^2)$, or obese ($\geq 28 \text{ kg/m}^2$) based on data from Chinese adults, and were defined as with normal or increased WC using sex-specific cut-offs (85 cm in men and 80 cm in women) [19]. The risk of T2DM and hypertension increased across groups defined by BMI and WC, with the highest risk observed among men with the lowest BMI but a higher WC, and among those with the highest BMI and a higher WC for hypertension. However, no significant interaction was observed between BMI and WC (all *P* values for interaction tests > 0.05).

Discussion

In this representative sample of the adult population in Shanghai, the largest city in China, we observed an increased prevalence of central obesity, hypertension and T2DM over the decade spanning 2002-2009. In contrast, BMI did not change over the same period. Our results present a snapshot of overt versus central obesity in the Chinese population and suggest that the epidemic of central obesity in this population, which has been more closely associated with the prevalence of T2DM, may lead to a more rapidly growing burden of T2DM in China.

225 Chinese adults have lower rates of overweight and obesity than their Western counterparts 226 using the WHO criteria (BMI \ge 25 kg/m² for overweight and BMI \ge 30 kg/m² for obesity) [15 16]. Page 11 of 26

1

60

BMJ Open

1 2	227	Nevertheless, increasing trends of BMI in Chinese adults have been well documented [18 20]. In
3 4 5	228	two national nutritional surveys undertaken in 1982 and 1992 in China, the prevalence of
5 6 7	229	overweight/obesity (BMI \ge 25 kg/m ²) in subjects 20-70 years of age was 10% and 15%,
8 9	230	respectively. Between 1992 and 2002, the combined prevalence of overweight and obesity increased
10 11	231	from 14.6 to 21.8% [21]. Interestingly, the increase in BMI among Chinese adults has slowed down
12 13	232	during past decades [2]. In this study, we did not observe an increase in BMI and prevalence of
14 15 16	233	obesity defined by the Chinese obesity standards or by WHO criteria (data not shown). Instead, we
17 18	234	observed a significant increase in WC, a measure of central obesity between surveys. Our
19 20	235	observation of increased WC in Chinese adults, without a concomitant increase in BMI, represents
21 22	236	an increasing burden of central obesity in this population. The increase in central obesity indicates
23 24	237	an upward trend in body fat percentages in the population who have been previously observed with
25 26 27	238	higher body fat percentages compared to other ethnic people with the same BMI [22 23].
28 29	239	Both epidemic of overall and central obesity parallel a continuously increasing prevalence of
30 31	240	hypertension and T2DM in China [21]. Several studies indicate that overall obesity (BMI) is more
32 33	241	strongly associated with hypertension, while central obesity (WC) is more strongly associated with
34 35 26	242	T2DM [17 24-26]. The rationale for these associations is based on the notion that central obesity
36 37 38	243	reflects specific accumulation of visceral adipose tissue. Excess visceral adipose tissue is
39 40	244	metabolically unfavorable due to productions of free fatty acids and inflammatory mediators.
41 42	245	Overall obesity, on the other hand, represents a greater overall physiologic strain and effects
43 44	246	vascular and cardiac parameters more significantly. In this study, we observed a significant increase
45 46	247	in prevalence of T2DM regardless of gender or age groups, which was more pronounced than the
47 48 49	248	change in the prevalence of hypertension during the period of 2002-03 and 2009. We also observed
50 51	249	a closer association of central obesity with the prevalence of T2DM than with the prevalence of
52 53	250	hypertension. These results support the notion that central obesity in particular is a stronger risk
54 55	251	factor for T2DM than for hypertension in Chinese adults. Due to the cross-sectional design,
56 57	252	however, our study was unable to make a causal inference.
58 59		

The nature of the cross-sectional study design limits our ability to directly evaluate the influence of overall and central obesity as well as the change of their prevalence on the risk of hypertension and T2DM. The differences in several demographic characteristics between the participants of the two surveys indicate the possibility of selection bias. However, there are several strengths, including the strict process of multistage sampling in adult population in Shanghai, anthropometric measurement according to a standardized protocol and fasting and postprandial blood glucose tests for the participants.

260 Conclusions

In summary, this study describes the potential association of central obesity with an upward trend of T2DM, implicating a more rapidly growing burden of T2DM than hypertension in Chinese adults. The findings in Shanghai, the largest city and one of the most economically developed areas in China, provide useful information for the projection of future trends in the whole country.

265 Acknowledgements

We thank Dr. Xiao-ou Shu and Dr. Hui Cai of Vanderbilt University for their contributions in study design and data analysis. The authors thank the study participants of the two cross-sectional surveys and the healthcare workers in each community involved.

269 Footnotes

Contributors YR and MM contributed to data collection, data analysis and draft of the paper. 271 YR, YYL, QDY, and LS contributed to data collection and quality control. LJM contributed to 272 revision of the paper. HZ contributed to data clean and analysis. RL and WHX contributed to study 273 design, statistical analysis and revision of the paper. All authors contributed to the interpretation of 274 data and revision of the manuscript. All authors approved the final version.

Funding This study was supported by the Key Program of Shanghai Municipal Committee of

276 Science and Technology (04 DZ19502), the Shanghai Medical Development Program (01ZD001)

and the Shanghai Municipal Health Bureau (GWDTR201204). W. H. Xu was supported by a

BMJ Open

-	278	training grant from the Fogarty International Center (D43 TW008313 to X. O. Shu). The funders
	279	had no role in study design, data collection or analysis, decision to publish, or preparation of the
5 6 2 7	280	manuscript.
0	281	Conflict of Interest: None declared.
10	282	

1 2 3	283	REFERENCES
4	284	1. Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes
5 6	285	(Lond) 2008; 32 (9):1431-7 doi: ijo2008102 [pii]
7	286	10.1038/ijo.2008.102[published Online First: Epub Date] .
8	287	2. Popkin BM. Recent dynamics suggest selected countries catching up to US obesity. Am J Clin Nutr
9	288	2010;91(1):284S-88S doi: ajcn.2009.28473C [pii]
10 11	289	10.3945/ajcn.2009.28473C[published Online First: Epub Date] .
12	290	3. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res
13	291	Clin Pract 2010;87(1):4-14 doi: S0168-8227(09)00432-X [pii]
14 15	292	10.1016/j.diabres.2009.10.007[published Online First: Epub Date] .
16	293	4. Hu FB. Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes care 2011;34(6):1249-57 doi:
17	294	10.2337/dc11-0442[published Online First: Epub Date] .
18	295	5. Wu YK, Lu CQ, Gao RC, Yu JS, Liu GC. Nation-wide hypertension screening in China during 1979-1980. Chin Med
19 20	296	J (Engl) 1982;95(2):101-8
20	297	6. Wu X, Duan X, Gu D, Hao J, Tao S, Fan D. Prevalence of hypertension and its trends in Chinese populations. Int J
22	298	Cardiol 1995; 52 (1):39-44 doi: 016752739502443Z [pii][published Online First: Epub Date] .
23	299	7. Wu Y, Huxley R, Li L, et al. Prevalence, awareness, treatment, and control of hypertension in China: data from the
24 25	300	China National Nutrition and Health Survey 2002. Circulation 2008;118(25):2679-86 doi:
26	301	10.1161/CIRCULATIONAHA.108.788166
27	302	118/25/2679 [pii][published Online First: Epub Date]].
28 29	303	8. [A mass survey of diabetes mellitus in a population of 300,000 in 14 provinces and municipalities in China (author's
29 30	304	transl)]. Zhonghua Nei Ke Za Zhi 1981; 20 (11):678-83
31	305	9. Wang K, Li T, Xiang H. [Study on the epidemiological characteristics of diabetes mellitus and IGT in China].
32	306	Zhonghua Liu Xing Bing Xue Za Zhi 1998; 19 (5):282-5
33 34	307	10. Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China. The New England journal of
35	308	medicine 2010; 362 (12):1090-101 doi: 10.1056/NEJMoa0908292[published Online First: Epub Date]].
36	309 310	11. Nyamdorj R, Qiao Q, Lam TH, et al. BMI compared with central obesity indicators in relation to diabetes and
37 38	311	hypertension in Asians. Obesity (Silver Spring) 2008; 16 (7):1622-35 doi: 10.1038/oby.2008.73 oby200873 [pii][published Online First: Epub Date]].
39	312	12. Ostchega Y, Hughes JP, Terry A, Fakhouri TH, Miller I. Abdominal obesity, body mass index, and hypertension in
40	312	US adults: NHANES 2007-2010. Am J Hypertens 2012; 25 (12):1271-8 doi: 10.1038/ajh.2012.120
41	313	ajh2012120 [pii][published Online First: Epub Date]].
42 43	315	13. Barrett-Connor E. Epidemiology, obesity, and non-insulin-dependent diabetes mellitus. Epidemiol Rev
44	316	1989;11:172-81
45	317	14. Weber MB, Oza-Frank R, Staimez LR, Ali MK, Narayan KM. Type 2 diabetes in Asians: prevalence, risk factors,
46 47	318	and effectiveness of behavioral intervention at individual and population levels. Annu Rev Nutr
48	319	2012; 32 :417-39 doi: 10.1146/annurev-nutr-071811-150630[published Online First: Epub Date] .
49	320	15. Lu B, Yang Y, Song X, et al. An evaluation of the International Diabetes Federation definition of metabolic
50	321	syndrome in Chinese patients older than 30 years and diagnosed with type 2 diabetes mellitus. Metabolism
51 52	322	2006; 55 (8):1088-96 doi: S0026-0495(06)00138-7 [pii]
53	323	10.1016/j.metabol.2006.04.003[published Online First: Epub Date] .
54	324	16. Tseng CH. Body mass index and waist circumference as determinants of coronary artery disease in Taiwanese adults
55 56	325	with type 2 diabetes mellitus. Int J Obes (Lond) 2006; 30 (5):816-21 doi: 0803218 [pii]
56 57	326	10.1038/sj.ijo.0803218[published Online First: Epub Date]].
58	327	17. Feng RN, Zhao C, Wang C, et al. BMI is strongly associated with hypertension, and waist circumference is strongly
59 60	328	associated with type 2 diabetes and dyslipidemia, in northern Chinese adults. Journal of epidemiology / Japan

1	220	
2	329	Epidemiological Association 2012; 22 (4):317-23
3 4	330	18. Wildman RP, Gu D, Muntner P, et al. Trends in overweight and obesity in Chinese adults: between 1991 and
5	331	1999-2000. Obesity (Silver Spring) 2008;16(6):1448-53 doi: oby2008208 [pii]
6	332	10.1038/oby.2008.208[published Online First: Epub Date] .
7	333	19. Zhou BF. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in
8	334	Chinese adultsstudy on optimal cut-off points of body mass index and waist circumference in Chinese adults.
9 10	335	Biomed Environ Sci 2002;15(1):83-96
11	336	20. Wang H, Du S, Zhai F, Popkin BM. Trends in the distribution of body mass index among Chinese adults, aged 20-45
12	337	years (1989-2000). Int J Obes (Lond) 2007;31(2):272-8 doi: 0803416 [pii]
13	338	10.1038/sj.ijo.0803416[published Online First: Epub Date] .
14	339	21. Wang Y, Mi J, Shan XY, Wang QJ, Ge KY. Is China facing an obesity epidemic and the consequences? The trends in
15	340	obesity and chronic disease in China. Int J Obes (Lond) 2007; 31 (1):177-88 doi: 0803354 [pii]
16 17	341	10.1038/sj.ijo.0803354[published Online First: Epub Date] .
18	342	22. Wang J, Thornton JC, Burastero S, et al. Comparisons for body mass index and body fat percent among Puerto
19	343	Ricans, blacks, whites and Asians living in the New York City area. Obes Res 1996;4(4):377-84
20	344	23. Araneta MR, Wingard DL, Barrett-Connor E. Type 2 diabetes and metabolic syndrome in Filipina-American
21	345	
22 23		women : a high-risk nonobese population. Diabetes Care 2002; 25 (3):494-9
24	346	24. Jacobs EJ, Newton CC, Wang Y, et al. Waist circumference and all-cause mortality in a large US cohort. Archives of
25	347	internal medicine 2010; 170 (15):1293-301 doi: 10.1001/archinternmed.2010.201[published Online First: Epub
26	348	Date] .
27	349	25. InterAct C, Langenberg C, Sharp SJ, et al. Long-term risk of incident type 2 diabetes and measures of overall and
28 29	350	regional obesity: the EPIC-InterAct case-cohort study. PLoS medicine 2012;9(6):e1001230 doi:
30	351	10.1371/journal.pmed.1001230[published Online First: Epub Date]].
31	352	26. Li R, Shi L, Jia J, et al. Differentiating the Associations of Waist Circumference and Body Mass Index With
32	353	Cardiovascular Disease Risk in a Chinese Population. Asia-Pacific journal of public health / Asia-Pacific
33	354	Academic Consortium for Public Health 2012 doi: 10.1177/1010539512465306[published Online First: Epub
34 35	355	Date] .
36	356	
37	357	
38		Date] .
39 40		
40 41		
42		
43		
44		
45 46		
40 47		
48		
49		
50		
51 52		
53		
54		
55		
56 57		
57 58		
59		
60		

- Figure 2. Non-linear dose-response relationship of BMI and WC with hypertension and T2DM
- among participants of the two population-based surveys

BMJ Open

		1 st su	rvey	2 ⁿ	^d survey	P-value bei	ween surveys
	Characteristics	Men	Women	Men	Women	In mon	In more of
		(N=5,050)	(N=7,279)	(N=3,461)	(N=3,962)	In men	In women
_	Age (yrs., mean \pm SD)	54.8 ± 10.8	53.1 ± 10.3	54.7 ± 9.5	54.7 ± 9.1	0.55	< 0.0001
	Resident site (%)						
	Urban	71.1	63.0	72.4	72.0		
	Rural	29.0	37.0	27.7	28.0	0.19	<0.0001
	Education (%)						
	No formal education	4.1	18.4	3.2	9.5		
	Primary school	18.2	23.0	14.7	17.7		
	Middle school	35.3	31.1	45.7	45.2		
	High school	27.6	22.6	27.6	23.8		
	Colleague or above	14.8	4.9	8.8	3.9	0.0025	<0.0001
	Per capita income (yuan/mo.) (%)						
	<1000	37.0	45.5	4.9	4.0		
	1000-2999	38.3	38.4	41.8	46.7		
	3000-5000	22.5	17.9	33.2	33.3		
	>5000	2.2	1.3	20.0	16.0	<0.0001	<0.0001
	Family history of type 2diabetes	12.3	13.1	16.4	19.0	<0.0001	<0.0001
	Prevalence of type 2diabetes (%)	13.6	10.3	17.4	14.1	<0.0001	<0.0001
	Prevalence of hypertension (%)	34.8	28.3	41.8	37.1	<0.0001	<0.0001
	Cigarette smoking (%)	61.4	1.7	62.6	1.8	0.22	0.93
	Alcohol drinking (%)	40.4	2.4	54.0	5.0	<0.0001	<0.0001
	Leisure-time activity (%)	13.3	13.1	10.8	9.0	0.0009	<0.0001

Table 1. Characteristics of participants in two population-based surveys in Shanghai, China

	No. of st			l Obesity	APC	Centra	al obesity	APC		rtension	APC	Type 2 c		APC
	1 st survey	2 nd survey	1 st survey	2 nd survey	(%)	1 st survey	2 nd survey	(%)	1 st survey	2 nd survey	(%)	1 st survey	2 nd survey	(%)
Men														
Overall	5050	3461	11.7	11.9	0.21	46.3	53.8	2.35	34.8	41.8	2.87	13.6	17.4	3.78
Age-groups														
35-	414	230	10.5	9.1	-2.11	41.8	45.2	1.22	15.2	11.7	-3.92	4.6	5.7	3.25
40-	574	302	10.0	8.3	-2.83	41.8	47.00	1.85	22.5	21.9	-0.43	7.8	7.6	-0.44
45-	837	445	12.6	12.6	-0.04	44.0	53.7	3.12	25.3	31.0	3.16	7.8	13.7	9.1.
50-	833	739	12.2	10.8	-1.76	44.1	53.8	3.12	33.1	40.3	3.07	12.7	18.3	5.72
55-	628	669	10.4	13.2	<i>3.78</i>	47.3	54.6	2.25	35.4	45.6	3.99	15.0	17.9	2.82
60-	507	513	10.5	15.4	6.18	48.7	56.1	2.19	44.6	51.7	2.29	15.6	20.1	3.98
65-	674	313	12.6	11.8	-0.99	51.4	61.0	2.67	49.4	59.4	2.88	20.8	26.2	3.64
70-	583	250	13.8	9.6	-5.40	51.1	54.0	0.85	50.9	65.2	3.87	24.2	25.6	0.88
Women														
Overall	7279	3962	13.8	13.8	0.02	41.7	54.2	4.10	28.3	37.1	4.28	10.3	14.1	4.84
Age-groups														
35-	615	251	7.5	7.2	-0.65	22.6	26.3	2.35	6.8	10.8	7.24	3.3	4.0	3.17
40-	1000	287	9.4	11.2	2.66	27.6	38.0	5.05	11.7	15.7	4.61	4.1	5.9	5.81
45-	1491	563	11.0	9.8	-1.82	32.3	42.6	4.38	19.3	23.5	3.03	5.8	8.7	6.32
50-	1309	866	15.1	14.1	-1.00	43.9	54.0	3.24	28.7	31.0	1.16	8.3	9.4	1.94
55-	838	818	15.7	13.6	-2.17	47.5	60.6	3.83	33.9	39.7	2.48	8.8	15.3	8.80
60-	610	585	19.2	18.1	-0.87	53.5	63.1	2.58	40.5	52.8	4.17	16.7	19.2	2.11
65-	799	327	18.0	18.4	0.28	59.0	66.1	1.76	48.4	59.3	3.17	23.7	27.8	2.54
70-	617	265	18.2	16.6	-1.36	60.2	68.7	2.05	51.4	64.5	3.57	21.4	27.2	3.75
All subjects														
Overall	12329	7423	13.0	12.9	-0.05	43.6	54.0	3.35	31.0	39.3	3.75	11.7	15.6	4.53
Age-groups ^a														
35-	1029	481	8.7	8.0	-1.04	30.3	33.9	2.39	10.2	11.2	1.49	3.8	4.7	3.63
40-	1574	589	9.6	10.1	0.11	32.7	41.3	4.14	15.6	17.9	2.92	5.5	6.5	3.41
45-	2328	1008	11.6	10.8	-0.77	36.5	46.6	4.16	21.5 🥌	26.2	3.46	6.5	10.5	8.22
50-	2142	1605	13.9	12.8	-1.53	44.0	53.9	3.19	30.4	34.6	0.90	10.0	12.8	4.69
55-	1466	1487	13.4	13.4	0.01	47.4	58.1	3.13	34.5	42.2	3.20	11.5	16.4	5.75
60-	1117	1098	15.2	16.9	1.59	51.3	59.9	2.39	42.4	52.3	3.29	16.2	19.6	2.96
65-	1473	640	15.6	15.4	-0.39	55.5	63.8	2.11	48.9	59.4	3.04	22.3	27.1	2.98
70-	1200	515	16.0	13.2	-2.94	55.8	61.5	1.52	51.2	64.9	3.71	22.8	26.4	2.32

Table 2. Prevalence of obesity, hypertension and type 2 diabetes in participants of the two population-based surveys by age groups in Shanghai, China	,	Table 2. Prevalence of obesity,	hypertension and type 2 d	iabetes in participants of the	e two population-based s	surveys by age groups in Shanghai, China	
---	---	---------------------------------	---------------------------	--------------------------------	--------------------------	--	--

^a adjusted for sex according to the distribution in the first survey.

Page 19 of 26

BMJ Open

Table 3. Association of body size with hypertension and type 2 diabetes in two population-based surveys in

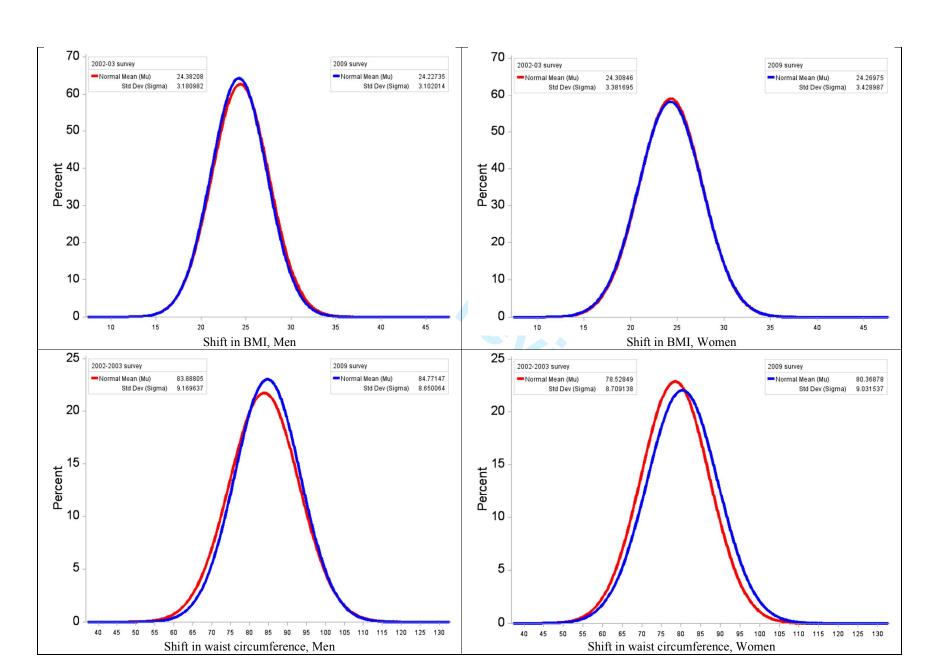
Shanghai, China

	No. of subjects with	Тур	e 2 diabetes only	Hy	Hypertension only		Both	
	neither diseases	Ν	OR (95%CI)	Ν	OR (95%CI)	Ν	OR (95%CI)	
BMI resid	uals		· ·					
Men								
Q1	1260	156	1.00	529	1.00	175	1.00	
Q2	1224	142	0.99 (0.77, 1.27)	583	1.16 (1.00, 1.34)	172	1.11(0.87, 1.41)	
Q3	1164	132	1.09 (0.84, 1.41)	651	1.50 (1.29, 1.74)	171	1.36(1.07, 1.73)	
Q4	1079	123	1.16 (0.88, 1.51)	709	1.85 (1.59, 2.15)	207	1.95(1.54, 2.47)	
	P for trend		0.2472		<0.0001		< 0.0001	
Women								
Q1	1816	166	1.00	600	1.00	223	1.00	
Q2	1866	148	1.02 (0.80, 1.29)	629	1.29 (1.12, 1.48)	162	0.96(0.77, 1.21)	
Q3	1835	125	0.89 (0.69, 1.15)	687	1.51 (1.31, 1.73)	158	1.03(0.82, 1.31)	
Q4	1634	109	0.94 (0.73, 1.23)	847	2.23 (1.94, 2.57)	215	1.85(1.15, 2.98)	
-	P for trend		0.4864		< 0.0001		0.0067	
All subject	cts							
Q1	3048	330	1.00	1162	1.00	385	1.00	
Q2	3079	282	1.00 (0.84, 1.19)	1200	1.22 (1.11, 1.35)	363	1.03(0.87, 1.22)	
Q3	2998	278	0.98 (0.82, 1.18)	1346	1.50 (1.36, 1.67)	302	1.18(1.00, 1.40)	
Q4	2753	211	1.04 (0.86, 1.26)	1527	2.05 (1.85, 2.27)	433	1.88(1.60, 2.21)	
	P for trend		0.2280		<0.0001		<0.0001	
WC residu	uals							
Men								
Q1	1376	102	1.00	531	1.00	111	1.00	
Q2	1232	131	1.34 (1.02, 1.78)	601	1.23 (1.06, 1.42)	155	1.41(1.07, 1.84)	
Q3	1130	148	1.39 (0.70, 2.77)	644	1.39 (1.20, 1.62)	197	1.73(1.33, 2.25)	
Q4	989	172	1.75 (1.33, 2.30)	696	1.57 (1.35, 1.82)	262	2.25(1.74, 2.90)	
	P for trend		<0.0001		<0.0001		<0.0001	
Women								
Q1	2019	80	1.00	598	1.00	108	1.00	
Q2	1935	102	1.17 (0.86, 1.59)	651	1.04 (0.91, 1.18)	117	0.94(0.71, 1.25)	
Q3	1708	172	2.04 (1.54, 2.70)	732	1.14 (0.99, 1.30)	194	1.40(1.08,1.82)	
Q4	1489	194	2.37 (1.78, 3.15)	782	1.13 (0.98, 1.30)	339	2.06(1.26, 3.38)	
	P for trend		<0.0001		0.0216		<0.0001	
All subject								
Q1	3453	161	1.00	1109	1.00	203	1.00	
Q2	3192	260	1.26 (0.99, 1.60)	1211	1.12 (1.01, 1.23)	260	1.16(0.82, 1.62)	
Q3	2838	301	1.66 (1.16, 2.36)	1373	1.25 (1.13, 1.38)	412	1.55(1.29, 1.87)	
Q4	2395	379	2.03 (1.66, 2.47)	1542	1.34 (1.09, 1.64)	608	2.18(1.83, 2.61)	
,	<i>P</i> for trend		0.0001		0.0021		<0.0001	

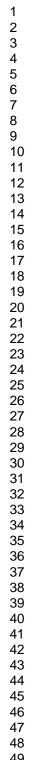
Missing value excluded from the analysis.

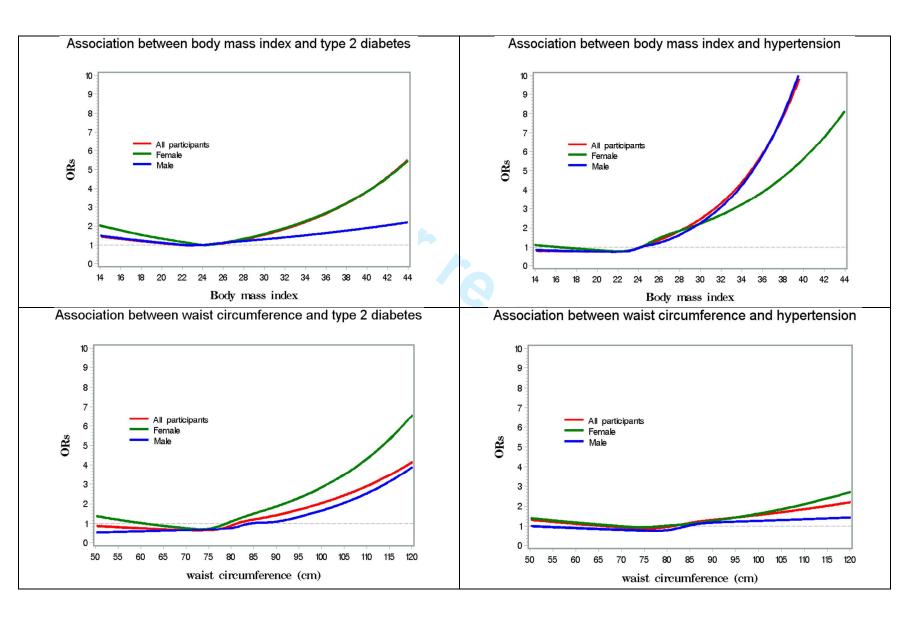
OR: Adjusted for age (continuous variable), education (no formal education, primary school, middle school, high school, colleague or above, dummy variables), per capita income (<1000, 1000-2999, 3000-5000 and >5000 RMB Yuan / month, dummy variables), resident site (urban/rural area), family history of type 2 diabetes (yes/no), smoking (ever/never), alcohol drinking (ever/never), regular exercise (never/ever), phase of study (first /second survey); Additionally adjusted for sex (male/female) for all subjects.

		WC: Lower			WC: Higher		OR (95%CI) fo	or hypertension	OR (95%CI) fo	or type 2 diabetes
BMI	No. of subjects	Hypertension N (%)	Diabetes N (%)	No. of subjects	Hypertension N (%)	Diabetes N (%)	WC: Lower	WC: Higher	WC: Lower	WC: Higher
Men										
<18.5	212	36	20	16	10	6	0.61(0.42, 0.89)	3.68(1.28, 10.59)	1.02(0.62, 1.67)	3.77(1.13, 12.56)
18.5-23.9	3034	767	296	679	249	111	1.00	1.56(0.94, 2.57)	1.00	1.48(1.15, 1.90)
24.0-27.9	1010	356	134	2530	1179	483	1.61(1.13, 2.32)	2.38(1.78, 3.17)	1.46(1.16, 1.83)	1.85(1.16, 2.96)
≥28.0	36	20	4	960	580	224	3.91(1.95, 7.82)	4.67(3.97, 5.49)	1.71(0.55, 5.37)	2.60(2.12, 3.18)
					P fo	r interaction	0.0	711	0.0	933
Women										
<18.5	313	51	19	8	2	1	0.68(0.49, 0.94)	0.85(0.16, 4.51)	0.93(0.56, 1.54)	2.45(0.22, 26.72)
18.5-23.9	4323	821	265	974	314	165	1.00	1.48(1.26, 1.75)	1.00	2.36(1.89, 2.94)
24.0-27.9	1330	384	93	2724	1102	437	1.84(1.59, 2.14)	2.21(1.97, 2.49)	1.19(0.92, 1.53)	2.14(1.81, 2.54)
≥28.0	81	32	9	1467	815	317	3.10(1.93, 5.00)	4.33(3.77, 4.96)	2.14(1.01, 4.52)	3.08(2.56, 3.71)
					P fo	r interaction	0.3.	524	0.4	011
Total										
<18.5	525	87	39	24	12	7	0.65(0.51, 0.83)	2.25(0.85, 5.93)	0.97(0.68, 1.39)	3.45(1.18, 10.12
18.5-23.9	7357	1588	561	1653	563	276	1.00	1.52(1.25, 1.85)	1.00	1.88(1.42, 2.49)
24.0-27.9	2340	740	227	5254	2281	920	1.74(1.50, 2.03)	2.31(2.03, 2.62)	1.33(1.12, 1.58)	1.99(1.62, 2.45)
≥28.0	117	5	13	2427	1395	541	3.34(2.26, 4.94)	4.46(4.02, 4.96)	2.00(1.07, 3.74)	2.85(2.49, 3.27)
					P fo	r interaction	0.0	562	0.0	798


Higher WC defined as ≥ 85 cm for men and ≥ 80 cm for women

OR: Adjusted for age (continuous variable), education (no formal education, primary school, middle school, high school, colleague or above, dummy variables), per capita income (<1000, 1000-2999, 3000-5000 and >5000 RMB Yuan / month, dummy variables), resident site (urban/rural area), family history of type 2 diabetes (yes/no),


smoking (ever/never), alcohol drinking (ever/never), regular exercise (never/ever), and phase of study (first /second survey).


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 For beer review only

	Item No	Recommendation	Results of check
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	We have indicated that the study was based on two population-based cross- sectional surveys in the title and the abstract
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	Line 53-62
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Line 72-87
Objectives	3	State specific objectives, including any prespecified hypotheses	Line 89-92
Methods			
Study design	4	Present key elements of study design early in the paper	Line 95-104
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	Line 95-104
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants	Line 95-104
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	Line 117-153
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	Line 117-153
Bias	9	Describe any efforts to address potential sources of bias	Line 117-153
Study size	10	Explain how the study size was arrived at	NA
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Line 155-169
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	Line 155-169
		(b) Describe any methods used to	Line 166-167

STROBE Statement—Checklist of items that should be included in reports	of cross-sectional studies
--	----------------------------

		examine subgroups and interactions	
		(c) Explain how missing data were	There were very few missing data in
		addressed	this study. Please see footnote of the
			Table 3
		(<i>d</i>) If applicable, describe analytical	
		methods taking account of sampling	
		strategy	
		(<u>e</u>) Describe any sensitivity analyses	No
Results			
Participants	13*	(a) Report numbers of individuals at	Line 95-105
i un nonpunito		each stage of study—eg numbers	
		potentially eligible, examined for	
		eligibility, confirmed eligible,	
		included in the study, completing	
		follow-up, and analysed	
		(b) Give reasons for non-participation	No information
		at each stage	
		(c) Consider use of a flow diagram	No
Descriptive data	14*	(a) Give characteristics of study	Line 172-177, and Table 1
Descriptive data	14	participants (eg demographic,	Line 172-177, and Table 1
		clinical, social) and information on	
		exposures and potential confounders	
		(b) Indicate number of participants	Yes, we provide number of subjects
		with missing data for each variable of	for each variable of interest (Please
		interest	see tables)
Outcome data	15*	Report numbers of outcome events or	Yes (Please see tables)
Outcome data	15	summary measures	res (riease see tables)
Main results	16	(<i>a</i>) Give unadjusted estimates and, if	No. Due to the large table, we presen
Main results	10	applicable, confounder-adjusted	only adjusted ORs
		estimates and their precision (eg,	only adjusted OKS
		95% confidence interval). Make clear	
		which confounders were adjusted for	
		and why they were included	
			Veg (Plage geg table 4)
		(<i>b</i>) Report category boundaries when continuous variables were	Yes (Please see table 4)
		categorized	NA
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute	NA
041	17	risk for a meaningful time period	Line 210 217
Other analyses	17	Report other analyses done—eg	Line 210-217
		analyses of subgroups and	
		interactions, and sensitivity analyses	
Discussion		1	
Key results	18	Summarise key results with reference	Line 219-224
		to study objectives	
Limitations	19	Discuss limitations of the study,	Line 253-259
		taking into account sources of	

		potential bias or imprecision. Discuss	
		both direction and magnitude of any	
		potential bias	
Interpretation	20	Give a cautious overall interpretation	Line 251-252
_		of results considering objectives,	
		limitations, multiplicity of analyses,	
		results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external	Line 263-264
·		validity) of the study results	
Other information			
Funding	22	Give the source of funding and the	Line 275-280
C .		role of the funders for the present	
		study and, if applicable, for the	
		original study on which the present	
		article is based	
*Give information separate	ly for expose	d and unexposed groups	
Give information separate	Ty for expose	a and unexposed groups.	
Note: An Explanation and	Elaboration (article discusses each checklist item and g	rives methodological background and
•		ting. The STROBE checklist is best used	
		licine at http://www.plosmedicine.org/, A	
		gy at http://www.epidem.com/). Informa	
	-		tion on the STROBE Initiative is
available at www.strobe-sta	atement.org.		

Increased Waist Circumference and Prevalence of Type 2 Diabetes and Hypertension in Chinese Adults: Two Population-based Cross-sectional Surveys in Shanghai, China

Journal:	BMJ Open
Manuscript ID:	bmjopen-2013-003408.R1
Article Type:	Research
Date Submitted by the Author:	26-Aug-2013
Complete List of Authors:	Ruan, Ye; Shanghai Municipal Center for Disease Control and Prevention, Department of Diabetes Prevention and Control Mo, Miao; School of Public Health, Fudan University, Department of Epidemiology Joss-Moore, Lisa; University of Utah, Division of Neonatology Li, Yan Yun; Shanghai Municipal Center for Disease Control and Prevention Department of Diabetes Prevention and Control Yang, Qun Di; Shanghai Municipal Center for Disease Control and Prevention, Department of Diabetes Prevention and Control Shi, Liang; Shanghai Municipal Center for Disease Control and Prevention, Department of Diabetes Prevention and Control Shi, Liang; Shanghai Municipal Center for Disease Control and Prevention, Department of Diabetes Prevention and Control Zhang, Hua; School of Public Health, Fudan University, Department of Epidemiology Li, Rui; Shanghai Municipal Center for Disease Control and Prevention, Department of Diabetes Prevention and Control Xu, Wang Hong; Fudan University, Department of Epidemiology, School of Public Health
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Epidemiology, Public health
Keywords:	Hypertension < CARDIOLOGY, General diabetes < DIABETES & ENDOCRINOLOGY, EPIDEMIOLOGY, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts Page 1 of 46

BMJ Open

1 2	1
3 4 5	2
6 7	3
8 9	4
10 11	5
12 13	5 6
14 15 16	7
17 18	8
19 20	9
21 22	10
23 24 25	11
26 27	12
28 29	13
30 31	14
32 33 34	15
34 35 36	16
37 38	17
39 40	18
41 42 43	19
43 44 45	20
46 47	21
48 49	22
50 51	23
52 53 54	24
54 55 56	25
57 58	26
59 60	

Increased Waist Circumference and Prevalence of Type 2 Diabetes and Hypertension in Chinese Adults: Two Population-based Cross-sectional Surveys in Shanghai, China Ye Ruan, MD, PhD¹, Miao Mo, MD², Lisa Joss-Moore, PhD³, Yan Yun Li, MD¹, Qun Di Yang, MD, MPH¹, Liang Shi, MD¹, Hua Zhang, MD², Rui Li, MD^{1*}, Wang Hong Xu, MD, PhD^{2*} **AFILIATIONS:** ¹ Department of Diabetes Prevention and Control, Shanghai Municipal Center for Disease Control and Prevention, 1380 Zhong Shan Xi Road, Shanghai, 200336, People's Republic of China ² Department of Epidemiology, School of Public Health, Fudan University; Key Laboratory of Public Health Safety, Ministry of Education (Fudan University), 138 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China . Lake ³ Division of Neonatology, University of Utah, Salt Lake City, Utah 84108, USA Correspondence to: Wang Hong Xu, MD, Ph.D, Associate professor Department of Epidemiology School of Public Health Fudan University 138 Yi Xue Yuan Road Shanghai 200032 P. R. China Tel: 86-21-54237679 Fax: 86-21-54237334

1 2	27	
3 4	28	or
5 6 7	29	Rui Li, MD
8 9	30	Department of Diabetes Prevention and Control
10 11	31	Shanghai Municipal Center for Disease Control and Prevention
12 13	32	1380 Zhong Shan Xi Road
14 15 16	33	Shanghai 200336
17 18	34	P. R. China
19 20	35	Tel: 86-21-62758710
21 22	36	Email: rli@scdc.sh.cn
23 24 25	37	
26 27	38	RUNNING HEADER : Obesity and prevalence of hypertension and T2DM in Chinese adults
28 29	39	
30 31	40	Word Count: Abstract: 249 Text: 2,658
32 33 34	41	Abstract: 249
35 36	42	Text: 2,658
37 38	43	
39 40		
41 42 43		
44 45		
46 47		
48 49		
50 51 52		
52 53 54		
55 56		
57 58		
59 60		

Page 3 of 46

BMJ Open

44	Abstract:
45	Objective: To evaluate the changes in body mass index (BMI) and waist circumference (WC)
46	and their associations with the prevalence of hypertension and type 2 diabetes (T2DM) in Chinese
47	adults.
48	Design: Two consecutive population-based cross-sectional surveys.
49	Setting: A total of 12 districts and 7 counties in Shanghai, China.
50	Participants: 12,329 randomly selected participants of the survey in 2002-2003, and 7,423
51	randomly selected participants of the survey in 2009. All subjects were residents of Shanghai aged
52	35-74 years old.
53	Outcome measures: Measured BMI and WC. Previously-diagnosed and newly-identified
54	hypertension and T2DM by measured blood pressure, fasting and post-load glucose.
55	Results: While the participants of the two surveys were comparable in BMI in each age group,
56	the participants of the 2009 survey had significantly larger WC than those of the 2002-03 survey,
57	with an annual percentage change (APC) being higher among subjects aged 45-49 years old in both
58	men and women. The increase in prevalence of T2DM was observed in all age groups and also
59	appeared more evident in subjects aged 45-49 years old. The prevalence of hypertension was
60	observed to increase more rapidly in elderly men and middle-aged women. Obesity, both overt and
61	central, was associated with the risk of the two diseases, but BMI was more strongly linked to
62	hypertension while WC appeared more evidently related with T2DM.
63	Conclusion: The prevalence of central obesity and related chronic diseases has been
64	increasing in Shanghai, China. Our findings provide useful information for the projection of
65	growing burden of T2DM and hypertension in Chinese adults.
66	
67	Keywords: type 2 diabetes; hypertension; prevalence; body mass index; waist circumference

Article summary

Article focus

- The shift in BMI and WC among Chinese adults over past one decade.
- The contribution of changes in overall and central obesity to the increasing burden of chronic disease in China.

Key messages

- The WC increased in Chinese adults over the decade spanning 2002-2009, while BMI did not change over the same period.
- BMI was more strongly linked to hypertension while WC appeared more evidently related with T2DM in Chinese adults.
- Our findings provide useful information for the projection of a more rapidly growing burden of T2DM than hypertension in Chinese adults.

Strengths and limitations of this study

- The strengths of this study include the strict process of multistage sampling in adult population of Shanghai, anthropometric measurement according to a standardized protocol and fasting and postprandial blood glucose tests for the participants.
- The nature of the cross-sectional study design limits our ability to directly evaluate the influence of overall and central obesity as well as the change of their prevalence on the risk of hypertension and T2DM.
- The differences in several demographic characteristics between the participants of the two surveys indicate the possibility of selection bias.

1 2 3 4 5 6 7 8 9	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	
19 20 21 22 23 24 25 26 27 28 29 30 31	
32 33 34 35 36 37	
38 39 40 41 42 43 44 45 46 47	
48 49 50 51 52 53 54 55 56 57	
58 59 60	

71	Introduction
72	A rising worldwide prevalence of chronic disease, manifested primarily as hypertension and
73	type 2 diabetes (T2DM), has been well documented [1-4]. In Chinese aged 15-74 years old, the
74	prevalence of hypertension increased from 5.11% in 1959, 7.73% in 1979 [5] and 13.58% in 1991[6]
75	to 17.65% in 2002 [7]. The prevalence of T2DM tripled between 1980 (about 1.0%) and 1996
76	(3.2%) [8 9], and reached 9.7% in 2008 among adults at 20 years old or above [10]. It is estimated
77	that over 92 million people in China have T2DM. This represents approximately half of the world's
78	diabetic population, and places China at the "global epicenter of the diabetes epidemic" [4].
79	Both hypertension and T2DM are associated with obesity [11 12]. Obesity is often measured
80	by body mass index (BMI). Across the entire range of BMI, the risk of hypertension and T2DM
81	increases, making a higher BMI a strong predictor of both hypertension and T2DM [4 12-14].
82	However, a significant proportion of Asian adults diagnosed with T2DM are with the normal BMI,
83	ie.18.5-25.0 kg/m ² [15 16]. BMI is a general indicator of overt obesity, but does not give
84	information about the distribution of obesity. Central obesity, often assessed via waist
85	circumference (WC), is also strongly correlated with T2DM in both European and Asian adults [11
86	17]. While changes in BMI have been well documented in China over past several decades [2 18],
87	changes in WC, and thus central obesity, are not well described.
88	In this study, we took advantage of the data from population based cross-sectional surveys
89	conducted in Shanghai in 2002-03 and in 2009. We used the data from the two surveys to evaluate
90	correlations between shifts in BMI and WC with the prevalence of hypertension and T2DM in
91	Chinese adults. Our results may help to better understand the contribution of overall obesity and
92	central obesity in the increasing burden of chronic disease in China.

93 Materials and Methods

94 Study Participants

A representative sample of the general population was randomly selected through a multistage
 sampling process in the 2002-03 survey. Firstly, 4 districts and 2 counties were randomly selected

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

from a total of 12 districts and 7 counties in Shanghai, China. And then, 1-2 sub-districts or towns were randomly selected from each selected district or county. Next, 1-2 communities or villages, usually 1,000-2,000 residents for each, were randomly selected from each selected sub-district or town. Finally, eligible subjects (permanent residents of Shanghai, 15-74 years old and having been in the city for at least 5 years) were randomly selected from the selected communities and villages and were invited for participation. Pregnant women, individuals with type I diabetes, and physically or mentally disabled persons were excluded from the participation. During the period of May 2002-October 2003, a total of 17,526 eligible subjects were recruited, and 14,401 (82.17%) participated the survey. The 2009 survey used the similar sampling method except that only 7 communities and

villages were randomly selected in the third stage of sampling. The inclusion and exclusion criteria of the 2009 survey were also similar to those for the 2002-03 survey, except that only those at the age of 35-74 years old were eligible for the 2009 survey. Among 7,627 eligible adults contacted during the period of May-July 2009, 7,414 (97.21%) were interviewed and donated blood samples. To make the two surveys comparable, we excluded 1,071 subjects younger than 35 years from the 2002-03 survey. After further excluding subjects with missing information, the final analysis included 5,050 men and 7,279 women in the 2002-03 survey and 3,461 men and 3,962 women in the 2009 survey. The Institutional Review Board at Shanghai Municipal Center of Disease Control and Prevention approved the study. Informed consent was obtained from each participant before data collection.

117 Data Collection

A similar survey approach was followed by the two investigations. In both surveys, information on demographic and socioeconomic factors, diagnosis of diabetes, tobacco and alcohol use, physical activity and family history of diabetes was collected by trained interviewers with a structured questionnaire at community clinics located in the residential areas of the participants. At the interview, each participant's blood pressure, body weight, standing height, and waist

Page 7 of 46

BMJ Open

circumference (WC) were measured by trained staff. Blood pressure was measured on the right arm in the sitting position using standard mercury sphygmomanometer after at least 5 minutes of rest. The first and fifth Korotkoff sounds were recorded. Body weight and height were recorded while the subject was in light clothing and without shoes. Body weight was measured with electronic scales to the nearest 0.1 kg. Body height was measured to the nearest 0.1 cm by using a stadiometer. WC, recorded to the nearest 0.1 cm, was taken with a cloth tape and was measured on bare skin at the midline between the lower border of the ribs and the iliac crest in the horizontal plane after a normal expiration. Two measurements were taken and the mean of the replicates was used in the following analyses. Body mass index (BMI) was calculated as weight in kilograms divided by height in meters squared (kg/m^2) using the direct measurements.

133 Laboratory Measurements

After at least 10 hours of overnight fasting, 1-1.5 ml venous blood specimen was collected in a vacuum tube containing sodium fluoride. All participants with no history of diabetes and having a fasting plasma glucose level of < 7.0 mmol per liter (mmol/l) were then asked to have an oral glucose-tolerance test (OGTT). Blood samples were drawn at 0 and 120 minutes after a standard 75 gram glucose load. Plasma glucose was measured with Glucose oxidase-peroxidase (GOD-PAP) method.

Diagnosis of T2DM and Hypertension

Previously diagnosed T2DM and hypertension was identified by a positive response from the participant to the question of "Have you ever diagnosed with T2DM/hypertension by a doctor?" and confirmed by medical records in which prescriptions of anti-hypertensive or hypoglycemic medications were presented. The consistent rate was 100%. For those who had a negative response, the T2DM was diagnosed with measured glucose level by using the 1999 World Health Organization diagnostic criteria [Department of Noncommunicable Disease Surveillance. Definition, diagnosis and classification of diabetes mellitus and its complications: report of a WHO consultation. Part 1. Diagnosis and classification of diabetes mellitus. Geneva: World Health

149 Organization, 1999. (Accessed July 5, 2010, at_

150http://www.staff.ncl.ac.uk/philip.home/who_dmg.pdf.] and hypertension referred to the subjects151with measured systolic blood pressure (SBP) \geq 140 mmHg or diastolic blood pressure (DBP) \geq 90152mmHg and confirmed by clinical visits. Total T2DM and hypertension included both previously153diagnosed and newly-diagnosed patients. 42.7% (1,110 of 2,598) diabetic patients and 10.3% (694154of 6,735) hypertensive patients were newly-diagnosed in the two surveys.

155 Statistical Analysis

SAS software 9.2 was used for all the statistical analyses. Characteristics of the subgroups were described using summary statistics (median, 25th and 75th percentile, frequencies, and percentages) separately for men and women. The differences between two surveys were compared using χ^2 test (category variables) and Wilcoxon tests (continuous variables). The annual percentage changes (APC) in prevalence between two surveys were calculated as (prevalence in 2009 – prevalence in 2002-03) / number of years using logarithms for each age group. Percentile curves were constructed for BMI and WC values in the two surveys by gender using the LMS (lambda, mu, sigma) method. Restricted cubic splines (RCS) were used to model a potential curvilinear relationship of BMI and WC with hypertension and diabetes using the 5th, 25th, 75th and 95th percentiles as fixed knots and the 50th percentile as the reference. Polynomial logistic regression were used to estimate the odds ratios (OR) and 95% confidence intervals (95% CI) of BMI and WC with T2DM and hypertension. Meta-analysis was applied to obtain the combined ORs and 95% CI considering the potential heterogeneity of the populations in the two surveys. The residual method was used to derive the independent effect of BMI and WC with each other in the models. P value less than 0.05 was considered as a test of significance based on two sides.

Results

The male participants in two surveys were similar in age, resident site and cigarette smoking while the females were comparable in cigarette smoking (P > 0.05) (Table 1). Compared to the subjects in 2002-03 survey, the participants of 2009 survey, both men and women, had lower level

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

of education, higher level of income per capita, more prior history of T2DM, higher frequency of
alcohol drinking and lower frequency of leisure time activity, and were more likely to have a family
history of diabetes.

Figure 1 shows the shapes of the BMI and WC distribution curves among men and women changed over the period of the two surveys. After adjusting for age, education, per capita income, resident site, smoking, drinking, regular exercise, and family history of T2DM, the curves of BMI were almost overlapped in both men and women. However, the WC curves for men and women were shifted to the right between 2002-03 and 2009, with the mean WC increasing from 83.6 to 85.3 cm for men and from 78.4 to 80.6 cm for women.

As presented in table 2, the prevalence of obesity, both overall and central, increased with increasing age groups. While the prevalence of overall obesity (BMI $\geq 28 \text{ kg/m}^2$) did not changed between two surveys (all P values > 0.05), the prevalence of central obesity were significantly higher in 2009 survey in each age group (all P values < 0.001). A more pronounced increase in prevalence of central obesity and T2DM was observed among subjects aged 45-49 years old in both men and women; whereas the change in prevalence of hypertension between two surveys appeared more evident in older men and younger women over the period. Using the World Health Organization (WHO) criteria for obesity did not change the results substantially (data not shown in the tables).

BMI and WC were highly correlated with each other, with a correlation coefficient of 0.77 (P <(0.0001) among men and (0.78) ($P \le 0.0001$) among women after adjusting for age. Therefore, the residual method was used to test the potential respective non-linear relationships of BMI and WC with the risk of T2DM and hypertension (Figure 2). The dose-response analysis likewise showed a statistically significant increased risk of T2DM at high level of WC and a significant elevated risk of hypertension at high level of BMI in both men and women after adjusting for age, education, per capita income, resident site, smoking, drinking, regular exercise, family history of T2DM and phase of surveys, with P values for non-linear relationship tests < 0.05. No significant relationship was

observed between BMI and T2DM in men and between WC and hypertension in women. As shown in table 3, in both sexes, BMI adjusted for WC (residuals) appeared more strongly associated with hypertension while WC adjusted for BMI (residuals) was more evidently related with T2DM. Comparing with the lowest quartile of BMI residuals, the risk of hypertension increased 85% (95%CI: 1.59-2.15) in men and 1.23-fold (95%CI: 1.94-2.57) in women, whereas the risk of T2DM did not increase significantly in both sexes. On the other hand, the ORs of the highest versus the lowest quartile WC residuals for T2DM were 1.75 (95%CI: 1.33-2.30) in men and 2.37 (95%CI: 1.78-3.15) in women, higher than the OR of 1.57 (95%CI: 1.35-1.82) in men and 1.13 (95%CI: 0.98-1.30) in women for hypertension.

We further evaluated the potential joint effect of BMI and WC on T2DM and hypertension (table 4). The participants were classified into normal weight (BMI 18.5-23.9 kg/m²), overweight $(24.0-27.9 \text{ kg/m}^2)$, or obese ($\geq 28 \text{ kg/m}^2$) based on data from Chinese adults, and were defined as with normal or increased WC using sex-specific cut-offs (85 cm in men and 80 cm in women) [19]. The risk of T2DM and hypertension increased across groups defined by BMI and WC, with the highest risk observed among men with the lowest BMI but a higher WC, and among those with the highest BMI and a higher WC for hypertension. However, no significant interaction was observed between BMI and WC (all *P* values for interaction tests > 0.05).

Discussion

In this representative sample of the adult population in Shanghai, the largest city in China, we observed an increased prevalence of central obesity, hypertension and T2DM over the decade spanning 2002-2009. In contrast, BMI did not change over the same period. Our results present a snapshot of overt versus central obesity in the Chinese population and suggest that the epidemic of central obesity in this population, which has been more closely associated with the prevalence of T2DM, may lead to a more rapidly growing burden of T2DM in China.

225 Chinese adults have lower rates of overweight and obesity than their Western counterparts 226 using the WHO criteria (BMI \ge 25 kg/m² for overweight and BMI \ge 30 kg/m² for obesity) [15 16]. Page 11 of 46

60

BMJ Open

1 2	227	Nevertheless, increasing trends of BMI in Chinese adults have been well documented [18 20]. In
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	228	two national nutritional surveys undertaken in 1982 and 1992 in China, the prevalence of
	229	overweight/obesity (BMI \ge 25 kg/m ²) in subjects 20-70 years of age was 10% and 15%,
	230	respectively. Between 1992 and 2002, the combined prevalence of overweight and obesity increased
	231	from 14.6 to 21.8% [21]. Interestingly, the increase in BMI among Chinese adults has slowed down
	232	during past decades [2]. In this study, we did not observe an increase in BMI and prevalence of
	233	obesity defined by the Chinese obesity standards or by WHO criteria (data not shown). Instead, we
	234	observed a significant increase in WC, a measure of central obesity between surveys. Our
	235	observation of increased WC in Chinese adults, without a concomitant increase in BMI, represents
	236	an increasing burden of central obesity in this population. The increase in central obesity indicates
	237	an upward trend in body fat percentages in the population who have been previously observed with
	238	higher body fat percentages compared to other ethnic people with the same BMI [22 23].
	239	Both epidemic of overall and central obesity parallels a continuously increasing prevalence of
	240	hypertension and T2DM in China [21]. Several studies indicate that overall obesity (BMI) is more
32 33	241	strongly associated with hypertension, while central obesity (WC) is more strongly associated with
34 35 36	242	T2DM [17 24-26]. The rationale for these associations is based on the notion that central obesity
37 38	243	reflects specific accumulation of visceral adipose tissue. Excess visceral adipose tissue is
39 40	244	metabolically unfavorable due to productions of free fatty acids and inflammatory mediators.
41 42	245	Overall obesity, on the other hand, represents a greater overall physiologic strain and effects
43 44 45	246	vascular and cardiac parameters more significantly. In this study, we observed a significant increase
45 46 47	247	in prevalence of T2DM regardless of gender or age groups, which was more pronounced than the
48 49	248	change in the prevalence of hypertension during the period of 2002-03 and 2009. We also observed
50 51	249	a closer association of central obesity with the prevalence of T2DM than with the prevalence of
52 53	250	hypertension. These results support the notion that central obesity in particular is a stronger risk
54 55 56	251	factor for T2DM than for hypertension in Chinese adults. Due to the cross-sectional design,
57 58 59	252	however, our study was unable to make a causal inference.

The nature of the cross-sectional study design limits our ability to directly evaluate the influence of overall and central obesity as well as the change of their prevalence on the risk of hypertension and T2DM. The differences in several demographic characteristics between the participants of the two surveys indicate the changes in general population over time. However, selection bias could not be excluded. However, there are several strengths, including the strict process of multistage sampling in adult population in Shanghai, anthropometric measurement according to a standardized protocol and fasting and postprandial blood glucose tests for the

260 participants.

Conclusions

In summary, this study describes the potential association of central obesity with an upward trend of T2DM, implicating a more rapidly growing burden of T2DM than hypertension in Chinese adults. The findings in Shanghai, the largest city and one of the most economically developed areas in China, provide useful information for the projection of future trends in the whole country.

266 Acknowledgements

We thank Dr. Xiao-ou Shu and Dr. Hui Cai of Vanderbilt University for their contributions in study design and data analysis. The authors thank the study participants of the two cross-sectional surveys and the healthcare workers in each community involved.

270 Footnotes

Contributors YR and MM contributed to data collection, data analysis and draft of the paper. 272 YR, YYL, QDY, and LS contributed to data collection and quality control. LJM contributed to 273 revision of the paper. HZ contributed to data clean and analysis. RL and WHX contributed to study 274 design, statistical analysis and revision of the paper. All authors contributed to the interpretation of 275 data and revision of the manuscript. All authors approved the final version.

Funding This study was supported by the Key Program of Shanghai Municipal Committee of
Science and Technology (04 DZ19502), the Shanghai Medical Development Program (01ZD001)

BMJ Open

1 2	278	and the Shanghai Municipal Health Bureau (GWDTR201204). W. H. Xu was supported by a
3 4	279	training grant from the Fogarty International Center (D43 TW008313 to X. O. Shu). The funders
5 6 7	280	had no role in study design, data collection or analysis, decision to publish, or preparation of the
8 9	281	manuscript.
10 11	282	Conflict of Interest: None declared.
12 13 14 56 78 90 12 23 22 24 56 78 90 12 33 45 67 89 01 23 34 56 78 90 142 34 45 67 89 01 25 55 55 55 55 55 55 55 55 55 55 55 55	283	Conflict of Interest: None declared. Data sharing: No additional unpublished data.

1 2 3	284	REFERENCES
4	285	1. Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes
5	286	(Lond) 2008; 32 (9):1431-7 doi: ijo2008102 [pii]
6 7	287	10.1038/ijo.2008.102[published Online First: Epub Date] .
8	288	2. Popkin BM. Recent dynamics suggest selected countries catching up to US obesity. Am J Clin Nutr
9	289	2010;91(1):284S-88S doi: ajcn.2009.28473C [pii]
10 11	290	10.3945/ajcn.2009.28473C[published Online First: Epub Date] .
12	291	3. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res
13	292	Clin Pract 2010;87(1):4-14 doi: S0168-8227(09)00432-X [pii]
14 15	293	10.1016/j.diabres.2009.10.007[published Online First: Epub Date] .
15 16	294	4. Hu FB. Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes care 2011;34(6):1249-57 doi:
17	295	10.2337/dc11-0442[published Online First: Epub Date] .
18	296	5. Wu YK, Lu CQ, Gao RC, Yu JS, Liu GC. Nation-wide hypertension screening in China during 1979-1980. Chin Med
19 20	297	J (Engl) 1982;95(2):101-8
20	298	6. Wu X, Duan X, Gu D, Hao J, Tao S, Fan D. Prevalence of hypertension and its trends in Chinese populations. Int J
22	299	Cardiol 1995;52(1):39-44 doi: 016752739502443Z [pii][published Online First: Epub Date]].
23	300	7. Wu Y, Huxley R, Li L, et al. Prevalence, awareness, treatment, and control of hypertension in China: data from the
24 25	301	China National Nutrition and Health Survey 2002. Circulation 2008;118(25):2679-86 doi:
26	302	10.1161/CIRCULATIONAHA.108.788166
27	303	118/25/2679 [pii][published Online First: Epub Date]].
28	304	8. [A mass survey of diabetes mellitus in a population of 300,000 in 14 provinces and municipalities in China (author's
29 30	305	transl)]. Zhonghua Nei Ke Za Zhi 1981; 20 (11):678-83
31	306	9. Wang K, Li T, Xiang H. [Study on the epidemiological characteristics of diabetes mellitus and IGT in China].
32	307	Zhonghua Liu Xing Bing Xue Za Zhi 1998; 19 (5):282-5
33 34	308	10. Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China. The New England journal of
35	309	medicine 2010; 362 (12):1090-101 doi: 10.1056/NEJMoa0908292[published Online First: Epub Date]].
36	310	11. Nyamdorj R, Qiao Q, Lam TH, et al. BMI compared with central obesity indicators in relation to diabetes and
37 38	311 312	hypertension in Asians. Obesity (Silver Spring) 2008;16(7):1622-35 doi: 10.1038/oby.2008.73
39	312	oby200873 [pii][published Online First: Epub Date]].
40	313	12. Ostchega Y, Hughes JP, Terry A, Fakhouri TH, Miller I. Abdominal obesity, body mass index, and hypertension in
41	314	US adults: NHANES 2007-2010. Am J Hypertens 2012; 25 (12):1271-8 doi: 10.1038/ajh.2012.120 ajh2012120 [pii][published Online First: Epub Date]].
42 43	316	13. Barrett-Connor E. Epidemiology, obesity, and non-insulin-dependent diabetes mellitus. Epidemiol Rev
44	317	1989;11:172-81
45	318	14. Weber MB, Oza-Frank R, Staimez LR, Ali MK, Narayan KM. Type 2 diabetes in Asians: prevalence, risk factors,
46 47	319	and effectiveness of behavioral intervention at individual and population levels. Annu Rev Nutr
48	320	2012; 32 :417-39 doi: 10.1146/annurev-nutr-071811-150630[published Online First: Epub Date] .
49	321	15. Lu B, Yang Y, Song X, et al. An evaluation of the International Diabetes Federation definition of metabolic
50	322	syndrome in Chinese patients older than 30 years and diagnosed with type 2 diabetes mellitus. Metabolism
51 52	323	2006; 55 (8):1088-96 doi: S0026-0495(06)00138-7 [pii]
53	324	10.1016/j.metabol.2006.04.003[published Online First: Epub Date] .
54	325	16. Tseng CH. Body mass index and waist circumference as determinants of coronary artery disease in Taiwanese adults
55 56	326	with type 2 diabetes mellitus. Int J Obes (Lond) 2006; 30 (5):816-21 doi: 0803218 [pii]
56 57	327	10.1038/sj.ijo.0803218[published Online First: Epub Date]].
58	328	17. Feng RN, Zhao C, Wang C, et al. BMI is strongly associated with hypertension, and waist circumference is strongly
59 60	329	associated with type 2 diabetes and dyslipidemia, in northern Chinese adults. Journal of epidemiology / Japan

BMJ Open

2	330	Epidemiological Association 2012; 22 (4):317-23
3	331	18. Wildman RP, Gu D, Muntner P, et al. Trends in overweight and obesity in Chinese adults: between 1991 and
4	332	1999-2000. Obesity (Silver Spring) 2008;16(6):1448-53 doi: oby2008208 [pii]
5	333	10.1038/oby.2008.208[published Online First: Epub Date]].
6 7	334	19. Zhou BF. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in
8	335	Chinese adultsstudy on optimal cut-off points of body mass index and waist circumference in Chinese adults.
9	336	Biomed Environ Sci 2002; 15 (1):83-96
10	337	20. Wang H, Du S, Zhai F, Popkin BM. Trends in the distribution of body mass index among Chinese adults, aged 20-45
11 12	338	years (1989-2000). Int J Obes (Lond) 2007; 31 (2):272-8 doi: 0803416 [pii]
13	339	10.1038/sj.ijo.0803416[published Online First: Epub Date]].
14	340	21. Wang Y, Mi J, Shan XY, Wang QJ, Ge KY. Is China facing an obesity epidemic and the consequences? The trends in
15	341	obesity and chronic disease in China. Int J Obes (Lond) 2007; 31 (1):177-88 doi: 0803354 [pii]
16 17	342	10.1038/sj.ijo.0803354[published Online First: Epub Date]].
18	343	22. Wang J, Thornton JC, Burastero S, et al. Comparisons for body mass index and body fat percent among Puerto
19	344	Ricans, blacks, whites and Asians living in the New York City area. Obes Res 1996; 4 (4):377-84
20	345	23. Araneta MR, Wingard DL, Barrett-Connor E. Type 2 diabetes and metabolic syndrome in Filipina-American
21 22	346	women : a high-risk nonobese population. Diabetes Care 2002; 25 (3):494-9
22	340	24. Jacobs EJ, Newton CC, Wang Y, et al. Waist circumference and all-cause mortality in a large US cohort. Archives of
24	348	internal medicine 2010; 170 (15):1293-301 doi: 10.1001/archinternmed.2010.201[published Online First: Epub
25	349	Date]].
26 27	350	25. InterAct C, Langenberg C, Sharp SJ, et al. Long-term risk of incident type 2 diabetes and measures of overall and
28	351	regional obesity: the EPIC-InterAct case-cohort study. PLoS medicine 2012;9(6):e1001230 doi:
29	352	10.1371/journal.pmed.1001230[published Online First: Epub Date]].
30	353	26. Li R, Shi L, Jia J, et al. Differentiating the Associations of Waist Circumference and Body Mass Index With
31 32	353	20. Ef R, Shi E, Sha J, et al. Differentiating the Associations of warst Circumference and Body Mass index with Cardiovascular Disease Risk in a Chinese Population. Asia-Pacific journal of public health / Asia-Pacific
33	355	
34	355	Academic Consortium for Public Health 2012 doi: 10.1177/1010539512465306[published Online First: Epub
35	357	Date]].
36 37	358	Date] .
38	200	
39		
40		
41 42		
43		
44		
45		
46 47		
48		
49		
50		
51 52		
53		
54		
55		
56 57		
58		
59		
60		

- Figure 2. Non-linear dose-response relationship of BMI and WC with hypertension and T2DM
- among participants of the two population-based surveys

BMJ Open

		1 st su	rvey	2 ⁿ	^d survey	P-value between surveys		
	Characteristics	Men	Women	Men	Women		I	
		(N=5,050)	(N=7,279)	(N=3,461)	(N=3,962)	In men	In women	
	Age (yrs., mean ± SD)	54.8 ± 10.8	53.1 ± 10.3	54.7 ± 9.5	54.7 ± 9.1	0.55	< 0.0001	
	Resident site (%)							
	Urban	71.1	63.0	72.4	72.0			
	Rural	29.0	37.0	27.7	28.0	0.19	<0.0001	
	Education (%)							
	No formal education	4.1	18.4	3.2	9.5			
	Primary school	18.2	23.0	14.7	17.7			
	Middle school	35.3	31.1	45.7	45.2			
	High school	27.6	22.6	27.6	23.8			
	Colleague or above	14.8	4.9	8.8	3.9	0.0025	<0.0001	
	Per capita income (yuan/mo.) (%)							
	<1000	37.0	45.5	4.9	4.0			
	1000-2999	38.3	38.4	41.8	46.7			
	3000-5000	22.5	17.9	33.2	33.3			
	>5000	2.2	1.3	20.0	16.0	<0.0001	<0.0001	
	Family history of type 2diabetes	12.3	13.1	16.4	19.0	<0.0001	<0.0001	
	Prevalence of type 2diabetes (%)	13.6	10.3	17.4	14.1	<0.0001	<0.0001	
	Prevalence of hypertension (%)	34.8	28.3	41.8	37.1	<0.0001	<0.0001	
	Cigarette smoking (%)	61.4	1.7	62.6	1.8	0.22	0.93	
	Alcohol drinking (%)	40.4	2.4	54.0	5.0	<0.0001	<0.0001	
	Leisure-time activity (%)	13.3	13.1	10.8	9.0	0.0009	<0.0001	

Table 1. Characteristics of participants in two population-based surveys in Shanghai, China

		No. of subjects		Overall Obesity			al obesity	APC	Hypertension		APC			APC
	1 st survey	2 nd survey	1 st survey	2 nd survey	(%)	1 st survey	2 nd survey	(%)	1 st survey	2 nd survey	(%)	1 st survey	2 nd survey	(%)
Men	-	-	-	-			-			-		-		
Overall	5050	3461	11.7	11.9	0.21	46.3	53.8	2.35	34.8	41.8	2.87	13.6	17.4	3.78
Age-groups														
35-	414	230	10.5	9.1	-2.11	41.8	45.2	1.22	15.2	11.7	-3.92	4.6	5.7	3.25
40-	574	302	10.0	8.3	-2.83	41.8	47.00	1.85	22.5	21.9	-0.43	7.8	7.6	-0.44
45-	837	445	12.6	12.6	-0.04	44.0	53.7	3.12	25.3	31.0	3.16	7.8	13.7	9.1.
50-	833	739	12.2	10.8	-1.76	44.1	53.8	3.12	33.1	40.3	3.07	12.7	18.3	5.72
55-	628	669	10.4	13.2	3.78	47.3	54.6	2.25	35.4	45.6	3.99	15.0	17.9	2.82
60-	507	513	10.5	15.4	6.18	48.7	56.1	2.19	44.6	51.7	2.29	15.6	20.1	3.98
65-	674	313	12.6	11.8	-0.99	51.4	61.0	2.67	49.4	59.4	2.88	20.8	26.2	3.64
70-	583	250	13.8	9.6	-5.40	51.1	54.0	0.85	50.9	65.2	3.87	24.2	25.6	0.88
Women														
Overall	7279	3962	13.8	13.8	0.02	41.7	54.2	4.10	28.3	37.1	4.28	10.3	14.1	4.84
Age-groups														
35-	615	251	7.5	7.2	-0.65	22.6	26.3	2.35	6.8	10.8	7.24	3.3	4.0	3.17
40-	1000	287	9.4	11.2	2.66	27.6	38.0	5.05	11.7	15.7	4.61	4.1	5.9	5.81
45-	1491	563	11.0	9.8	-1.82	32.3	42.6	4.38	19.3	23.5	3.03	5.8	8.7	6.32
50-	1309	866	15.1	14.1	-1.00	43.9	54.0	3.24	28.7	31.0	1.16	8.3	9.4	1.94
55-	838	818	15.7	13.6	-2.17	47.5	60.6	3.83	33.9	39.7	2.48	8.8	15.3	8.80
60-	610	585	19.2	18.1	-0.87	53.5	63.1	2.58	40.5	52.8	4.17	16.7	19.2	2.11
65-	799	327	18.0	18.4	0.28	59.0	66.1	1.76	48.4	59.3	3.17	23.7	27.8	2.54
70-	617	265	18.2	16.6	-1.36	60.2	68.7	2.05	51.4	64.5	3.57	21.4	27.2	3.75
All subjects														
Overall	12329	7423	13.0	12.9	-0.05	43.6	54.0	3.35	31.0	39.3	3.75	11.7	15.6	4.53
Age-groups ^a														
35-	1029	481	8.7	8.0	-1.04	30.3	33.9	2.39	10.2	11.2	1.49	3.8	4.7	3.63
40-	1574	589	9.6	10.1	0.11	32.7	41.3	4.14	15.6	17.9	2.92	5.5	6.5	3.41
45-	2328	1008	11.6	10.8	-0.77	36.5	46.6	4.16	21.5	26.2	3.46	6.5	10.5	8.22
50-	2142	1605	13.9	12.8	-1.53	44.0	53.9	3.19	30.4	34.6	0.90	10.0	12.8	4.69
55-	1466	1487	13.4	13.4	0.01	47.4	58.1	3.13	34.5	42.2	3.20	11.5	16.4	5.75
60-	1117	1098	15.2	16.9	1.59	51.3	59.9	2.39	42.4	52.3	3.29	16.2	19.6	2.96
65-	1473	640	15.6	15.4	-0.39	55.5	63.8	2.11	48.9	59.4	3.04	22.3	27.1	2.98
70-	1200	515	16.0	13.2	-2.94	55.8	61.5	1.52	51.2	64.9	3.71	22.8	26.4	2.32

^a adjusted for sex according to the distribution in the first survey.

Page 19 of 46

BMJ Open

Table 3. Association of body size with hypertension and type 2 diabetes in two population-based surveys in

Shanghai, China

	No. of subjects with	Typ N	e 2 diabetes only	Hy	pertension only	Both		
	neither diseases		OR (95%CI)	Ν	OR (95%CI)	Ν	OR (95%CI)	
BMI resid	luals							
Men								
Q1	1260	156	1.00	529	1.00	175	1.00	
Q2	1224	142	0.99 (0.77, 1.27)	583	1.16 (1.00, 1.34)	172	1.11(0.87, 1.41)	
Q3	1164	132	1.09 (0.84, 1.41)	651	1.50 (1.29, 1.74)	171	1.36(1.07, 1.73)	
Q4	1079	123	1.16 (0.88, 1.51)	709	1.85 (1.59, 2.15)	207	1.95(1.54, 2.47)	
	P for trend		0.2472		< 0.0001		<0.0001	
Women	·							
Q1	1816	166	1.00	600	1.00	223	1.00	
Q2	1866	148	1.02 (0.80, 1.29)	629	1.29 (1.12, 1.48)	162	0.96(0.77, 1.21)	
Q3	1835	125	0.89 (0.69, 1.15)	687	1.51 (1.31, 1.73)	158	1.03(0.82, 1.31)	
Q4	1634	109	0.94 (0.73, 1.23)	847	2.23 (1.94, 2.57)	215	1.85(1.15, 2.98)	
,	P for trend		0.4864		<0.0001		0.0067	
All subje								
Q1	3048	330	1.00	1162	1.00	385	1.00	
Q2	3079	282	1.00 (0.84, 1.19)	1200	1.22 (1.11, 1.35)	363	1.03(0.87, 1.22)	
Q3	2998	278	0.98 (0.82, 1.18)	1346	1.50 (1.36, 1.67)	302	1.18(1.00, 1.40)	
Q4	2753	211	1.04 (0.86, 1.26)	1527	2.05 (1.85, 2.27)	433	1.88(1.60, 2.21)	
× ×	P for trend		0.2280		<0.0001		<0.0001	
	5							
WC resid	uals							
Men								
Q1	1376	102	1.00	531	1.00	111	1.00	
Q2	1232	131	1.34 (1.02, 1.78)	601	1.23 (1.06, 1.42)	155	1.41(1.07, 1.84)	
Q3	1130	148	1.39 (0.70, 2.77)	644	1.39 (1.20, 1.62)	197	1.73(1.33, 2.25)	
Q4	989	172	1.75 (1.33, 2.30)	696	1.57 (1.35, 1.82)	262	2.25(1.74, 2.90)	
,	P for trend		<0.0001		<0.0001		<0.0001	
Women	v							
Q1	2019	80	1.00	598	1.00	108	1.00	
Q2	1935	102	1.17 (0.86, 1.59)	651	1.04 (0.91, 1.18)	117	0.94(0.71, 1.25)	
Q3	1708	172	2.04 (1.54, 2.70)	732	1.14 (0.99, 1.30)	194	1.40(1.08,1.82)	
Q3 Q4	1489	194	2.37 (1.78, 3.15)	782	1.13 (0.98, 1.30)	339	2.06(1.26, 3.38)	
Ϋ́	<i>P</i> for trend	174	<0.0001	762	0.0216	557	<0.0001	
All subje			<0.0001		0.0210		<0.0001	
Q1	3453	161	1.00	1109	1.00	203	1.00	
Q1 Q2	3192	260	1.26 (0.99, 1.60)	1211	1.12 (1.01, 1.23)	260	1.16(0.82, 1.62)	
Q2 Q3	2838	301	1.66 (1.16, 2.36)	1373	1.12 (1.01, 1.23) 1.25 (1.13, 1.38)	412	1.55(1.29, 1.87)	
Q3 Q4	2395	379	2.03 (1.66, 2.47)	1575	1.23 (1.15, 1.58) 1.34 (1.09, 1.64)	608	2.18(1.83, 2.61)	
	(17)	.)/7	2.0.1 + .00.2.4/1	1.242	1.041.07.1.041	000	2.1011.02.2.01	

Missing value excluded from the analysis.

OR: Adjusted for age (continuous variable), education (no formal education, primary school, middle school, high school, colleague or above, dummy variables), per capita income (<1000, 1000-2999, 3000-5000 and >5000 RMB Yuan / month, dummy variables), resident site (urban/rural area), family history of type 2 diabetes (yes/no), smoking (ever/never), alcohol drinking (ever/never), regular exercise (never/ever), phase of study (first /second survey); Additionally adjusted for sex (male/female) for all subjects.

		WC: Lower			WC: Higher		OR (95%CI) fo	or hypertension	OR (95%CI) for type 2 diabetes		
BMI	No. of subjects	Hypertension N (%)	Diabetes N (%)	No. of subjects	Hypertension N (%)	Diabetes N (%)	WC: Lower	WC: Higher	WC: Lower	WC: Higher	
Men											
<18.5	212	36	20	16	10	6	0.61(0.42, 0.89)	3.68(1.28, 10.59)	1.02(0.62, 1.67)	3.77(1.13, 12.56)	
18.5-23.9	3034	767	296	679	249	111	1.00	1.56(0.94, 2.57)	1.00	1.48(1.15, 1.90)	
24.0-27.9	1010	356	134	2530	1179	483	1.61(1.13, 2.32)	2.38(1.78, 3.17)	1.46(1.16, 1.83)	1.85(1.16, 2.96)	
≥28.0	36	20	4	960	580	224	3.91(1.95, 7.82)	4.67(3.97, 5.49)	1.71(0.55, 5.37)	2.60(2.12, 3.18)	
					P fo	r interaction	0.0	711	0.0	933	
Women											
<18.5	313	51	19	8	2	1	0.68(0.49, 0.94)	0.85(0.16, 4.51)	0.93(0.56, 1.54)	2.45(0.22, 26.72)	
18.5-23.9	4323	821	265	974	314	165	1.00	1.48(1.26, 1.75)	1.00	2.36(1.89, 2.94)	
24.0-27.9	1330	384	93	2724	1102	437	1.84(1.59, 2.14)	2.21(1.97, 2.49)	1.19(0.92, 1.53)	2.14(1.81, 2.54)	
≥28.0	81	32	9	1467	815	317	3.10(1.93, 5.00)	4.33(3.77, 4.96)	2.14(1.01, 4.52)	3.08(2.56, 3.71)	
					P fo	r interaction	0.3.	524	0.4	011	
Total											
<18.5	525	87	39	24	12	7	0.65(0.51, 0.83)	2.25(0.85, 5.93)	0.97(0.68, 1.39)	3.45(1.18, 10.12	
18.5-23.9	7357	1588	561	1653	563	276	1.00	1.52(1.25, 1.85)	1.00	1.88(1.42, 2.49)	
24.0-27.9	2340	740	227	5254	2281	920	1.74(1.50, 2.03)	2.31(2.03, 2.62)	1.33(1.12, 1.58)	1.99(1.62, 2.45)	
≥28.0	117	5	13	2427	1395	541	3.34(2.26, 4.94)	4.46(4.02, 4.96)	2.00(1.07, 3.74)	2.85(2.49, 3.27)	
					P fo	r interaction	0.0	562	0.0	798	

Higher WC defined as ≥ 85 cm for men and ≥ 80 cm for women

OR: Adjusted for age (continuous variable), education (no formal education, primary school, middle school, high school, colleague or above, dummy variables), per capita income (<1000, 1000-2999, 3000-5000 and >5000 RMB Yuan / month, dummy variables), resident site (urban/rural area), family history of type 2 diabetes (yes/no),

smoking (ever/never), alcohol drinking (ever/never), regular exercise (never/ever), and phase of study (first /second survey).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 21 of 46

BMJ Open

1 2	1	Increased Waist Circumference and Prevalence of Type 2 Diabetes and Hypertension in
3 4 5	2	Chinese Adults: Two Population-based Cross-sectional Surveys in Shanghai, China
5 6 7	3	
8 9	4	Ye Ruan, MD, PhD ¹ , Miao Mo, MD ² , Lisa Joss-Moore, PhD ³ , Yan Yun Li, MD ¹ , Qun Di Yang,
10 11	5	MD, MPH ¹ , Liang Shi, MD ¹ , Hua Zhang, MD ² , Rui Li, MD ^{1*} , Wang Hong Xu, MD, PhD ^{2*}
12 13	6	
14 15	7	AFILIATIONS:
16 17	8	¹ Department of Diabetes Prevention and Control, Shanghai Municipal Center for Disease Control
18 19	9	and Prevention, 1380 Zhong Shan Xi Road, Shanghai, 200336, People's Republic of China
20 21 22	10	² Department of Epidemiology, School of Public Health, Fudan University; Key Laboratory of
23 24	11	Public Health Safety, Ministry of Education (Fudan University), 138 Yi Xue Yuan Road, Shanghai,
25 26	12	200032, People's Republic of China
27 28		
29 30	13	³ Division of Neonatology, University of Utah, Salt Lake City, Utah 84108, USA
31 32	14	
33 34	15	Correspondence to:
35 36	16	Wang Hong Xu, MD, Ph.D,
37 38	17	Correspondence to: Wang Hong Xu, MD, Ph.D, Associate professor
39 40	18	Department of Epidemiology
41 42	19	School of Public Health Fudan University
43 44	20	Fudan University
45 46 47	21	138 Yi Xue Yuan Road
48 49	22	Shanghai 200032
50 51	23	P. R. China
52 53	24	Tel: 86-21-54237679
54 55 56	25	Fax: 86-21-54237334
50 57 58 59 60	26	Email: wanghong.xu@fudan.edu.cn

2 3	27	
3 4 5	28	or
6 7	29	Rui Li, MD
8 9	30	Department of Diabetes Prevention and Control
10 11	31	Shanghai Municipal Center for Disease Control and Prevention
12 13 14	32	1380 Zhong Shan Xi Road
15 16	33	Shanghai 200336
17 18	34	P. R. China
19 20	35	Tel: 86-21-62758710
21 22	36	Email: rli@scdc.sh.cn
23 24 25	37	
26 27	38	RUNNING HEADER : Obesity and prevalence of hypertension and T2DM in Chinese adults
28 29	39	
30 31	40	Word Count:
32 33 34	41	Abstract: 249
35 36	42	Text: 2,658
37 38	43	
39 40		
40 41		
42		
43 44		
45		
46		
47		
48 40		
49 50		
51		
52		
53		
54		
55 56		
56 57		
58		
59		
60		

Page 23 of 46

3 of 46	BMJ Open
44	Abstract:
45	Objective: To evaluate the changes in body mass index (BMI) and waist circumference (WC
46	and their associations with the prevalence of hypertension and type 2 diabetes (T2DM) in Chinese
47	adults.
48	Design: Two consecutive population-based cross-sectional surveys.
49	Setting: A total of 12 districts and 7 counties in Shanghai, China.
50	Participants: 12,329 randomly selected participants of the survey in 2002-2003, and 7,423
51	randomly selected participants of the survey in 2009. All subjects were residents of Shanghai aged
52	35-74 years old.
53	Outcome measures: Measured BMI and WC. Previously-diagnosed and newly-identified
54	hypertension and T2DM by measured blood pressure, fasting and post-load glucose.
55	Results: While the participants of the two surveys were comparable in BMI in each age grou
56	the participants of the 2009 survey had significantly larger WC than those of the 2002-03 survey,
57	with an annual percentage change (APC) being higher among subjects aged 45-49 years old in bo
58	men and women. The increase in prevalence of T2DM was observed in all age groups and also
59	appeared more evident in subjects aged 45-49 years old. The prevalence of hypertension was
60	observed to increase more rapidly in elderly men and middle-aged women. Obesity, both overt an
61	central, was associated with the risk of the two diseases, but BMI was more strongly linked to
62	hypertension while WC appeared more evidently related with T2DM.
63	Conclusion: The prevalence of central obesity and related chronic diseases has been
64	increasing in Shanghai, China. Our findings provide useful information for the projection of
65	growing burden of T2DM and hypertension in Chinese adults.
66	

Article summary

Article focus

- The shift in BMI and WC among Chinese adults over past one decade.
- The contribution of changes in overall and central obesity to the increasing burden of chronic disease in China.

Key messages

- The WC increased in Chinese adults over the decade spanning 2002-2009, while BMI did not change over the same period.
- BMI was more strongly linked to hypertension while WC appeared more evidently related with T2DM in Chinese adults.
- Our findings provide useful information for the projection of a more rapidly growing burden of T2DM than hypertension in Chinese adults.

Strengths and limitations of this study

- The strengths of this study include the strict process of multistage sampling in adult population of Shanghai, anthropometric measurement according to a standardized protocol and fasting and postprandial blood glucose tests for the participants.
- The nature of the cross-sectional study design limits our ability to directly evaluate the influence of overall and central obesity as well as the change of their prevalence on the risk of hypertension and T2DM.
- The differences in several demographic characteristics between the participants of the two surveys indicate the possibility of selection bias.

BMJ Open

2 3	71	Introduction
4 5	72	A rising worldwide prevalence of chronic disease, manifested primarily as hypertension and
6 7 8	73	type 2 diabetes (T2DM), has been well documented [1-4]. In Chinese aged 15-74 years old, the
9 10	74	prevalence of hypertension increased from 5.11% in 1959, 7.73% in 1979 [5] and 13.58% in 1991[6]
11 12	75	to 17.65% in 2002 [7]. The prevalence of T2DM tripled between 1980 (about 1.0%) and 1996
13 14	76	(3.2%) [8 9], and reached 9.7% in 2008 among adults at 20 years old or above [10]. It is estimated
15 16 17	77	that over 92 million people in China have T2DM. This represents approximately half of the world's
18 19	78	diabetic population, and places China at the "global epicenter of the diabetes epidemic" [4].
20 21	79	Both hypertension and T2DM are associated with obesity [11 12]. Obesity is often measured
22 23	80	by body mass index (BMI). Across the entire range of BMI, the risk of hypertension and T2DM
24 25 26 27 28	81	increases, making a higher BMI a strong predictor of both hypertension and T2DM [4 12-14].
	82	However, a significant proportion of Asian adults diagnosed with T2DM are with the normal BMI,
29 30	83	ie.18.5-25.0 kg/m ² [15 16]. BMI is a general indicator of overt obesity, but does not give
31 32	84	information about the distribution of obesity. Central obesity, often assessed via waist
33 34	85	circumference (WC), is also strongly correlated with T2DM in both European and Asian adults [11
35 36 37	86	17]. While changes in BMI have been well documented in China over past several decades [2 18],
38 39	87	changes in WC, and thus central obesity, are not well described.
40 41	88	In this study, we took advantage of the data from population based cross-sectional surveys
42 43	89	conducted in Shanghai in 2002-03 and in 2009. We used the data from the two surveys to evaluate
44 45	90	correlations between shifts in BMI and WC with the prevalence of hypertension and T2DM in
46 47 48	91	Chinese adults. Our results may help to better understand the contribution of overall obesity and
49 50	92	central obesity in the increasing burden of chronic disease in China.
51 52 53	93	Materials and Methods

Study Participants

A representative sample of the general population was randomly selected through a multistage sampling process in the 2002-03 survey. Firstly, 4 districts and 2 counties were randomly selected

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

from a total of 12 districts and 7 counties in Shanghai, China. And then, 1-2 sub-districts or towns were randomly selected from each selected district or county. Next, 1-2 communities or villages, usually 1,000-2,000 residents for each, were randomly selected from each selected sub-district or town. Finally, eligible subjects (permanent residents of Shanghai, 15-74 years old and having been in the city for at least 5 years) were randomly selected from the selected communities and villages and were invited for participation. Pregnant women, individuals with type I diabetes, and physically or mentally disabled persons were excluded from the participation. During the period of May 2002-October 2003, a total of 17,526 eligible subjects were recruited, and 14,401 (82.17%) participated the survey.

The 2009 survey used the similar sampling method except that only 7 communities and villages were randomly selected in the third stage of sampling. The inclusion and exclusion criteria of the 2009 survey were also similar to those for the 2002-03 survey, except that only those at the age of 35-74 years old were eligible for the 2009 survey. Among 7,627 eligible adults contacted during the period of May-July 2009, 7,414 (97.21%) were interviewed and donated blood samples. To make the two surveys comparable, we excluded 1,071 subjects younger than 35 years from the 2002-03 survey. After further excluding subjects with missing information, the final analysis included 5,050 men and 7,279 women in the 2002-03 survey and 3,461 men and 3,962 women in the 2009 survey. The Institutional Review Board at Shanghai Municipal Center of Disease Control and Prevention approved the study. Informed consent was obtained from each participant before data collection.

117 Data Collection

A similar survey approach was followed by the two investigations. In both surveys, information on demographic and socioeconomic factors, diagnosis of diabetes, tobacco and alcohol use, physical activity and family history of diabetes was collected by trained interviewers with a structured questionnaire at community clinics located in the residential areas of the participants. At the interview, each participant's blood pressure, body weight, standing height, and waist

BMJ Open

circumference (WC) were measured by trained staff. Blood pressure was measured on the right arm in the sitting position using standard mercury sphygmomanometer after at least 5 minutes of rest. The first and fifth Korotkoff sounds were recorded. Body weight and height were recorded while the subject was in light clothing and without shoes. Body weight was measured with electronic scales to the nearest 0.1 kg. Body height was measured to the nearest 0.1 cm by using a stadiometer. WC, recorded to the nearest 0.1 cm, was taken with a cloth tape and was measured on bare skin at the midline between the lower border of the ribs and the iliac crest in the horizontal plane after a normal expiration. Two measurements were taken and the mean of the replicates was used in the following analyses. Body mass index (BMI) was calculated as weight in kilograms divided by height in meters squared (kg/m^2) using the direct measurements.

133 Laboratory Measurements

After at least 10 hours of overnight fasting, 1-1.5 ml venous blood specimen was collected in a vacuum tube containing sodium fluoride. All participants with no history of diabetes and having a fasting plasma glucose level of < 7.0 mmol per liter (mmol/l) were then asked to have an oral glucose-tolerance test (OGTT). Blood samples were drawn at 0 and 120 minutes after a standard 75 gram glucose load. Plasma glucose was measured with Glucose oxidase-peroxidase (GOD-PAP) method.

140 Diagnosis of T2DM and Hypertension

Previously diagnosed T2DM and hypertension was identified by a positive response from the participant to the question of "Have you ever diagnosed with T2DM/hypertension by a doctor?" and confirmed by medical records in which prescriptions of anti-hypertensive or hypoglycemic medications were presented. The consistent rate was 100%. For those who had a negative response, the T2DM was diagnosed with measured glucose level by using the 1999 World Health Organization diagnostic criteria [Department of Noncommunicable Disease Surveillance. Definition, diagnosis and classification of diabetes mellitus and its complications: report of a WHO consultation. Part 1. Diagnosis and classification of diabetes mellitus. Geneva: World Health

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

149 Organization, 1999. (Accessed July 5, 2010, at_

150 <u>http://www.staff.ncl.ac.uk/philip.home/who_dmg.pdf.</u>] and hypertension referred to the subjects 151 with measured systolic blood pressure (SBP) \geq 140 mmHg or diastolic blood pressure (DBP) \geq 90 152 mmHg and confirmed by clinical visits. Total T2DM and hypertension included both previously 153 diagnosed and newly-diagnosed patients. 42.7% (1,110 of 2,598) diabetic patients and 10.3% (694 154 of 6,735) hypertensive patients were newly-diagnosed in the two surveys.

155 Statistical Analysis

SAS software 9.2 was used for all the statistical analyses. Characteristics of the subgroups were described using summary statistics (median, 25th and 75th percentile, frequencies, and percentages) separately for men and women. The differences between two surveys were compared using χ^2 test (category variables) and Wilcoxon tests (continuous variables). The annual percentage changes (APC) in prevalence between two surveys were calculated as (prevalence in 2009 – prevalence in 2002-03) / number of years using logarithms for each age group. Percentile curves were constructed for BMI and WC values in the two surveys by gender using the LMS (lambda, mu, sigma) method. Restricted cubic splines (RCS) were used to model a potential curvilinear relationship of BMI and WC with hypertension and diabetes using the 5th, 25th, 75th and 95th percentiles as fixed knots and the 50th percentile as the reference. Polynomial logistic regression were used to estimate the odds ratios (OR) and 95% confidence intervals (95% CI) of BMI and WC with T2DM and hypertension. Meta-analysis was applied to obtain the combined ORs and 95% CI considering the potential heterogeneity of the populations in the two surveys. The residual method was used to derive the independent effect of BMI and WC with each other in the models. P value less than 0.05 was considered as a test of significance based on two sides.

Results

The male participants in two surveys were similar in age, resident site and cigarette smoking while the females were comparable in cigarette smoking (P > 0.05) (Table 1). Compared to the subjects in 2002-03 survey, the participants of 2009 survey, both men and women, had lower level

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

of education, higher level of income per capita, more prior history of T2DM, higher frequency of
alcohol drinking and lower frequency of leisure time activity, and were more likely to have a family
history of diabetes.

Figure 1 shows the shapes of the BMI and WC distribution curves among men and women changed over the period of the two surveys. After adjusting for age, education, per capita income, resident site, smoking, drinking, regular exercise, and family history of T2DM, the curves of BMI were almost overlapped in both men and women. However, the WC curves for men and women were shifted to the right between 2002-03 and 2009, with the mean WC increasing from 83.6 to 85.3 cm for men and from 78.4 to 80.6 cm for women.

As presented in table 2, the prevalence of obesity, both overall and central, increased with increasing age groups. While the prevalence of overall obesity (BMI $\geq 28 \text{ kg/m}^2$) did not changed between two surveys (all P values > 0.05), the prevalence of central obesity were significantly higher in 2009 survey in each age group (all P values < 0.001). A more pronounced increase in prevalence of central obesity and T2DM was observed among subjects aged 45-49 years old in both men and women; whereas the change in prevalence of hypertension between two surveys appeared more evident in older men and younger women over the period. Using the World Health Organization (WHO) criteria for obesity did not change the results substantially (data not shown in the tables).

BMI and WC were highly correlated with each other, with a correlation coefficient of 0.77 (P <(0.0001) among men and (0.78) ($P \le 0.0001$) among women after adjusting for age. Therefore, the residual method was used to test the potential respective non-linear relationships of BMI and WC with the risk of T2DM and hypertension (Figure 2). The dose-response analysis likewise showed a statistically significant increased risk of T2DM at high level of WC and a significant elevated risk of hypertension at high level of BMI in both men and women after adjusting for age, education, per capita income, resident site, smoking, drinking, regular exercise, family history of T2DM and phase of surveys, with P values for non-linear relationship tests < 0.05. No significant relationship was

observed between BMI and T2DM in men and between WC and hypertension in women. As shown in table 3, in both sexes, BMI adjusted for WC (residuals) appeared more strongly associated with hypertension while WC adjusted for BMI (residuals) was more evidently related with T2DM. Comparing with the lowest quartile of BMI residuals, the risk of hypertension increased 85% (95%CI: 1.59-2.15) in men and 1.23-fold (95%CI: 1.94-2.57) in women, whereas the risk of T2DM did not increase significantly in both sexes. On the other hand, the ORs of the highest versus the lowest quartile WC residuals for T2DM were 1.75 (95%CI: 1.33-2.30) in men and 2.37 (95%CI: 1.78-3.15) in women, higher than the OR of 1.57 (95%CI: 1.35-1.82) in men and 1.13 (95%CI: 0.98-1.30) in women for hypertension.

We further evaluated the potential joint effect of BMI and WC on T2DM and hypertension (table 4). The participants were classified into normal weight (BMI 18.5-23.9 kg/m²), overweight $(24.0-27.9 \text{ kg/m}^2)$, or obese ($\geq 28 \text{ kg/m}^2$) based on data from Chinese adults, and were defined as with normal or increased WC using sex-specific cut-offs (85 cm in men and 80 cm in women) [19]. The risk of T2DM and hypertension increased across groups defined by BMI and WC, with the highest risk observed among men with the lowest BMI but a higher WC, and among those with the highest BMI and a higher WC for hypertension. However, no significant interaction was observed between BMI and WC (all *P* values for interaction tests > 0.05).

Discussion

In this representative sample of the adult population in Shanghai, the largest city in China, we observed an increased prevalence of central obesity, hypertension and T2DM over the decade spanning 2002-2009. In contrast, BMI did not change over the same period. Our results present a snapshot of overt versus central obesity in the Chinese population and suggest that the epidemic of central obesity in this population, which has been more closely associated with the prevalence of T2DM, may lead to a more rapidly growing burden of T2DM in China.

225 Chinese adults have lower rates of overweight and obesity than their Western counterparts 226 using the WHO criteria (BMI \ge 25 kg/m² for overweight and BMI \ge 30 kg/m² for obesity) [15 16].

Page 3	1 of 46	BMJ Open
1 2	227	Nevertheless, increasing trends of BMI in Chinese adults have been well documented [18 20]. In
3 4	228	two national nutritional surveys undertaken in 1982 and 1992 in China, the prevalence of
5 6 7	229	overweight/obesity (BMI \ge 25 kg/m ²) in subjects 20-70 years of age was 10% and 15%,
7 8 9	230	respectively. Between 1992 and 2002, the combined prevalence of overweight and obesity increased
10 11	231	from 14.6 to 21.8% [21]. Interestingly, the increase in BMI among Chinese adults has slowed down
12 13	232	during past decades [2]. In this study, we did not observe an increase in BMI and prevalence of
14 15	233	obesity defined by the Chinese obesity standards or by WHO criteria (data not shown). Instead, we
16 17 18	234	observed a significant increase in WC, a measure of central obesity between surveys. Our
19 20	235	observation of increased WC in Chinese adults, without a concomitant increase in BMI, represents
21 22	236	an increasing burden of central obesity in this population. The increase in central obesity indicates
23 24	237	an upward trend in body fat percentages in the population who have been previously observed with
25 26 27	238	higher body fat percentages compared to other ethnic people with the same BMI [22 23].
28 29	239	Both epidemic of overall and central obesity parallels a continuously increasing prevalence of
30 31	240	hypertension and T2DM in China [21]. Several studies indicate that overall obesity (BMI) is more
32 33	241	strongly associated with hypertension, while central obesity (WC) is more strongly associated with
34 35 36	242	T2DM [17 24-26]. The rationale for these associations is based on the notion that central obesity
37 38	243	reflects specific accumulation of visceral adipose tissue. Excess visceral adipose tissue is
39 40	244	metabolically unfavorable due to productions of free fatty acids and inflammatory mediators.
41 42	245	Overall obesity, on the other hand, represents a greater overall physiologic strain and effects
43 44 45	246	vascular and cardiac parameters more significantly. In this study, we observed a significant increase
45 46 47	247	in prevalence of T2DM regardless of gender or age groups, which was more pronounced than the
48 49	248	change in the prevalence of hypertension during the period of 2002-03 and 2009. We also observed
50 51	249	a closer association of central obesity with the prevalence of T2DM than with the prevalence of
52 53	250	hypertension. These results support the notion that central obesity in particular is a stronger risk
54 55 56	251	factor for T2DM than for hypertension in Chinese adults. Due to the cross-sectional design,
57 58 59	252	however, our study was unable to make a causal inference.
60		For neer review only - http://bmionen.hmi.com/site/about/quidelines.xhtml

The nature of the cross-sectional study design limits our ability to directly evaluate the influence of overall and central obesity as well as the change of their prevalence on the risk of hypertension and T2DM. The differences in several demographic characteristics between the participants of the two surveys indicate the changes in general population over time. However, selection bias could not be excluded. However, there are several strengths, including the strict process of multistage sampling in adult population in Shanghai, anthropometric measurement according to a standardized protocol and fasting and postprandial blood glucose tests for the participants.

Conclusions

In summary, this study describes the potential association of central obesity with an upward trend of T2DM, implicating a more rapidly growing burden of T2DM than hypertension in Chinese adults. The findings in Shanghai, the largest city and one of the most economically developed areas in China, provide useful information for the projection of future trends in the whole country.

266 Acknowledgements

We thank Dr. Xiao-ou Shu and Dr. Hui Cai of Vanderbilt University for their contributions in study design and data analysis. The authors thank the study participants of the two cross-sectional surveys and the healthcare workers in each community involved.

270 Footnotes

Contributors YR and MM contributed to data collection, data analysis and draft of the paper. 272 YR, YYL, QDY, and LS contributed to data collection and quality control. LJM contributed to 273 revision of the paper. HZ contributed to data clean and analysis. RL and WHX contributed to study 274 design, statistical analysis and revision of the paper. All authors contributed to the interpretation of 275 data and revision of the manuscript. All authors approved the final version.

Funding This study was supported by the Key Program of Shanghai Municipal Committee of
Science and Technology (04 DZ19502), the Shanghai Medical Development Program (01ZD001)

2

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11 12	
12 13 14	
14	
15	
16	
17	
18	
19 20	
20 21	
22	
23	
24	
24 25 26	
20	
27 28	
20 29	
30	
31	
32	
33	
34 25	
35 36	
37	
38	
39	
40	
41	
42	
43 44	
44 45	
46	
47	
48	
49	
50	
51 52	
ວ∠ 53	
53 54	
55	
56	
57	
58	
59	
60	

278 and the Shanghai Municipal Health Bureau (GWDTR201204). W. H. Xu was supported by a

training grant from the Fogarty International Center (D43 TW008313 to X. O. Shu). The funders 279

280 had no role in study design, data collection or analysis, decision to publish, or preparation of the

manuscript. 281

<text> Conflict of Interest: None declared. 282

1 2 3	284	REFERENCES
4	285	1. Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes
5	286	(Lond) 2008; 32 (9):1431-7 doi: ijo2008102 [pii]
6	287	10.1038/ijo.2008.102[published Online First: Epub Date]].
7 8	288	2. Popkin BM. Recent dynamics suggest selected countries catching up to US obesity. Am J Clin Nutr
9	289	2010; 91 (1):284S-88S doi: ajcn.2009.28473C [pii]
10	290	10.3945/ajcn.2009.28473C[published Online First: Epub Date]].
11	290	3. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res
12 13	291	Clin Pract 2010; 87 (1):4-14 doi: S0168-8227(09)00432-X [pii]
14	292	10.1016/j.diabres.2009.10.007[published Online First: Epub Date]].
15	293 294	 4. Hu FB. Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes care 2011;34(6):1249-57 doi:
16	294 295	10.2337/dc11-0442[published Online First: Epub Date]].
17	295 296	5. Wu YK, Lu CQ, Gao RC, Yu JS, Liu GC. Nation-wide hypertension screening in China during 1979-1980. Chin Med
18 19	290 297	J (Engl) 1982; 95 (2):101-8
20	297 298	
21		6. Wu X, Duan X, Gu D, Hao J, Tao S, Fan D. Prevalence of hypertension and its trends in Chinese populations. Int J
22	299	Cardiol 1995; 52 (1):39-44 doi: 016752739502443Z [pii][published Online First: Epub Date] .
23 24	300	7. Wu Y, Huxley R, Li L, et al. Prevalence, awareness, treatment, and control of hypertension in China: data from the
25	301	China National Nutrition and Health Survey 2002. Circulation 2008; 118 (25):2679-86 doi:
26	302	10.1161/CIRCULATIONAHA.108.788166
27	303	118/25/2679 [pii][published Online First: Epub Date]].
28 29	304	8. [A mass survey of diabetes mellitus in a population of 300,000 in 14 provinces and municipalities in China (author's
30	305	transl)]. Zhonghua Nei Ke Za Zhi 1981; $20(11)$:678-83
31	306	9. Wang K, Li T, Xiang H. [Study on the epidemiological characteristics of diabetes mellitus and IGT in China].
32	307	Zhonghua Liu Xing Bing Xue Za Zhi 1998; 19 (5):282-5
33 34	308	10. Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China. The New England journal of
35	309	medicine 2010; 362 (12):1090-101 doi: 10.1056/NEJMoa0908292[published Online First: Epub Date] .
36	310	11. Nyamdorj R, Qiao Q, Lam TH, et al. BMI compared with central obesity indicators in relation to diabetes and
37	311	hypertension in Asians. Obesity (Silver Spring) 2008; 16 (7):1622-35 doi: 10.1038/oby.2008.73
38 39	312	oby200873 [pii][published Online First: Epub Date]].
40	313	12. Ostchega Y, Hughes JP, Terry A, Fakhouri TH, Miller I. Abdominal obesity, body mass index, and hypertension in
41	314	US adults: NHANES 2007-2010. Am J Hypertens 2012; 25 (12):1271-8 doi: 10.1038/ajh.2012.120
42	315	ajh2012120 [pii][published Online First: Epub Date] .
43 44	316	13. Barrett-Connor E. Epidemiology, obesity, and non-insulin-dependent diabetes mellitus. Epidemiol Rev
45	317	1989;11:172-81
46	318	14. Weber MB, Oza-Frank R, Staimez LR, Ali MK, Narayan KM. Type 2 diabetes in Asians: prevalence, risk factors,
47	319	and effectiveness of behavioral intervention at individual and population levels. Annu Rev Nutr
48 49	320	2012; 32 :417-39 doi: 10.1146/annurev-nutr-071811-150630[published Online First: Epub Date]].
49 50	321	15. Lu B, Yang Y, Song X, et al. An evaluation of the International Diabetes Federation definition of metabolic
51	322	syndrome in Chinese patients older than 30 years and diagnosed with type 2 diabetes mellitus. Metabolism
52	323	2006; 55 (8):1088-96 doi: S0026-0495(06)00138-7 [pii]
53	324	10.1016/j.metabol.2006.04.003[published Online First: Epub Date]].
54 55	325	16. Tseng CH. Body mass index and waist circumference as determinants of coronary artery disease in Taiwanese adults
56	326	with type 2 diabetes mellitus. Int J Obes (Lond) 2006; 30 (5):816-21 doi: 0803218 [pii]
57	327	10.1038/sj.ijo.0803218[published Online First: Epub Date] .
58	328	17. Feng RN, Zhao C, Wang C, et al. BMI is strongly associated with hypertension, and waist circumference is strongly
59 60	329	associated with type 2 diabetes and dyslipidemia, in northern Chinese adults. Journal of epidemiology / Japan

1	220	
2	330	Epidemiological Association 2012; 22 (4):317-23
3 4	331	18. Wildman RP, Gu D, Muntner P, et al. Trends in overweight and obesity in Chinese adults: between 1991 and
5	332	1999-2000. Obesity (Silver Spring) 2008;16(6):1448-53 doi: oby2008208 [pii]
6	333	10.1038/oby.2008.208[published Online First: Epub Date] .
7	334	19. Zhou BF. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in
8	335	Chinese adultsstudy on optimal cut-off points of body mass index and waist circumference in Chinese adults.
9 10	336	Biomed Environ Sci 2002;15(1):83-96
11	337	20. Wang H, Du S, Zhai F, Popkin BM. Trends in the distribution of body mass index among Chinese adults, aged 20-45
12	338	years (1989-2000). Int J Obes (Lond) 2007;31(2):272-8 doi: 0803416 [pii]
13	339	10.1038/sj.ijo.0803416[published Online First: Epub Date] .
14	340	21. Wang Y, Mi J, Shan XY, Wang QJ, Ge KY. Is China facing an obesity epidemic and the consequences? The trends in
15	341	obesity and chronic disease in China. Int J Obes (Lond) 2007; 31 (1):177-88 doi: 0803354 [pii]
16 17	342	10.1038/sj.ijo.0803354[published Online First: Epub Date] .
18	343	22. Wang J, Thornton JC, Burastero S, et al. Comparisons for body mass index and body fat percent among Puerto
19	344	Ricans, blacks, whites and Asians living in the New York City area. Obes Res 1996; 4 (4):377-84
20	345	23. Araneta MR, Wingard DL, Barrett-Connor E. Type 2 diabetes and metabolic syndrome in Filipina-American
21	346	
22 23		women : a high-risk nonobese population. Diabetes Care 2002; 25 (3):494-9
24	347	24. Jacobs EJ, Newton CC, Wang Y, et al. Waist circumference and all-cause mortality in a large US cohort. Archives of
25	348	internal medicine 2010; 170 (15):1293-301 doi: 10.1001/archinternmed.2010.201[published Online First: Epub
26	349	Date] .
27	350	25. InterAct C, Langenberg C, Sharp SJ, et al. Long-term risk of incident type 2 diabetes and measures of overall and
28 29	351	regional obesity: the EPIC-InterAct case-cohort study. PLoS medicine 2012;9(6):e1001230 doi:
30	352	10.1371/journal.pmed.1001230[published Online First: Epub Date]].
31	353	26. Li R, Shi L, Jia J, et al. Differentiating the Associations of Waist Circumference and Body Mass Index With
32	354	Cardiovascular Disease Risk in a Chinese Population. Asia-Pacific journal of public health / Asia-Pacific
33	355	Academic Consortium for Public Health 2012 doi: 10.1177/1010539512465306[published Online First: Epub
34 35	356	Date] .
36	357	Date] .
37	358	
38		
39 40		
40 41		
42		
43		
44		
45 46		
40 47		
48		
49		
50		
51 52		
53		
54		
55		
56 57		
57 58		
59		
60		

- Figure 2. Non-linear dose-response relationship of BMI and WC with hypertension and T2DM
- among participants of the two population-based surveys

BMJ Open

		1 st su	rvey	2 ⁿ	^d survey	P-value bei	ween surveys
	Characteristics	Men (N=5,050)	Women (N=7,279)	Men (N=3,461)	Women (N=3,962)	In men	In women
-	Age (yrs., mean \pm SD)	54.8 ± 10.8	53.1 ± 10.3	54.7 ± 9.5	54.7 ± 9.1	0.55	< 0.0001
	Resident site (%)						
	Urban	71.1	63.0	72.4	72.0		
	Rural	29.0	37.0	27.7	28.0	0.19	<0.0001
	Education (%)						
	No formal education	4.1	18.4	3.2	9.5		
	Primary school	18.2	23.0	14.7	17.7		
	Middle school	35.3	31.1	45.7	45.2		
	High school	27.6	22.6	27.6	23.8		
	Colleague or above	14.8	4.9	8.8	3.9	0.0025	<0.0001
	Per capita income (yuan/mo.) (%)						
	<1000	37.0	45.5	4.9	4.0		
	1000-2999	38.3	38.4	41.8	46.7		
	3000-5000	22.5	17.9	33.2	33.3		
	>5000	2.2	1.3	20.0	16.0	<0.0001	<0.0001
	Family history of type 2diabetes	12.3	13.1	16.4	19.0	<0.0001	<0.0001
	Prevalence of type 2diabetes (%)	13.6	10.3	17.4	14.1	<0.0001	<0.0001
	Prevalence of hypertension (%)	34.8	28.3	41.8	37.1	<0.0001	<0.0001
	Cigarette smoking (%)	61.4	1.7	62.6	1.8	0.22	0.93
	Alcohol drinking (%)	40.4	2.4	54.0	5.0	<0.0001	<0.0001
	Leisure-time activity (%)	13.3	13.1	10.8	9.0	0.0009	<0.0001

Table 1. Characteristics of participants in two population-based surveys in Shanghai, China

	No. of s			l Obesity	APC	Centra	al obesity	APC		rtension	APC		diabetes	APC
	1 st survey	2 nd survey	1 st survey	2 nd survey	(%)	1 st survey	2 nd survey	(%)	1 st survey	2 nd survey	(%)	1 st survey	2 nd survey	(%)
Men	-	-	-											
Overall	5050	3461	11.7	11.9	0.21	46.3	53.8	2.35	34.8	41.8	2.87	13.6	17.4	<i>3.78</i>
Age-groups														
35-	414	230	10.5	9.1	-2.11	41.8	45.2	1.22	15.2	11.7	-3.92	4.6	5.7	3.25
40-	574	302	10.0	8.3	-2.83	41.8	47.00	1.85	22.5	21.9	-0.43	7.8	7.6	-0.44
45-	837	445	12.6	12.6	-0.04	44.0	53.7	3.12	25.3	31.0	3.16	7.8	13.7	9.13
50-	833	739	12.2	10.8	-1.76	44.1	53.8	3.12	33.1	40.3	3.07	12.7	18.3	5.72
55-	628	669	10.4	13.2	3.78	47.3	54.6	2.25	35.4	45.6	3.99	15.0	17.9	2.82
60-	507	513	10.5	15.4	6.18	48.7	56.1	2.19	44.6	51.7	2.29	15.6	20.1	3.98
65-	674	313	12.6	11.8	-0.99	51.4	61.0	2.67	49.4	59.4	2.88	20.8	26.2	3.64
70-	583	250	13.8	9.6	-5.40	51.1	54.0	0.85	50.9	65.2	3.87	24.2	25.6	0.88
Women														
Overall	7279	3962	13.8	13.8	0.02	41.7	54.2	4.10	28.3	37.1	4.28	10.3	14.1	4.84
Age-groups														
35-	615	251	7.5	7.2	-0.65	22.6	26.3	2.35	6.8	10.8	7.24	3.3	4.0	3.17
40-	1000	287	9.4	11.2	2.66	27.6	38.0	5.05	11.7	15.7	4.61	4.1	5.9	5.81
45-	1491	563	11.0	9.8	-1.82	32.3	42.6	4.38	19.3	23.5	3.03	5.8	8.7	6.32
50-	1309	866	15.1	14.1	-1.00	43.9	54.0	3.24	28.7	31.0	1.16	8.3	9.4	1.94
55-	838	818	15.7	13.6	-2.17	47.5	60.6	3.83	33.9	39.7	2.48	8.8	15.3	8.80
60-	610	585	19.2	18.1	-0.87	53.5	63.1	2.58	40.5	52.8	4.17	16.7	19.2	2.11
65-	799	327	18.0	18.4	0.28	59.0	66.1	1.76	48.4	59.3	3.17	23.7	27.8	2.54
70-	617	265	18.2	16.6	-1.36	60.2	68.7	2.05	51.4	64.5	3.57	21.4	27.2	3.75
All subjects														
Overall	12329	7423	13.0	12.9	-0.05	43.6	54.0	3.35	31.0	39.3	3.75	11.7	15.6	4.53
Age-groups ^a														
35-	1029	481	8.7	8.0	-1.04	30.3	33.9	2.39	10.2	11.2	1.49	3.8	4.7	3.63
40-	1574	589	9.6	10.1	0.11	32.7	41.3	4.14	15.6	17.9	2.92	5.5	6.5	3.41
45-	2328	1008	11.6	10.8	-0.77	36.5	46.6	4.16	21.5	26.2	3.46	6.5	10.5	8.22
50-	2142	1605	13.9	12.8	-1.53	44.0	53.9	3.19	30.4	34.6	0.90	10.0	12.8	4.69
55-	1466	1487	13.4	13.4	0.01	47.4	58.1	3.13	34.5	42.2	3.20	11.5	16.4	5.75
60-	1117	1098	15.2	16.9	1.59	51.3	59.9	2.39	42.4	52.3	3.29	16.2	19.6	2.96
65-	1473	640	15.6	15.4	-0.39	55.5	63.8	2.11	48.9	59.4	3.04	22.3	27.1	2.98
70-	1200	515	16.0	13.2	-2.94	55.8	61.5	1.52	51.2	64.9	3.71	22.8	26.4	2.32

Table 2. Prevalence of obesity, hypertension and type 2 diabetes in participants of the two population-based surveys by age groups in Shanghai, China

^a adjusted for sex according to the distribution in the first survey.

Page 39 of 46

BMJ Open

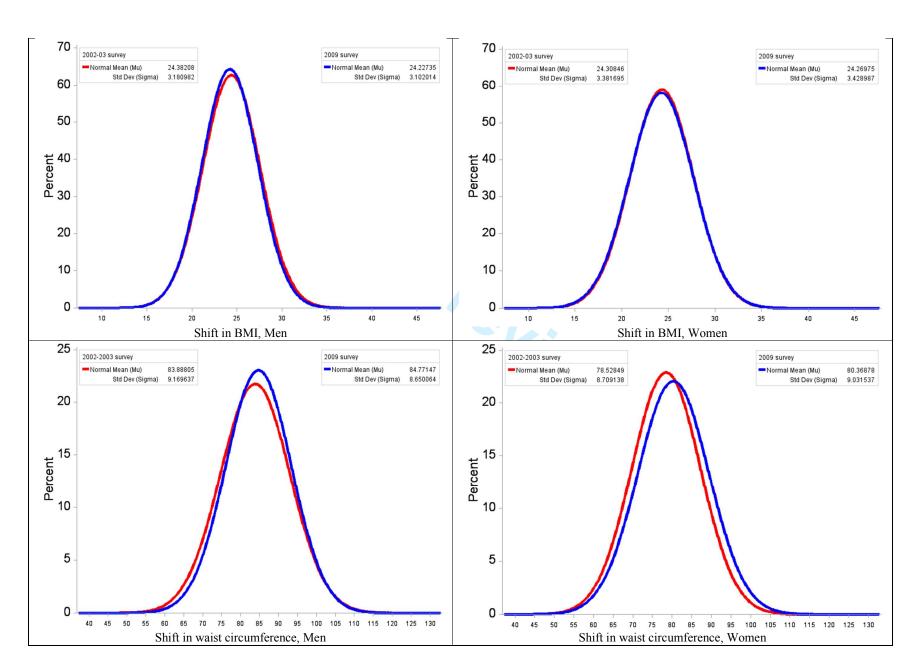
Table 3. Association of body size with hypertension and type 2 diabetes in two population-based surveys in

Shanghai, China

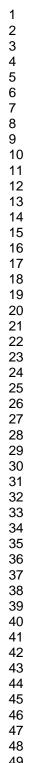
	No. of subjects with	Тур	e 2 diabetes only	Hy	pertension only		Both
	neither diseases	Ν	OR (95%CI)	Ν	OR (95%CI)	Ν	OR (95%CI)
BMI resid	uals		· ·				
Men							
Q1	1260	156	1.00	529	1.00	175	1.00
Q2	1224	142	0.99 (0.77, 1.27)	583	1.16 (1.00, 1.34)	172	1.11(0.87, 1.41)
Q3	1164	132	1.09 (0.84, 1.41)	651	1.50 (1.29, 1.74)	171	1.36(1.07, 1.73)
Q4	1079	123	1.16 (0.88, 1.51)	709	1.85 (1.59, 2.15)	207	1.95(1.54, 2.47)
	P for trend		0.2472		<0.0001		<0.0001
Women							
Q1	1816	166	1.00	600	1.00	223	1.00
Q2	1866	148	1.02 (0.80, 1.29)	629	1.29 (1.12, 1.48)	162	0.96(0.77, 1.21)
Q3	1835	125	0.89 (0.69, 1.15)	687	1.51 (1.31, 1.73)	158	1.03(0.82, 1.31)
Q4	1634	109	0.94 (0.73, 1.23)	847	2.23 (1.94, 2.57)	215	1.85(1.15, 2.98)
	P for trend		0.4864		< 0.0001		0.0067
All subject	cts						
Q1	3048	330	1.00	1162	1.00	385	1.00
Q2	3079	282	1.00 (0.84, 1.19)	1200	1.22 (1.11, 1.35)	363	1.03(0.87, 1.22)
Q3	2998	278	0.98 (0.82, 1.18)	1346	1.50 (1.36, 1.67)	302	1.18(1.00, 1.40)
Q4	2753	211	1.04 (0.86, 1.26)	1527	2.05 (1.85, 2.27)	433	1.88(1.60, 2.21)
	P for trend		0.2280		<0.0001		< 0.0001
WC residu	uals						
Men							
Q1	1376	102	1.00	531	1.00	111	1.00
Q2	1232	131	1.34 (1.02, 1.78)	601	1.23 (1.06, 1.42)	155	1.41(1.07, 1.84)
Q3	1130	148	1.39 (0.70, 2.77)	644	1.39 (1.20, 1.62)	197	1.73(1.33, 2.25)
Q4	989	172	1.75 (1.33, 2.30)	696	1.57 (1.35, 1.82)	262	2.25(1.74, 2.90)
	P for trend		<0.0001		<0.0001		<0.0001
Women							
Q1	2019	80	1.00	598	1.00	108	1.00
Q2	1935	102	1.17 (0.86, 1.59)	651	1.04 (0.91, 1.18)	117	0.94(0.71, 1.25)
Q3	1708	172	2.04 (1.54, 2.70)	732	1.14 (0.99, 1.30)	194	1.40(1.08,1.82)
Q4	1489	194	2.37 (1.78, 3.15)	782	1.13 (0.98, 1.30)	339	2.06(1.26, 3.38)
,	P for trend		<0.0001		0.0216		<0.0001
All subject							
Q1 J	3453	161	1.00	1109	1.00	203	1.00
Q2	3192	260	1.26 (0.99, 1.60)	1211	1.12 (1.01, 1.23)	260	1.16(0.82, 1.62)
Q3	2838	301	1.66 (1.16, 2.36)	1373	1.25 (1.13, 1.38)	412	1.55(1.29, 1.87)
Q4	2395	379	2.03 (1.66, 2.47)	1542	1.34 (1.09, 1.64)	608	2.18(1.83, 2.61)
	P for trend		0.0001		0.0021		<0.0001

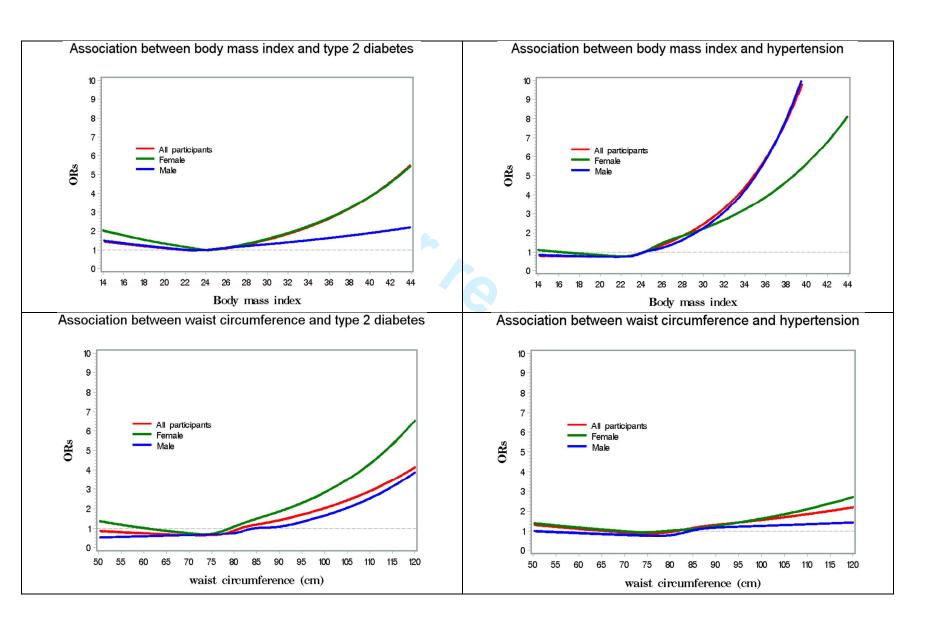
Missing value excluded from the analysis.

OR: Adjusted for age (continuous variable), education (no formal education, primary school, middle school, high school, colleague or above, dummy variables), per capita income (<1000, 1000-2999, 3000-5000 and >5000 RMB Yuan / month, dummy variables), resident site (urban/rural area), family history of type 2 diabetes (yes/no), smoking (ever/never), alcohol drinking (ever/never), regular exercise (never/ever), phase of study (first /second survey); Additionally adjusted for sex (male/female) for all subjects.


	WC: Lower			WC: Higher			OR (95%CI) fo	or hypertension	OR (95%CI) for type 2 diabetes		
BMI	No. of subjects	Hypertension N (%)	Diabetes N (%)	No. of subjects	Hypertension N (%)	Diabetes N (%)	WC: Lower	WC: Higher	WC: Lower	WC: Higher	
Men											
<18.5	212	36	20	16	10	6	0.61(0.42, 0.89)	3.68(1.28, 10.59)	1.02(0.62, 1.67)	3.77(1.13, 12.56)	
18.5-23.9	3034	767	296	679	249	111	1.00	1.56(0.94, 2.57)	1.00	1.48(1.15, 1.90)	
24.0-27.9	1010	356	134	2530	1179	483	1.61(1.13, 2.32)	2.38(1.78, 3.17)	1.46(1.16, 1.83)	1.85(1.16, 2.96)	
≥28.0	36	20	4	960	580	224	3.91(1.95, 7.82)	4.67(3.97, 5.49)	1.71(0.55, 5.37)	2.60(2.12, 3.18)	
Women					P fo	r interaction	0.0	711	0.0	933	
<18.5	313	51	19	8	2	1	0.68(0.49, 0.94)	0.85(0.16, 4.51)	0.93(0.56, 1.54)	2.45(0.22, 26.72)	
18.5-23.9	4323	821	265	974	314	165	1.00	1.48(1.26, 1.75)	1.00	2.36(1.89, 2.94)	
24.0-27.9	1330	384	93	2724	1102	437	1.84(1.59, 2.14)	2.21(1.97, 2.49)	1.19(0.92, 1.53)	2.14(1.81, 2.54)	
≥28.0	81	32	9	1467	815	317	3.10(1.93, 5.00)	4.33(3.77, 4.96)	2.14(1.01, 4.52)	3.08(2.56, 3.71)	
					P fo	r interaction	0.3.	524	0.4	011	
Total											
<18.5	525	87	39	24	12	7	0.65(0.51, 0.83)	2.25(0.85, 5.93)	0.97(0.68, 1.39)	3.45(1.18, 10.12	
18.5-23.9	7357	1588	561	1653	563	276	1.00	1.52(1.25, 1.85)	1.00	1.88(1.42, 2.49)	
24.0-27.9	2340	740	227	5254	2281	920	1.74(1.50, 2.03)	2.31(2.03, 2.62)	1.33(1.12, 1.58)	1.99(1.62, 2.45)	
≥28.0	117	5	13	2427	1395	541	3.34(2.26, 4.94)	4.46(4.02, 4.96)	2.00(1.07, 3.74)	2.85(2.49, 3.27)	
					P fo	r interaction	0.0.	562	0.0	798	

2 Higher WC defined as ≥ 85 cm for men and ≥ 80 cm for women 3 OR: Adjusted for age (continuous variable), education (no forma


 OR: Adjusted for age (continuous variable), education (no formal education, primary school, middle school, high school, colleague or above, dummy variables), per capita income (<1000, 1000-2999, 3000-5000 and >5000 RMB Yuan / month, dummy variables), resident site (urban/rural area), family history of type 2 diabetes (yes/no),


income (<1000, 1000-2999, 3000-5000 and >5000 RMB Yuan / month, dummy variables), resident site (urban/rural area), far
 smoking (ever/never), alcohol drinking (ever/never), regular exercise (never/ever), and phase of study (first /second survey).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 For Deer review only

	Item No	Recommendation	Results of check		
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or	We have indicated that the study was based on two population-based cross-		
		the abstract	sectional surveys in the title and the abstract		
		(b) Provide in the abstract an	Line 53-62		
		informative and balanced summary of	Line 55-62		
		what was done and what was found			
		what was done and what was found			
Introduction					
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Line 72-87		
Objectives	3	State specific objectives, including	Line 89-92		
Objectives	3		Line 89-92		
		any prespecified hypotheses			
Methods					
Study design	4	Present key elements of study design early in the paper	Line 95-104		
Setting	5	Describe the setting, locations, and	Line 95-104		
C		relevant dates, including periods of			
		recruitment, exposure, follow-up, and			
		data collection			
Participants	6	(a) Give the eligibility criteria, and	Line 95-104		
1 articipants	0	the sources and methods of selection	Line 95-104		
V	7	of participants	Line 117 152		
Variables	/	Clearly define all outcomes,	Line 117-153		
		exposures, predictors, potential			
		confounders, and effect modifiers.			
	0.1	Give diagnostic criteria, if applicable	· · · · · · · · · · · · · · · · · · ·		
Data sources/ measurement	8*	For each variable of interest, give	Line 117-153		
		sources of data and details of			
		methods of assessment			
		(measurement). Describe			
		comparability of assessment methods			
		if there is more than one group			
Bias	9	Describe any efforts to address	Line 117-153		
		potential sources of bias			
Study size	10	Explain how the study size was	NA		
		arrived at			
Quantitative variables	11	Explain how quantitative variables	Line 155-169		
		were handled in the analyses. If			
		applicable, describe which groupings			
		were chosen and why			
Statistical methods	12	(<i>a</i>) Describe all statistical methods,	Line 155-169		
		including those used to control for			
		confounding			
		comounding			

		examine subgroups and interactions	
		(c) Explain how missing data were addressed	There were very few missing data in this study. Please see footnote of the Table 3
		(<i>d</i>) If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	No
Results	1		
Participants	13*	 (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed 	Line 95-105
		(b) Give reasons for non-participation at each stage	No information
		(c) Consider use of a flow diagram	No
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Line 172-177, and Table 1
		(b) Indicate number of participants with missing data for each variable of	Yes, we provide number of subjects for each variable of interest (Please
Outcome data	15*	interest	see tables) Yes (Please see tables)
		Report numbers of outcome events or summary measures	
Main results	16	 (<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included 	No. Due to the large table, we preser only adjusted ORs
		(b) Report category boundaries when continuous variables were categorized	Yes (Please see table 4)
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	Line 210-217
Discussion			
Key results	18	Summarise key results with reference to study objectives	Line 219-224
Limitations	19	Discuss limitations of the study, taking into account sources of	Line 253-259

		potential bias or imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	Line 251-252
Generalisability	21	Discuss the generalisability (external validity) of the study results	Line 263-264
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	Line 275-280

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

Increased Waist Circumference and Prevalence of Type 2 Diabetes and Hypertension in Chinese Adults: Two Population-based Cross-sectional Surveys in Shanghai, China

Journal:	BMJ Open
Manuscript ID:	bmjopen-2013-003408.R2
Article Type:	Research
Date Submitted by the Author:	03-Sep-2013
Complete List of Authors:	Ruan, Ye; Shanghai Municipal Center for Disease Control and Prevention, Department of Diabetes Prevention and Control Mo, Miao; School of Public Health, Fudan University, Department of Epidemiology Joss-Moore, Lisa; University of Utah, Division of Neonatology Li, Yan Yun; Shanghai Municipal Center for Disease Control and Prevention, Department of Diabetes Prevention and Control Yang, Qun Di; Shanghai Municipal Center for Disease Control and Prevention, Department of Diabetes Prevention and Control Shi, Liang; Shanghai Municipal Center for Disease Control and Prevention, Department of Diabetes Prevention and Control Shi, Liang; Shanghai Municipal Center for Disease Control and Prevention, Department of Diabetes Prevention and Control Zhang, Hua; School of Public Health, Fudan University, Department of Epidemiology Li, Rui; Shanghai Municipal Center for Disease Control and Prevention, Department of Diabetes Prevention and Control Xu, Wang Hong; Fudan University, Department of Epidemiology, School of Public Health
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Epidemiology, Public health, Cardiovascular medicine, Diabetes and endocrinology
Keywords:	Hypertension < CARDIOLOGY, General diabetes < DIABETES & ENDOCRINOLOGY, EPIDEMIOLOGY, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts Page 1 of 46

BMJ Open

1 2	1
3 4 5	2
6 7	3
8 9	4
10 11	5
12 13	5 6
14 15 16	7
17 18	8
19 20	9
21 22	10
23 24 25	11
26 27	12
28 29	13
30 31	14
32 33 34	15
34 35 36	16
37 38	17
39 40	18
41 42 43	19
43 44 45	20
46 47	21
48 49	22
50 51	23
52 53 54	24
54 55 56	25
57 58	26
59 60	

Increased Waist Circumference and Prevalence of Type 2 Diabetes and Hypertension in Chinese Adults: Two Population-based Cross-sectional Surveys in Shanghai, China Ye Ruan, MD, PhD¹, Miao Mo, MD², Lisa Joss-Moore, PhD³, Yan Yun Li, MD¹, Qun Di Yang, MD, MPH¹, Liang Shi, MD¹, Hua Zhang, MD², Rui Li, MD^{1*}, Wang Hong Xu, MD, PhD^{2*} **AFILIATIONS:** ¹ Department of Diabetes Prevention and Control, Shanghai Municipal Center for Disease Control and Prevention, 1380 Zhong Shan Xi Road, Shanghai, 200336, People's Republic of China ² Department of Epidemiology, School of Public Health, Fudan University; Key Laboratory of Public Health Safety, Ministry of Education (Fudan University), 138 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China . Lake ³ Division of Neonatology, University of Utah, Salt Lake City, Utah 84108, USA Correspondence to: Wang Hong Xu, MD, Ph.D, Associate professor Department of Epidemiology School of Public Health Fudan University 138 Yi Xue Yuan Road Shanghai 200032 P. R. China Tel: 86-21-54237679 Fax: 86-21-54237334

1 2	27	
3 4	28	or
5 6 7	29	Rui Li, MD
8 9	30	Department of Diabetes Prevention and Control
10 11	31	Shanghai Municipal Center for Disease Control and Prevention
12 13	32	1380 Zhong Shan Xi Road
14 15 16	33	Shanghai 200336
17 18	34	P. R. China
19 20	35	Tel: 86-21-62758710
21 22	36	Email: rli@scdc.sh.cn
23 24 25	37	
26 27	38	RUNNING HEADER: Obesity and prevalence of hypertension and T2DM in Chinese adults
28 29	39	
30 31	40	Word Count: Abstract: 249 Text: 2,658
32 33 34	41	Abstract: 249
35 36	42	Text: 2,658
37 38	43	
39 40		
41 42 43		
43 44 45		
46 47		
48 49		
50 51		
52 53 54		
55 56		
57 58		
59 60		

Page 3 of 46

BMJ Open

44	Abstract:
45	Objective: To evaluate the changes in body mass index (BMI) and waist circumference (WC)
46	and their associations with the prevalence of hypertension and type 2 diabetes (T2DM) in Chinese
47	adults.
48	Design: Two consecutive population-based cross-sectional surveys.
49	Setting: A total of 12 districts and 7 counties in Shanghai, China.
50	Participants: 12,329 randomly selected participants of the survey in 2002-2003, and 7,423
51	randomly selected participants of the survey in 2009. All subjects were residents of Shanghai aged
52	35-74 years old.
53	Outcome measures: Measured BMI and WC. Previously-diagnosed and newly-identified
54	hypertension and T2DM by measured blood pressure, fasting and post-load glucose.
55	Results: While the participants of the two surveys were comparable in BMI in each age group,
56	the participants of the 2009 survey had significantly larger WC than those of the 2002-03 survey,
57	with an annual percentage change (APC) being higher among subjects aged 45-49 years old in both
58	men and women. The increase in prevalence of T2DM was observed in all age groups and also
59	appeared more evident in subjects aged 45-49 years old. The prevalence of hypertension was
60	observed to increase more rapidly in elderly men and middle-aged women. Obesity, both overt and
61	central, was associated with the risk of the two diseases, but BMI was more strongly linked to
62	hypertension while WC appeared more evidently related with T2DM.
63	Conclusion: The prevalence of central obesity and related chronic diseases has been
64	increasing in Shanghai, China. Our findings provide useful information for the projection of
65	growing burden of T2DM and hypertension in Chinese adults.
66	
67	Keywords: type 2 diabetes; hypertension; prevalence; body mass index; waist circumference

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Article focus

Article summary

- The shift in BMI and WC among Chinese adults over past one decade.
- The contribution of changes in overall and central obesity to the increasing burden of chronic disease in China.

Key messages

- The WC increased in Chinese adults over the decade spanning 2002-2009, while BMI did not change over the same period.
- BMI was more strongly linked to hypertension while WC appeared more evidently related with T2DM in Chinese adults.
- Our findings provide useful information for the projection of a growing burden of T2DM and hypertension in Chinese adults.

Strengths and limitations of this study

- The strengths of this study include the strict process of multistage sampling in adult population of Shanghai, anthropometric measurement according to a standardized protocol and fasting and postprandial blood glucose tests for the participants.
- The nature of the cross-sectional study design limits our ability to directly evaluate the influence of overall and central obesity as well as the change of their prevalence on the risk of hypertension and T2DM.
- The differences in several demographic characteristics between the participants of the two surveys indicate the possibility of selection bias.

BMJ Open

2		
3 4 5		
5 6		
7 8 9		
10		
11 12		
13 14		
15 16		
12 13 14 15 16 17 18 19 20 21 22 23		
19 20		
21 22		
23 24		
25 26		
27 28		
29 30		
31 32		
33 34		
35 36		
37 38		
39 40		
40 41 42		
42 43 44		
45		
46 47		
48 49		
50 51		
52 53		
54 55		
56 57 58		
59		
60		

71	Introduction
72	A rising worldwide prevalence of chronic disease, manifested primarily as hypertension and
73	type 2 diabetes (T2DM), has been well documented [1-4]. In Chinese aged 15-74 years old, the
74	prevalence of hypertension increased from 5.11% in 1959, 7.73% in 1979 [5] and 13.58% in 1991[6]
75	to 17.65% in 2002 [7]. The prevalence of T2DM tripled between 1980 (about 1.0%) and 1996
76	(3.2%) [8 9], and reached 9.7% in 2008 among adults at 20 years old or above [10]. It is estimated
77	that over 92 million people in China have T2DM. This represents approximately half of the world's
78	diabetic population, and places China at the "global epicenter of the diabetes epidemic" [4].
79	Both hypertension and T2DM are associated with obesity [11 12]. Obesity is often measured
80	by body mass index (BMI). Across the entire range of BMI, the risk of hypertension and T2DM
81	increases, making a higher BMI a strong predictor of both hypertension and T2DM [4 12-14].
82	However, a significant proportion of Asian adults diagnosed with T2DM are with the normal BMI,
83	ie.18.5-25.0 kg/m ² [15 16]. BMI is a general indicator of overt obesity, but does not give
84	information about the distribution of obesity. Central obesity, often assessed via waist
85	circumference (WC), is also strongly correlated with T2DM in both European and Asian adults [11
86	17]. While changes in BMI have been well documented in China over past several decades [2 18],
87	changes in WC, and thus central obesity, are not well described.
88	In this study, we took advantage of the data from population based cross-sectional surveys
89	conducted in Shanghai in 2002-03 and in 2009. We used the data from the two surveys to evaluate
90	correlations between shifts in BMI and WC with the prevalence of hypertension and T2DM in
91	Chinese adults. Our results may help to better understand the contribution of overall obesity and
92	central obesity in the increasing burden of chronic disease in China.

93 Materials and Methods

94 Study Participants

A representative sample of the general population was randomly selected through a multistage
 sampling process in the 2002-03 survey. Firstly, 4 districts and 2 counties were randomly selected

from a total of 12 districts and 7 counties in Shanghai, China. And then, 1-2 sub-districts or towns were randomly selected from each selected district or county. Next, 1-2 communities or villages, usually 1,000-2,000 residents for each, were randomly selected from each selected sub-district or town. Finally, eligible subjects (permanent residents of Shanghai, 15-74 years old and having been in the city for at least 5 years) were randomly selected from the selected communities and villages and were invited for participation. Pregnant women, individuals with type I diabetes, and physically or mentally disabled persons were excluded from the participation. During the period of May 2002-October 2003, a total of 17,526 eligible subjects were recruited, and 14,401 (82.17%) participated the survey. The 2009 survey used the similar sampling method except that only 7 communities and villages were randomly selected in the third stage of sampling. The inclusion and exclusion criteria

108 of the 2009 survey were also similar to those for the 2002-03 survey, except that only those at the

age of 35-74 years old were eligible for the 2009 survey. Among 7,627 eligible adults contacted

during the period of May-July 2009, 7,414 (97.21%) were interviewed and donated blood samples.
To make the two surveys comparable, we excluded 1,071 subjects younger than 35 years from
the 2002-03 survey. After further excluding subjects with missing information, the final analysis
included 5,050 men and 7,279 women in the 2002-03 survey and 3,461 men and 3,962 women in
the 2009 survey. The Institutional Review Board at Shanghai Municipal Center of Disease Control
and Prevention approved the study. Informed consent was obtained from each participant before

116 data collection and laboratory measurements.

117 Data Collection

A similar survey approach was followed by the two investigations. In both surveys, information on demographic and socioeconomic factors, diagnosis of diabetes, tobacco and alcohol use, physical activity and family history of diabetes was collected by trained interviewers with a structured questionnaire at community clinics located in the residential areas of the participants. At the interview, each participant's blood pressure, body weight, standing height, and waist

Page 7 of 46

BMJ Open

circumference (WC) were measured by trained staff. Blood pressure was measured on the right arm in the sitting position using standard mercury sphygmomanometer after at least 5 minutes of rest. The first and fifth Korotkoff sounds were recorded. Body weight and height were recorded while the subject was in light clothing and without shoes. Body weight was measured with electronic scales to the nearest 0.1 kg. Body height was measured to the nearest 0.1 cm by using a stadiometer. WC, recorded to the nearest 0.1 cm, was taken with a cloth tape and was measured on bare skin at the midline between the lower border of the ribs and the iliac crest in the horizontal plane after a normal expiration. Two measurements were taken and the mean of the replicates was used in the following analyses. Body mass index (BMI) was calculated as weight in kilograms divided by height in meters squared (kg/m^2) using the direct measurements.

133 Laboratory Measurements

After at least 10 hours of overnight fasting, 1-1.5 ml venous blood specimen was collected in a vacuum tube containing sodium fluoride. All participants with no history of diabetes and having a fasting plasma glucose level of < 7.0 mmol per liter (mmol/l) were then asked to have an oral glucose-tolerance test (OGTT). Blood samples were drawn at 0 and 120 minutes after a standard 75 gram glucose load. Plasma glucose was measured with Glucose oxidase-peroxidase (GOD-PAP) method.

140 Diagnosis of T2DM and Hypertension

Previously diagnosed T2DM and hypertension was identified by a positive response from the participant to the question of "Have you ever diagnosed with T2DM/hypertension by a doctor?" and confirmed by medical records in which prescriptions of anti-hypertensive or hypoglycemic medications were presented. The consistent rate was 100%. For those who had a negative response, the T2DM was diagnosed with measured glucose level by using the 1999 World Health Organization diagnostic criteria [Department of Noncommunicable Disease Surveillance. Definition, diagnosis and classification of diabetes mellitus and its complications: report of a WHO consultation. Part 1. Diagnosis and classification of diabetes mellitus. Geneva: World Health

149 Organization, 1999. (Accessed July 5, 2010, at_

150http://www.staff.ncl.ac.uk/philip.home/who_dmg.pdf.)] and hypertension referred to the subjects151with measured systolic blood pressure (SBP) \geq 140 mmHg or diastolic blood pressure (DBP) \geq 90152mmHg and confirmed by clinical visits. Total T2DM and hypertension included both previously153diagnosed and newly-diagnosed patients. 42.7% (1,110 of 2,598) diabetic patients and 10.3% (694154of 6,735) hypertensive patients were newly-diagnosed in the two surveys.

155 Statistical Analysis

SAS software 9.2 was used for all the statistical analyses. Characteristics of the subgroups were described using summary statistics (median, 25th and 75th percentile, frequencies, and percentages) separately for men and women. The differences between two surveys were compared using χ^2 test (category variables) and Wilcoxon tests (continuous variables). The annual percentage changes (APC) in prevalence between two surveys were calculated as (prevalence in 2009 – prevalence in 2002-03) / number of years using logarithms for each age group. Percentile curves were constructed for BMI and WC values in the two surveys by gender using the LMS (lambda, mu, sigma) method. Restricted cubic splines (RCS) were used to model a potential curvilinear relationship of BMI and WC with hypertension and diabetes using the 5th, 25th, 75th and 95th percentiles as fixed knots and the 50th percentile as the reference. Polynomial logistic regression were used to estimate the odds ratios (OR) and 95% confidence intervals (95% CI) of BMI and WC with T2DM and hypertension. Meta-analysis was applied to obtain the combined ORs and 95% CI considering the potential heterogeneity of the populations in the two surveys. The residual method was used to derive the independent effect of BMI and WC with each other in the models. P value less than 0.05 was considered as a test of significance based on two sides.

Results

The male participants in two studies were similar in age, resident site and cigarette smoking while the female participants were comparable in cigarette smoking (P > 0.05) (Table 1). Compared to the subjects in 2002-03 survey, the participants of 2009 survey, both men and women, had lower

BMJ Open

level of education, higher level of income per capita, more prior history of T2DM, higher frequency
of alcohol drinking and lower frequency of leisure time activity, and were more likely to have a
family history of diabetes.

Figure 1 shows the shapes of the BMI and WC distribution curves among men and women changed over the period of the two surveys. After adjusting for age, education, per capita income, resident site, smoking, drinking, regular exercise, and family history of T2DM, the curves of BMI were almost overlapped in both men and women. However, the WC curves for men and women were shifted to the right between 2002-03 and 2009, with the mean WC increasing from 83.6 to 85.3 cm for men and from 78.4 to 80.6 cm for women.

As presented in table 2, the prevalence of obesity, both overall and central, increased with increasing age groups. While the prevalence of overall obesity (BMI $\ge 28 \text{ kg/m}^2$) did not change between two surveys (all P values > 0.05), the prevalence of central obesity was significantly higher in 2009 survey in each age group (all P values < 0.001). A more pronounced increase in the prevalence of central obesity and T2DM was observed among subjects aged 45-49 years old in both men and women; whereas the change in the prevalence of hypertension between two surveys appeared more evident in older men and younger women over the period. Using the World Health Organization (WHO) criteria for obesity did not change the results substantially (data not shown in the tables).

BMI and WC were highly correlated with each other, with a correlation coefficient of 0.77 (P <(0.0001) among men and (0.78) ($P \le 0.0001$) among women after adjusting for age. Therefore, the residual method was used to test the potential respective non-linear relationships of BMI and WC with the risk of T2DM and hypertension (Figure 2). The dose-response analysis likewise showed a statistically significant increased risk of T2DM at high level of WC and a significant elevated risk of hypertension at high level of BMI in both men and women after adjusting for age, education, per capita income, resident site, smoking, alcohol consumption, regular exercise, family history of T2DM and phase of surveys, with P values for non-linear relationship tests < 0.05. No significant

relationship was observed between BMI and T2DM in men and between WC and hypertension in women. As shown in table 3, in both sexes, BMI adjusted for WC (residuals) appeared more strongly associated with hypertension while WC adjusted for BMI (residuals) was more evidently related with T2DM. Comparing with the lowest quartile of BMI residuals, the risk of hypertension increased 85% (95%CI: 1.59-2.15) in men and 1.23-fold (95%CI: 1.94-2.57) in women, whereas the risk of T2DM did not increase significantly in both sexes. On the other hand, the ORs of the highest versus the lowest quartile WC residuals for T2DM were 1.75 (95%CI: 1.33-2.30) in men and 2.37 (95%CI: 1.78-3.15) in women, higher than the OR of 1.57 (95%CI: 1.35-1.82) in men and 1.13 (95%CI: 0.98-1.30) in women for hypertension. We further evaluated the potential joint effect of BMI and WC on T2DM and hypertension (table 4). The participants were classified into normal weight (BMI 18.5-23.9 kg/m²), overweight $(24.0-27.9 \text{ kg/m}^2)$, or obese ($\geq 28 \text{ kg/m}^2$) based on data from Chinese adults, and were defined as with normal or increased WC using sex-specific cut-offs (85 cm in men and 80 cm in women) [19]. The risk of T2DM and hypertension increased across groups defined by BMI and WC, with the highest risk observed among men with the lowest BMI but a higher WC, and among those with the highest BMI and a higher WC for hypertension. However, no significant interaction was observed between BMI and WC (all *P* values for interaction tests > 0.05).

Discussion

In this representative sample of the adult population in Shanghai, the largest city in China, we observed an increased prevalence of central obesity, hypertension and T2DM over the decade spanning 2002-2009. In contrast, BMI did not change over the same period. Our results present a snapshot of overt versus central obesity in the Chinese population and suggest that the epidemic of central obesity in this population, which has been more closely associated with the prevalence of T2DM, may lead to a more rapidly growing burden of T2DM in China.

8 <u>226</u>

Chinese adults have lower rates of overweight and obesity than their Western counterparts

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 11 of 46

1 2

BMJ Open

2
4
5
3 4 5 6 7
7
8
9 10
10
12
13
14
15
16
17
10
20
21
7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 8 9 30
23
24
25
26
28
29
30
31
29 30 31 32 33 34 35 36 37 38 39 40
33
34
30
37
38
39
40
41
42
43 44
44 45
46
47
48
49
50
51 52
52 53
53 54
55
56
57
58
59 60
60

227	using the WHO criteria (BMI \ge 25 kg/m ² for overweight and BMI \ge 30 kg/m ² for obesity) [15 16].
228	Nevertheless, increasing trends of BMI in Chinese adults have been well documented [18 20]. In
229	two national nutritional surveys undertaken in 1982 and 1992 in China, the prevalence of
230	overweight/obesity (BMI \ge 25 kg/m ²) in subjects 20-70 years of age was 10% and 15%,
231	respectively. Between 1992 and 2002, the combined prevalence of overweight and obesity increased
232	from 14.6 to 21.8% [21]. Interestingly, the increase in BMI among Chinese adults has slowed down
233	during past decades [2]. In this study, we did not observe an increase in BMI and prevalence of
234	obesity defined by the Chinese obesity standards or by WHO criteria (data not shown). Instead, we
235	observed a significant increase in WC, a measure of central obesity between surveys. Our
236	observation of increased WC in Chinese adults, without a concomitant increase in BMI, represents
237	an increasing burden of central obesity in this population. The increase in central obesity indicates
238	an upward trend in body fat percentages in the population who have been previously observed with
239	higher body fat percentages compared to other ethnic people with the same BMI [22 23].
240	Both epidemics of overall and central obesity parallel a continuously increasing prevalence of
241	hypertension and T2DM in China [21]. Several studies indicate that overall obesity (BMI) is more
242	strongly associated with hypertension, while central obesity (WC) is more strongly associated with
243	T2DM [17 24-26]. The rationale for these associations is based on the notion that central obesity
244	reflects specific accumulation of visceral adipose tissue. Excess visceral adipose tissue is
245	metabolically unfavorable due to productions of free fatty acids and inflammatory mediators.
246	Overall obesity, on the other hand, represents a greater overall physiologic strain and effects
247	vascular and cardiac parameters more significantly. In this study, we observed a significant increase
248	in prevalence of T2DM regardless of gender or age groups, which was more pronounced than the
249	change in the prevalence of hypertension during the period of 2002-03 and 2009. We also observed
250	a closer association of central obesity with the prevalence of T2DM than with the prevalence of
251	hypertension. These results support the notion that central obesity in particular is a stronger risk
252	factor for T2DM than for hypertension in Chinese adults. Due to the cross-sectional design,

however, our study was unable to make a causal inference.

The nature of the cross-sectional study design limits our ability to directly evaluate the influence of overall and central obesity as well as the change of their prevalence on the risk of hypertension and T2DM. The differences in several demographic characteristics between the participants of the two surveys indicate the changes in general population over time. However, selection bias could not be excluded. There are several strengths in this study, including the strict process of multistage sampling in adult population in Shanghai, anthropometric measurement according to a standardized protocol and fasting and postprandial blood glucose tests for the participants.

Conclusions

In summary, this study describes the potential association of central obesity with an upward trend of T2DM. Our findings provide useful information about the growing burden of type 2 diabetes and hypertension in Chinese adults and suggest the need for further study in other rapidly changing populations in China.

268 Acknowledgements

We thank Dr. Xiao-ou Shu and Dr. Hui Cai of Vanderbilt University for their contributions in study design and data analysis. The authors thank the study participants of the two cross-sectional surveys and the healthcare workers in each community involved.

272 Footnotes

Contributors YR and MM contributed to data collection, data analysis and draft of the paper. 274 YR, YYL, QDY, and LS contributed to data collection and quality control. LJM contributed to 275 revision of the paper. HZ contributed to data clean and analysis. RL and WHX contributed to study 276 design, statistical analysis and revision of the paper. All authors contributed to the interpretation of 277 data and revision of the manuscript. All authors approved the final version.

BMJ Open

1 2	278	Funding This study was supported by the Key Program of Shanghai Municipal Committee of
3 4	279	Science and Technology (04 DZ19502), the Shanghai Medical Development Program (01ZD001)
5 6 7	280	and the Shanghai Municipal Health Bureau (GWDTR201204). W. H. Xu was supported by a
8 9	281	training grant from the Fogarty International Center (D43 TW008313 to X. O. Shu). The funders
10 11	282	had no role in study design, data collection or analysis, decision to publish, or preparation of the
12 13	283	manuscript.
14 15 16	284	Conflict of Interest: None declared.
$\begin{array}{c} 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 45\\ 36\\ 37\\ 38\\ 940\\ 41\\ 243\\ 445\\ 46\\ 78\\ 95\\ 51\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ \end{array}$	285	Conflict of Interest: None declared.

1 2 3	286	REFERENCES
4	287	1. Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes
5	288	(Lond) 2008; 32 (9):1431-7 doi: ijo2008102 [pii]
6 7	289	10.1038/ijo.2008.102[published Online First: Epub Date] .
8	290	2. Popkin BM. Recent dynamics suggest selected countries catching up to US obesity. Am J Clin Nutr
9	291	2010;91(1):284S-88S doi: ajcn.2009.28473C [pii]
10 11	292	10.3945/ajcn.2009.28473C[published Online First: Epub Date] .
12	293	3. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res
13	294	Clin Pract 2010;87(1):4-14 doi: S0168-8227(09)00432-X [pii]
14	295	10.1016/j.diabres.2009.10.007[published Online First: Epub Date] .
15 16	296	4. Hu FB. Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes care 2011;34(6):1249-57 doi:
17	297	10.2337/dc11-0442[published Online First: Epub Date] .
18	298	5. Wu YK, Lu CQ, Gao RC, Yu JS, Liu GC. Nation-wide hypertension screening in China during 1979-1980. Chin Med
19	299	J (Engl) 1982; 95 (2):101-8
20 21	300	6. Wu X, Duan X, Gu D, Hao J, Tao S, Fan D. Prevalence of hypertension and its trends in Chinese populations. Int J
22	301	Cardiol 1995;52(1):39-44 doi: 016752739502443Z [pii][published Online First: Epub Date] .
23	302	7. Wu Y, Huxley R, Li L, et al. Prevalence, awareness, treatment, and control of hypertension in China: data from the
24 25	303	China National Nutrition and Health Survey 2002. Circulation 2008;118(25):2679-86 doi:
26	304	10.1161/CIRCULATIONAHA.108.788166
27	305	118/25/2679 [pii][published Online First: Epub Date] .
28	306	8. [A mass survey of diabetes mellitus in a population of 300,000 in 14 provinces and municipalities in China (author's
29 30	307	transl)]. Zhonghua Nei Ke Za Zhi 1981; 20 (11):678-83
31	308	9. Wang K, Li T, Xiang H. [Study on the epidemiological characteristics of diabetes mellitus and IGT in China].
32	309	Zhonghua Liu Xing Bing Xue Za Zhi 1998;19(5):282-5
33 34	310	10. Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China. The New England journal of
34 35	311	medicine 2010; 362 (12):1090-101 doi: 10.1056/NEJMoa0908292[published Online First: Epub Date]].
36	312	11. Nyamdorj R, Qiao Q, Lam TH, et al. BMI compared with central obesity indicators in relation to diabetes and
37	313	hypertension in Asians. Obesity (Silver Spring) 2008; 16 (7):1622-35 doi: 10.1038/oby.2008.73
38 39	314	oby200873 [pii][published Online First: Epub Date]].
40	315	12. Ostchega Y, Hughes JP, Terry A, Fakhouri TH, Miller I. Abdominal obesity, body mass index, and hypertension in
41	316	US adults: NHANES 2007-2010. Am J Hypertens 2012; 25 (12):1271-8 doi: 10.1038/ajh.2012.120
42 43	317 318	ajh2012120 [pii][published Online First: Epub Date] .
44	319	 Barrett-Connor E. Epidemiology, obesity, and non-insulin-dependent diabetes mellitus. Epidemiol Rev 1989;11:172-81
45	320	14. Weber MB, Oza-Frank R, Staimez LR, Ali MK, Narayan KM. Type 2 diabetes in Asians: prevalence, risk factors,
46	320 321	and effectiveness of behavioral intervention at individual and population levels. Annu Rev Nutr
47 48	322	2012; 32 :417-39 doi: 10.1146/annurev-nutr-071811-150630[published Online First: Epub Date]].
49	323	15. Lu B, Yang Y, Song X, et al. An evaluation of the International Diabetes Federation definition of metabolic
50	324	syndrome in Chinese patients older than 30 years and diagnosed with type 2 diabetes mellitus. Metabolism
51 52	325	2006; 55 (8):1088-96 doi: S0026-0495(06)00138-7 [pii]
52 53	326	10.1016/j.metabol.2006.04.003[published Online First: Epub Date]].
54	327	16. Tseng CH. Body mass index and waist circumference as determinants of coronary artery disease in Taiwanese adults
55	328	with type 2 diabetes mellitus. Int J Obes (Lond) 2006; 30 (5):816-21 doi: 0803218 [pii]
56 57	329	10.1038/sj.ijo.0803218[published Online First: Epub Date]].
58	330	17. Feng RN, Zhao C, Wang C, et al. BMI is strongly associated with hypertension, and waist circumference is strongly
59 60	331	associated with type 2 diabetes and dyslipidemia, in northern Chinese adults. Journal of epidemiology / Japan

1	222	
2	332	Epidemiological Association 2012; 22 (4):317-23
3 4	333	18. Wildman RP, Gu D, Muntner P, et al. Trends in overweight and obesity in Chinese adults: between 1991 and
5	334	1999-2000. Obesity (Silver Spring) 2008;16(6):1448-53 doi: oby2008208 [pii]
6	335	10.1038/oby.2008.208[published Online First: Epub Date] .
7	336	19. Zhou BF. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in
8	337	Chinese adultsstudy on optimal cut-off points of body mass index and waist circumference in Chinese adults.
9	338	Biomed Environ Sci 2002;15(1):83-96
10 11	339	20. Wang H, Du S, Zhai F, Popkin BM. Trends in the distribution of body mass index among Chinese adults, aged 20-45
12	340	years (1989-2000). Int J Obes (Lond) 2007; 31 (2):272-8 doi: 0803416 [pii]
13	341	10.1038/sj.ijo.0803416[published Online First: Epub Date] .
14	342	21. Wang Y, Mi J, Shan XY, Wang QJ, Ge KY. Is China facing an obesity epidemic and the consequences? The trends in
15	343	obesity and chronic disease in China. Int J Obes (Lond) 2007; 31 (1):177-88 doi: 0803354 [pii]
16	344	10.1038/sj.ijo.0803354[published Online First: Epub Date]].
17 18		
19	345	22. Wang J, Thornton JC, Burastero S, et al. Comparisons for body mass index and body fat percent among Puerto
20	346	Ricans, blacks, whites and Asians living in the New York City area. Obes Res 1996;4(4):377-84
21	347	23. Araneta MR, Wingard DL, Barrett-Connor E. Type 2 diabetes and metabolic syndrome in Filipina-American
22	348	women : a high-risk nonobese population. Diabetes Care 2002;25(3):494-9
23	349	24. Jacobs EJ, Newton CC, Wang Y, et al. Waist circumference and all-cause mortality in a large US cohort. Archives of
24 25	350	internal medicine 2010;170(15):1293-301 doi: 10.1001/archinternmed.2010.201[published Online First: Epub
26	351	Date] .
27	352	25. InterAct C, Langenberg C, Sharp SJ, et al. Long-term risk of incident type 2 diabetes and measures of overall and
28	353	regional obesity: the EPIC-InterAct case-cohort study. PLoS medicine 2012;9(6):e1001230 doi:
29	354	10.1371/journal.pmed.1001230[published Online First: Epub Date]].
30 31	355	26. Li R, Shi L, Jia J, et al. Differentiating the Associations of Waist Circumference and Body Mass Index With
32	356	Cardiovascular Disease Risk in a Chinese Population. Asia-Pacific journal of public health / Asia-Pacific
33	357	Academic Consortium for Public Health 2012 doi: 10.1177/1010539512465306[published Online First: Epub
34	358	
35		Date] .
36	359 360	Date] .
37 38	500	
39		
40		
41		
42		
43 44		
44 45		
46		
47		
48		
49 50		
50 51		
52		
53		
54		
55		
56 57		
58		
59		
60		

- . eriod of the r.

 . gopdation-based surveys

 Figure 2. Non-linear dose-response relationship of BMI and WC with hypertension and T2DM
- among participants of the two population-based surveys

BMJ Open

		1 st su	rvey	2 ⁿ	^d survey	P-value between surveys		
	Characteristics	Men	Women	Men	Women	T		
		(N=5,050)	(N=7,279)	(N=3,461)	(N=3,962)	In men	In women	
-	Age (yrs., mean ± SD)	54.8 ± 10.8	53.1 ± 10.3	54.7 ± 9.5	54.7 ± 9.1	0.55	< 0.0001	
	Resident site (%)							
	Urban	71.1	63.0	72.4	72.0			
	Rural	29.0	37.0	27.7	28.0	0.19	<0.0001	
	Education (%)							
	No formal education	4.1	18.4	3.2	9.5			
	Primary school	18.2	23.0	14.7	17.7			
	Middle school	35.3	31.1	45.7	45.2			
	High school	27.6	22.6	27.6	23.8			
	Colleague or above	14.8	4.9	8.8	3.9	0.0025	<0.0001	
	Per capita income (yuan/mo.) (%)							
	<1000	37.0	45.5	4.9	4.0			
	1000-2999	38.3	38.4	41.8	46.7			
	3000-5000	22.5	17.9	33.2	33.3			
	>5000	2.2	1.3	20.0	16.0	<0.0001	<0.0001	
	Family history of type 2diabetes	12.3	13.1	16.4	19.0	<0.0001	<0.0001	
	Prevalence of type 2diabetes (%)	13.6	10.3	17.4	14.1	<0.0001	<0.0001	
	Prevalence of hypertension (%)	34.8	28.3	41.8	37.1	<0.0001	<0.0001	
	Cigarette smoking (%)	61.4	1.7	62.6	1.8	0.22	0.93	
	Alcohol drinking (%)	40.4	2.4	54.0	5.0	<0.0001	<0.0001	
	Leisure-time activity (%)	13.3	13.1	10.8	9.0	0.0009	<0.0001	

Table 1. Characteristics of participants in two population-based surveys in Shanghai, China

	No. of s			l Obesity	APC	Centra	al obesity	APC		rtension	APC		diabetes	APC
	1 st survey	2 nd survey	1 st survey	2 nd survey	(%)	1 st survey	2 nd survey	(%)	1 st survey	2 nd survey	(%)	1 st survey	2 nd survey	(%)
Men														
Overall	5050	3461	11.7	11.9	0.21	46.3	53.8	2.35	34.8	41.8	2.87	13.6	17.4	3.78
Age-groups														
35-	414	230	10.5	9.1	-2.11	41.8	45.2	1.22	15.2	11.7	-3.92	4.6	5.7	3.25
40-	574	302	10.0	8.3	-2.83	41.8	47.00	1.85	22.5	21.9	-0.43	7.8	7.6	-0.44
45-	837	445	12.6	12.6	-0.04	44.0	53.7	3.12	25.3	31.0	3.16	7.8	13.7	9.13
50-	833	739	12.2	10.8	-1.76	44.1	53.8	3.12	33.1	40.3	3.07	12.7	18.3	5.72
55-	628	669	10.4	13.2	3.78	47.3	54.6	2.25	35.4	45.6	3.99	15.0	17.9	2.82
60-	507	513	10.5	15.4	6.18	48.7	56.1	2.19	44.6	51.7	2.29	15.6	20.1	3.98
65-	674	313	12.6	11.8	-0.99	51.4	61.0	2.67	49.4	59.4	2.88	20.8	26.2	3.64
70-	583	250	13.8	9.6	-5.40	51.1	54.0	0.85	50.9	65.2	3.87	24.2	25.6	0.88
Women														
Overall	7279	3962	13.8	13.8	0.02	41.7	54.2	4.10	28.3	37.1	4.28	10.3	14.1	4.84
Age-groups														
35-	615	251	7.5	7.2	-0.65	22.6	26.3	2.35	6.8	10.8	7.24	3.3	4.0	3.17
40-	1000	287	9.4	11.2	2.66	27.6	38.0	5.05	11.7	15.7	4.61	4.1	5.9	5.81
45-	1491	563	11.0	9.8	-1.82	32.3	42.6	4.38	19.3	23.5	3.03	5.8	8.7	6.32
50-	1309	866	15.1	14.1	-1.00	43.9	54.0	3.24	28.7	31.0	1.16	8.3	9.4	1.94
55-	838	818	15.7	13.6	-2.17	47.5	60.6	3.83	33.9	39.7	2.48	8.8	15.3	8.80
60-	610	585	19.2	18.1	-0.87	53.5	63.1	2.58	40.5	52.8	4.17	16.7	19.2	2.11
65-	799	327	18.0	18.4	0.28	59.0	66.1	1.76	48.4	59.3	3.17	23.7	27.8	2.54
70-	617	265	18.2	16.6	-1.36	60.2	68.7	2.05	51.4	64.5	3.57	21.4	27.2	3.75
All subjects														
Overall	12329	7423	13.0	12.9	-0.05	43.6	54.0	3.35	31.0	39.3	3.75	11.7	15.6	4.53
Age-groups ^a														
35-	1029	481	8.7	8.0	-1.04	30.3	33.9	2.39	10.2	11.2	1.49	3.8	4.7	3.63
40-	1574	589	9.6	10.1	0.11	32.7	41.3	4.14	15.6	17.9	2.92	5.5	6.5	3.41
45-	2328	1008	11.6	10.8	-0.77	36.5	46.6	4.16	21.5	26.2	3.46	6.5	10.5	8.22
50-	2142	1605	13.9	12.8	-1.53	44.0	53.9	3.19	30.4	34.6	0.90	10.0	12.8	4.69
55-	1466	1487	13.4	13.4	0.01	47.4	58.1	3.13	34.5	42.2	3.20	11.5	16.4	5.75
60-	1117	1098	15.2	16.9	1.59	51.3	59.9	2.39	42.4	52.3	3.29	16.2	19.6	2.96
65-	1473	640	15.6	15.4	-0.39	55.5	63.8	2.11	48.9	59.4	3.04	22.3	27.1	2.98
70-	1200	515	16.0	13.2	-2.94	55.8	61.5	1.52	51.2	64.9	3.71	22.8	26.4	2.32

^a adjusted for sex according to the distribution in the first survey.

Page 19 of 46

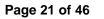
BMJ Open

Table 3. Association of body size with hypertension and type 2 diabetes in two population-based surveys in

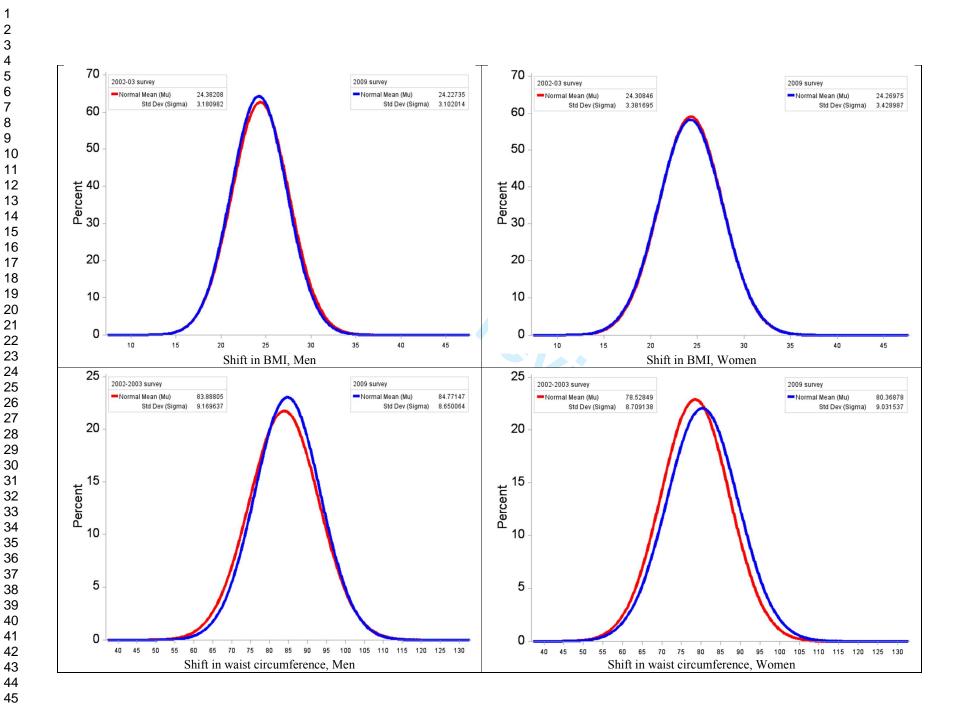
Shanghai, China

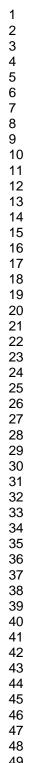
	No. of subjects with		e 2 diabetes only	Hy	pertension only		Both		
	neither diseases	Ν	OR (95%CI)	Ν	OR (95%CI)	Ν	OR (95%CI)		
BMI resid	luals								
Men									
Q1	1260	156	1.00	529	1.00	175	1.00		
Q2	1224	142	0.99 (0.77, 1.27)	583	1.16 (1.00, 1.34)	172	1.11(0.87, 1.41)		
Q3	1164	132	1.09 (0.84, 1.41)	651	1.50 (1.29, 1.74)	171	1.36(1.07, 1.73)		
Q4	1079	123	1.16 (0.88, 1.51)	709	1.85 (1.59, 2.15)	207	1.95(1.54, 2.47)		
	P for trend		0.2472		<0.0001		<0.0001		
Women	·								
Q1	1816	166	1.00	600	1.00	223	1.00		
Q2	1866	148	1.02 (0.80, 1.29)	629	1.29 (1.12, 1.48)	162	0.96(0.77, 1.21)		
Q3	1835	125	0.89 (0.69, 1.15)	687	1.51 (1.31, 1.73)	158	1.03(0.82, 1.31)		
Q4	1634	109	0.94 (0.73, 1.23)	847	2.23 (1.94, 2.57)	215	1.85(1.15, 2.98)		
	P for trend		0.4864		<0.0001		0.0067		
All subje									
Q1	3048	330	1.00	1162	1.00	385	1.00		
Q2	3079	282	1.00 (0.84, 1.19)	1200	1.22 (1.11, 1.35)	363	1.03(0.87, 1.22)		
Q3	2998	278	0.98 (0.82, 1.18)	1346	1.50 (1.36, 1.67)	302	1.18(1.00, 1.40)		
Q4	2753	211	1.04 (0.86, 1.26)	1527	2.05 (1.85, 2.27)	433	1.88(1.60, 2.21)		
	P for trend		0.2280		<0.0001		<0.0001		
	v								
WC residu	uals								
Men									
Q1	1376	102	1.00	531	1.00	111	1.00		
Q2	1232	131	1.34 (1.02, 1.78)	601	1.23 (1.06, 1.42)	155	1.41(1.07, 1.84)		
Q3	1130	148	1.39 (0.70, 2.77)	644	1.39 (1.20, 1.62)	197	1.73(1.33, 2.25)		
Q4	989	172	1.75 (1.33, 2.30)	696	1.57 (1.35, 1.82)	262	2.25(1.74, 2.90)		
	P for trend		<0.0001		<0.0001		<0.0001		
Women	·								
Q1	2019	80	1.00	598	1.00	108	1.00		
Q2	1935	102	1.17 (0.86, 1.59)	651	1.04 (0.91, 1.18)	117	0.94(0.71, 1.25)		
Q3	1708	172	2.04 (1.54, 2.70)	732	1.14 (0.99, 1.30)	194	1.40(1.08,1.82)		
Q4	1489	194	2.37 (1.78, 3.15)	782	1.13 (0.98, 1.30)	339	2.06(1.26, 3.38)		
Ϋ́	<i>P</i> for trend	171	<0.0001	702	0.0216	557	<0.0001		
All subje			0.0001		0.0210		0.0001		
Q1	3453	161	1.00	1109	1.00	203	1.00		
Q2	3192	260	1.26 (0.99, 1.60)	1211	1.12 (1.01, 1.23)	260	1.16(0.82, 1.62)		
Q2 Q3	2838	301	1.66 (1.16, 2.36)	1373	1.12 (1.01, 1.25)	412	1.55(1.29, 1.87)		
Q3 Q4	2395	379	2.03 (1.66, 2.47)	1542	1.34 (1.09, 1.64)	608	2.18(1.83, 2.61)		
~ 7	<i>P</i> for trend	517	0.0001	1074	0.0021	000	<0.0001		

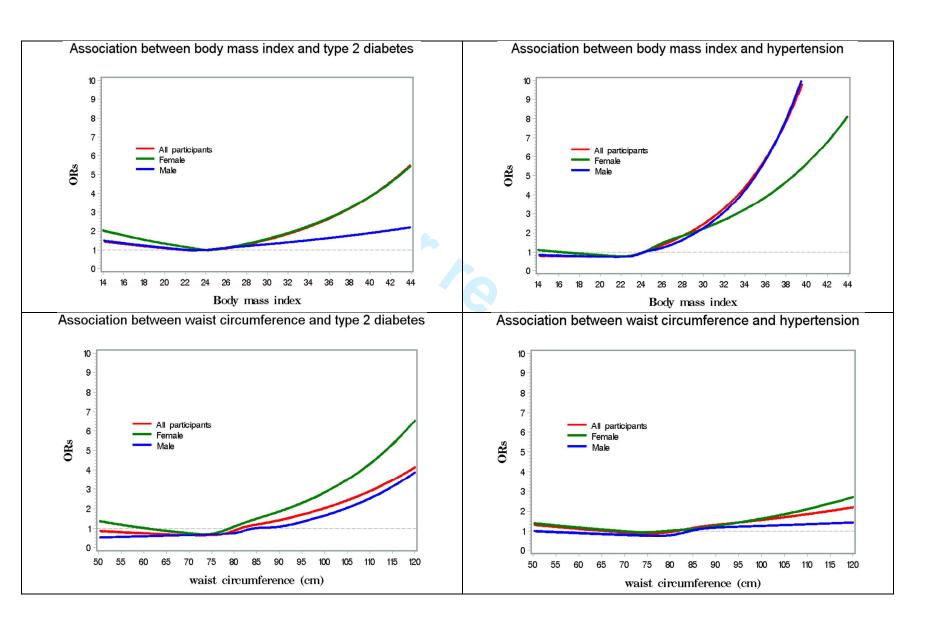
Missing value excluded from the analysis.


OR: Adjusted for age (continuous variable), education (no formal education, primary school, middle school, high school, colleague or above, dummy variables), per capita income (<1000, 1000-2999, 3000-5000 and >5000 RMB Yuan / month, dummy variables), resident site (urban/rural area), family history of type 2 diabetes (yes/no), smoking (ever/never), alcohol drinking (ever/never), regular exercise (never/ever), phase of study (first /second survey); Additionally adjusted for sex (male/female) for all subjects.

	WC: Lower				WC: Higher		OR (95%CI) fo	or hypertension	OR (95%CI) for type 2 diabetes		
BMI	No. of subjects	Hypertension N (%)	Diabetes N (%)	No. of subjects	Hypertension N (%)	Diabetes N (%)	WC: Lower	WC: Higher	WC: Lower	WC: Higher	
Men											
<18.5	212	36	20	16	10	6	0.61(0.42, 0.89)	3.68(1.28, 10.59)	1.02(0.62, 1.67)	3.77(1.13, 12.56)	
18.5-23.9	3034	767	296	679	249	111	1.00	1.56(0.94, 2.57)	1.00	1.48(1.15, 1.90)	
24.0-27.9	1010	356	134	2530	1179	483	1.61(1.13, 2.32)	2.38(1.78, 3.17)	1.46(1.16, 1.83)	1.85(1.16, 2.96)	
≥28.0	36	20	4	960	580	224	3.91(1.95, 7.82)	4.67(3.97, 5.49)	1.71(0.55, 5.37)	2.60(2.12, 3.18)	
					P fo	r interaction	0.0	711	0.0	933	
Women											
<18.5	313	51	19	8	2	1	0.68(0.49, 0.94)	0.85(0.16, 4.51)	0.93(0.56, 1.54)	2.45(0.22, 26.72)	
18.5-23.9	4323	821	265	974	314	165	1.00	1.48(1.26, 1.75)	1.00	2.36(1.89, 2.94)	
24.0-27.9	1330	384	93	2724	1102	437	1.84(1.59, 2.14)	2.21(1.97, 2.49)	1.19(0.92, 1.53)	2.14(1.81, 2.54)	
≥28.0	81	32	9	1467	815	317	3.10(1.93, 5.00)	4.33(3.77, 4.96)	2.14(1.01, 4.52)	3.08(2.56, 3.71)	
					P fo	r interaction	0.3.	524	0.4	011	
Total											
<18.5	525	87	39	24	12	7	0.65(0.51, 0.83)	2.25(0.85, 5.93)	0.97(0.68, 1.39)	3.45(1.18, 10.12	
18.5-23.9	7357	1588	561	1653	563	276	1.00	1.52(1.25, 1.85)	1.00	1.88(1.42, 2.49)	
24.0-27.9	2340	740	227	5254	2281	920	1.74(1.50, 2.03)	2.31(2.03, 2.62)	1.33(1.12, 1.58)	1.99(1.62, 2.45)	
≥28.0	117	5	13	2427	1395	541	3.34(2.26, 4.94)	4.46(4.02, 4.96)	2.00(1.07, 3.74)	2.85(2.49, 3.27)	
					P fo	r interaction	0.0	562	0.0	798	


Higher WC defined as ≥ 85 cm for men and ≥ 80 cm for women


 OR: Adjusted for age (continuous variable), education (no formal education, primary school, middle school, high school, colleague or above, dummy variables), per capita income (<1000, 1000-2999, 3000-5000 and >5000 RMB Yuan / month, dummy variables), resident site (urban/rural area), family history of type 2 diabetes (yes/no),


smoking (ever/never), alcohol drinking (ever/never), regular exercise (never/ever), and phase of study (first /second survey).

BMJ Open

 For Deer review only

	Item No	Recommendation	Results of check
Title and abstract	1	(<i>a</i>) Indicate the study's design with a	We have indicated that the study was
		commonly used term in the title or	based on two population-based cross-
		the abstract	sectional surveys in the title and the
			abstract
		(b) Provide in the abstract an	Line 53-62
		informative and balanced summary of	Ene 33-02
		what was done and what was found	
		what was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and	Line 72-87
		rationale for the investigation being	
		reported	
Objectives	3	State specific objectives, including	Line 89-92
		any prespecified hypotheses	
Methods			
Study design	4	Present key elements of study design	Line 95-104
		early in the paper	
Setting	5	Describe the setting, locations, and	Line 95-104
betting	5	relevant dates, including periods of	
		recruitment, exposure, follow-up, and	
		data collection	
D	(1. 05.104
Participants	6	(a) Give the eligibility criteria, and	Line 95-104
		the sources and methods of selection	
		of participants	
Variables	7	Clearly define all outcomes,	Line 117-153
		exposures, predictors, potential	
		confounders, and effect modifiers.	
		Give diagnostic criteria, if applicable	
Data sources/ measurement	8*	For each variable of interest, give	Line 117-153
		sources of data and details of	
		methods of assessment	
		(measurement). Describe	
		comparability of assessment methods	
		if there is more than one group	
Bias	9	Describe any efforts to address	Line 117-153
		potential sources of bias	
Study size	10	Explain how the study size was	NA
		arrived at	
Quantitative variables	11	Explain how quantitative variables	Line 155-169
Zuminanive variables	11	were handled in the analyses. If	Line 155-107
		applicable, describe which groupings	
	10	were chosen and why	1. 155.160
Statistical methods	12	(a) Describe all statistical methods,	Line 155-169
		including those used to control for	
		confounding	
		(b) Describe any methods used to	Line 166-167

		examine subgroups and interactions	
		(c) Explain how missing data were	There were very few missing data in
		addressed	this study. Please see footnote of the
			Table 3
		(<i>d</i>) If applicable, describe analytical	
		methods taking account of sampling	
		strategy	
		(<u>e</u>) Describe any sensitivity analyses	No
Results			
Participants	13*	(a) Report numbers of individuals at	Line 95-105
		each stage of study—eg numbers	
		potentially eligible, examined for	
		eligibility, confirmed eligible,	
		included in the study, completing	
		follow-up, and analysed	
		(b) Give reasons for non-participation	No information
		at each stage	
		(c) Consider use of a flow diagram	No
Descriptive data	14*	(a) Give characteristics of study	Line 172-177, and Table 1
Descriptive data	14	participants (eg demographic,	Line 172-177, and Table 1
		clinical, social) and information on	
		exposures and potential confounders	
		(b) Indicate number of participants	Yes, we provide number of subjects
			for each variable of interest (Please
		with missing data for each variable of interest	see tables)
Outcome data	15*	Report numbers of outcome events or	Yes (Please see tables)
Outcome data	15	summary measures	res (riease see tables)
Main results	16	(<i>a</i>) Give unadjusted estimates and, if	No. Due to the large table, we presen
Ivialii results	10	applicable, confounder-adjusted	only adjusted ORs
		estimates and their precision (eg,	only adjusted OKS
		95% confidence interval). Make clear	
		which confounders were adjusted for	
		and why they were included	
		(b) Report category boundaries when	Yes (Please see table 4)
		continuous variables were	res (riease see table 4)
		categorized	
		(c) If relevant, consider translating	NA
		estimates of relative risk into absolute	NA
Other analyzag	17	risk for a meaningful time period Report other analyses done—eg	Line 210-217
Other analyses	17	analyses of subgroups and	Line 210-21/
		interactions, and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference	Line 219-224
		to study objectives	
Limitations	19	Discuss limitations of the study,	Line 253-259
		taking into account sources of	

		potential bias or imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	Line 251-252
Generalisability	21	Discuss the generalisability (external validity) of the study results	Line 263-264
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	Line 275-280

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

Page 27 of 46

BMJ Open

2	1	Increased Waist Circumference and Prevalence of Type 2 Diabetes and Hypertension in
3 4	2	Chinese Adults: Two Population-based Cross-sectional Surveys in Shanghai, China
5 6	3	
7 8 9	4	Ye Ruan, MD, PhD ¹ , Miao Mo, MD ² , Lisa Joss-Moore, PhD ³ , Yan Yun Li, MD ¹ , Qun Di Yang,
10 11	5	MD, MPH ¹ , Liang Shi, MD ¹ , Hua Zhang, MD ² , Rui Li, MD ^{1*} , Wang Hong Xu, MD, PhD ^{2*}
12 13	6	
14 15 16	7	AFILIATIONS:
17 18	8	¹ Department of Diabetes Prevention and Control, Shanghai Municipal Center for Disease Contro
19 20	9	and Prevention, 1380 Zhong Shan Xi Road, Shanghai, 200336, People's Republic of China
21 22	10	² Department of Epidemiology, School of Public Health, Fudan University; Key Laboratory of
23 24	11	Public Health Safety, Ministry of Education (Fudan University), 138 Yi Xue Yuan Road, Shang
25 26 27	12	200032, People's Republic of China
28 29	13	³ Division of Neonatology, University of Utah, Salt Lake City, Utah 84108, USA
30 31	14	
32 33	15	Correspondence to:
34 35 36	16	Correspondence to: Wang Hong Xu, MD, Ph.D, Associate professor
37 38	17	Associate professor
39 40	18	Department of Epidemiology
41 42	19	School of Public Health
43 44 45	20	School of Public Health Fudan University
46 47	21	138 Yi Xue Yuan Road
48 49	22	Shanghai 200032
50 51	23	P. R. China
52 53 54	24	Tel: 86-21-54237679
55 56	25	Fax: 86-21-54237334
57 58 59 60	26	Email: wanghong.xu@fudan.edu.cn

2	27	
3 4 5	28	or
6 7	29	Rui Li, MD
8 9	30	Department of Diabetes Prevention and Control
10 11	31	Shanghai Municipal Center for Disease Control and Prevention
12 13 14	32	1380 Zhong Shan Xi Road
15 16	33	Shanghai 200336
17 18	34	P. R. China
19 20	35	Tel: 86-21-62758710
21 22 23	36	Email: rli@scdc.sh.cn
23 24 25	37	
26 27	38	RUNNING HEADER : Obesity and prevalence of hypertension and T2DM in Chinese adults
28 29	39	
30 31 22	40	Word Count:
32 33 34	41	Abstract: 249
35 36	42	Text: 2,658
37 38	43	
39 40		
41 42		
42 43		
44		
45 46		
40 47		
48		
49		
50		
51		
52 53		
53 54		
55		
56		
57		
58 50		
59 60		

Page 29 of 46

BMJ Open

44	Abstract:
45	Objective: To evaluate the changes in body mass index (BMI) and waist circumference (WC)
46	and their associations with the prevalence of hypertension and type 2 diabetes (T2DM) in Chinese
47	adults.
48	Design: Two consecutive population-based cross-sectional surveys.
49	Setting: A total of 12 districts and 7 counties in Shanghai, China.
50	Participants: 12,329 randomly selected participants of the survey in 2002-2003, and 7,423
51	randomly selected participants of the survey in 2009. All subjects were residents of Shanghai aged
52	35-74 years old.
53	Outcome measures: Measured BMI and WC. Previously-diagnosed and newly-identified
54	hypertension and T2DM by measured blood pressure, fasting and post-load glucose.
55	Results: While the participants of the two surveys were comparable in BMI in each age group,
56	the participants of the 2009 survey had significantly larger WC than those of the 2002-03 survey,
57	with an annual percentage change (APC) being higher among subjects aged 45-49 years old in both
58	men and women. The increase in prevalence of T2DM was observed in all age groups and also
59	appeared more evident in subjects aged 45-49 years old. The prevalence of hypertension was
60	observed to increase more rapidly in elderly men and middle-aged women. Obesity, both overt and
61	central, was associated with the risk of the two diseases, but BMI was more strongly linked to
62	hypertension while WC appeared more evidently related with T2DM.
63	Conclusion: The prevalence of central obesity and related chronic diseases has been
64	increasing in Shanghai, China. Our findings provide useful information for the projection of
65	growing burden of T2DM and hypertension in Chinese adults.
66	
67	Keywords: type 2 diabetes; hypertension; prevalence; body mass index; waist circumference

Article summary

Article focus

- The shift in BMI and WC among Chinese adults over past one decade.
- The contribution of changes in overall and central obesity to the increasing burden of chronic disease in China.

Key messages

- The WC increased in Chinese adults over the decade spanning 2002-2009, while BMI did not change over the same period.
- BMI was more strongly linked to hypertension while WC appeared more evidently related with T2DM in Chinese adults.
- Our findings provide useful information for the projection of a growing burden of T2DM and hypertension in Chinese adults.

Strengths and limitations of this study

- The strengths of this study include the strict process of multistage sampling in adult population of Shanghai, anthropometric measurement according to a standardized protocol and fasting and postprandial blood glucose tests for the participants.
- The nature of the cross-sectional study design limits our ability to directly evaluate the influence of overall and central obesity as well as the change of their prevalence on the risk of hypertension and T2DM.
- The differences in several demographic characteristics between the participants of the two surveys indicate the possibility of selection bias.

BMJ Open

2 3	71	Introduction
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	72	A rising worldwide prevalence of chronic disease, manifested primarily as hypertension and
	73	type 2 diabetes (T2DM), has been well documented [1-4]. In Chinese aged 15-74 years old, the
	74	prevalence of hypertension increased from 5.11% in 1959, 7.73% in 1979 [5] and 13.58% in 1991[6]
	75	to 17.65% in 2002 [7]. The prevalence of T2DM tripled between 1980 (about 1.0%) and 1996
	76	(3.2%) [8 9], and reached 9.7% in 2008 among adults at 20 years old or above [10]. It is estimated
	77	that over 92 million people in China have T2DM. This represents approximately half of the world's
	78	diabetic population, and places China at the "global epicenter of the diabetes epidemic" [4].
20 21	79	Both hypertension and T2DM are associated with obesity [11 12]. Obesity is often measured
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	80	by body mass index (BMI). Across the entire range of BMI, the risk of hypertension and T2DM
	81	increases, making a higher BMI a strong predictor of both hypertension and T2DM [4 12-14].
	82	However, a significant proportion of Asian adults diagnosed with T2DM are with the normal BMI,
	83	ie.18.5-25.0 kg/m ² [15 16]. BMI is a general indicator of overt obesity, but does not give
	84	information about the distribution of obesity. Central obesity, often assessed via waist
	85	circumference (WC), is also strongly correlated with T2DM in both European and Asian adults [11
	86	17]. While changes in BMI have been well documented in China over past several decades [2 18],
37 38 39	87	changes in WC, and thus central obesity, are not well described.
40 41	88	In this study, we took advantage of the data from population based cross-sectional surveys
42 43	89	conducted in Shanghai in 2002-03 and in 2009. We used the data from the two surveys to evaluate
44 45	90	correlations between shifts in BMI and WC with the prevalence of hypertension and T2DM in
46 47	91	Chinese adults. Our results may help to better understand the contribution of overall obesity and
48 49 50	92	central obesity in the increasing burden of chronic disease in China.
50 51 52		
52 53	93	Materials and Methods

Study Participants

A representative sample of the general population was randomly selected through a multistage sampling process in the 2002-03 survey. Firstly, 4 districts and 2 counties were randomly selected

from a total of 12 districts and 7 counties in Shanghai, China. And then, 1-2 sub-districts or towns were randomly selected from each selected district or county. Next, 1-2 communities or villages, usually 1,000-2,000 residents for each, were randomly selected from each selected sub-district or town. Finally, eligible subjects (permanent residents of Shanghai, 15-74 years old and having been in the city for at least 5 years) were randomly selected from the selected communities and villages and were invited for participation. Pregnant women, individuals with type I diabetes, and physically or mentally disabled persons were excluded from the participation. During the period of May 2002-October 2003, a total of 17,526 eligible subjects were recruited, and 14,401 (82.17%) participated the survey.

The 2009 survey used the similar sampling method except that only 7 communities and villages were randomly selected in the third stage of sampling. The inclusion and exclusion criteria of the 2009 survey were also similar to those for the 2002-03 survey, except that only those at the age of 35-74 years old were eligible for the 2009 survey. Among 7,627 eligible adults contacted during the period of May-July 2009, 7,414 (97.21%) were interviewed and donated blood samples. To make the two surveys comparable, we excluded 1,071 subjects younger than 35 years from the 2002-03 survey. After further excluding subjects with missing information, the final analysis included 5,050 men and 7,279 women in the 2002-03 survey and 3,461 men and 3,962 women in the 2009 survey. The Institutional Review Board at Shanghai Municipal Center of Disease Control and Prevention approved the study. Informed consent was obtained from each participant before data collection and laboratory measurements.

117 Data Collection

A similar survey approach was followed by the two investigations. In both surveys, information on demographic and socioeconomic factors, diagnosis of diabetes, tobacco and alcohol use, physical activity and family history of diabetes was collected by trained interviewers with a structured questionnaire at community clinics located in the residential areas of the participants. At the interview, each participant's blood pressure, body weight, standing height, and waist

BMJ Open

circumference (WC) were measured by trained staff. Blood pressure was measured on the right arm in the sitting position using standard mercury sphygmomanometer after at least 5 minutes of rest. The first and fifth Korotkoff sounds were recorded. Body weight and height were recorded while the subject was in light clothing and without shoes. Body weight was measured with electronic scales to the nearest 0.1 kg. Body height was measured to the nearest 0.1 cm by using a stadiometer. WC, recorded to the nearest 0.1 cm, was taken with a cloth tape and was measured on bare skin at the midline between the lower border of the ribs and the iliac crest in the horizontal plane after a normal expiration. Two measurements were taken and the mean of the replicates was used in the following analyses. Body mass index (BMI) was calculated as weight in kilograms divided by height in meters squared (kg/m^2) using the direct measurements.

133 Laboratory Measurements

After at least 10 hours of overnight fasting, 1-1.5 ml venous blood specimen was collected in a vacuum tube containing sodium fluoride. All participants with no history of diabetes and having a fasting plasma glucose level of < 7.0 mmol per liter (mmol/l) were then asked to have an oral glucose-tolerance test (OGTT). Blood samples were drawn at 0 and 120 minutes after a standard 75 gram glucose load. Plasma glucose was measured with Glucose oxidase-peroxidase (GOD-PAP) method.

140 Diagnosis of T2DM and Hypertension

Previously diagnosed T2DM and hypertension was identified by a positive response from the participant to the question of "Have you ever diagnosed with T2DM/hypertension by a doctor?" and confirmed by medical records in which prescriptions of anti-hypertensive or hypoglycemic medications were presented. The consistent rate was 100%. For those who had a negative response, the T2DM was diagnosed with measured glucose level by using the 1999 World Health Organization diagnostic criteria [Department of Noncommunicable Disease Surveillance. Definition, diagnosis and classification of diabetes mellitus and its complications: report of a WHO consultation. Part 1. Diagnosis and classification of diabetes mellitus. Geneva: World Health

149 Organization, 1999. (Accessed July 5, 2010, at_

150http://www.staff.ncl.ac.uk/philip.home/who_dmg.pdf] and hypertension referred to the subjects151with measured systolic blood pressure (SBP) \geq 140 mmHg or diastolic blood pressure (DBP) \geq 90152mmHg and confirmed by clinical visits. Total T2DM and hypertension included both previously153diagnosed and newly-diagnosed patients. 42.7% (1,110 of 2,598) diabetic patients and 10.3% (694154of 6,735) hypertensive patients were newly-diagnosed in the two surveys.

155 Statistical Analysis

SAS software 9.2 was used for all the statistical analyses. Characteristics of the subgroups were described using summary statistics (median, 25th and 75th percentile, frequencies, and percentages) separately for men and women. The differences between two surveys were compared using χ^2 test (category variables) and Wilcoxon tests (continuous variables). The annual percentage changes (APC) in prevalence between two surveys were calculated as (prevalence in 2009 – prevalence in 2002-03) / number of years using logarithms for each age group. Percentile curves were constructed for BMI and WC values in the two surveys by gender using the LMS (lambda, mu, sigma) method. Restricted cubic splines (RCS) were used to model a potential curvilinear relationship of BMI and WC with hypertension and diabetes using the 5th, 25th, 75th and 95th percentiles as fixed knots and the 50th percentile as the reference. Polynomial logistic regression were used to estimate the odds ratios (OR) and 95% confidence intervals (95% CI) of BMI and WC with T2DM and hypertension. Meta-analysis was applied to obtain the combined ORs and 95% CI considering the potential heterogeneity of the populations in the two surveys. The residual method was used to derive the independent effect of BMI and WC with each other in the models. P value less than 0.05 was considered as a test of significance based on two sides.

Results

The male participants in two studies were similar in age, resident site and cigarette smoking while the female participants were comparable in cigarette smoking (P > 0.05) (Table 1). Compared to the subjects in 2002-03 survey, the participants of 2009 survey, both men and women, had lower

BMJ Open

level of education, higher level of income per capita, more prior history of T2DM, higher frequency
of alcohol drinking and lower frequency of leisure time activity, and were more likely to have a
family history of diabetes.

Figure 1 shows the shapes of the BMI and WC distribution curves among men and women changed over the period of the two surveys. After adjusting for age, education, per capita income, resident site, smoking, drinking, regular exercise, and family history of T2DM, the curves of BMI were almost overlapped in both men and women. However, the WC curves for men and women were shifted to the right between 2002-03 and 2009, with the mean WC increasing from 83.6 to 85.3 cm for men and from 78.4 to 80.6 cm for women.

As presented in table 2, the prevalence of obesity, both overall and central, increased with increasing age groups. While the prevalence of overall obesity (BMI $\ge 28 \text{ kg/m}^2$) did not change between two surveys (all P values > 0.05), the prevalence of central obesity was significantly higher in 2009 survey in each age group (all P values < 0.001). A more pronounced increase in the prevalence of central obesity and T2DM was observed among subjects aged 45-49 years old in both men and women; whereas the change in the prevalence of hypertension between two surveys appeared more evident in older men and younger women over the period. Using the World Health Organization (WHO) criteria for obesity did not change the results substantially (data not shown in the tables).

BMI and WC were highly correlated with each other, with a correlation coefficient of 0.77 (P <(0.0001) among men and (0.78) ($P \le 0.0001$) among women after adjusting for age. Therefore, the residual method was used to test the potential respective non-linear relationships of BMI and WC with the risk of T2DM and hypertension (Figure 2). The dose-response analysis likewise showed a statistically significant increased risk of T2DM at high level of WC and a significant elevated risk of hypertension at high level of BMI in both men and women after adjusting for age, education, per capita income, resident site, smoking, alcohol consumption, regular exercise, family history of T2DM and phase of surveys, with P values for non-linear relationship tests < 0.05. No significant

relationship was observed between BMI and T2DM in men and between WC and hypertension in women. As shown in table 3, in both sexes, BMI adjusted for WC (residuals) appeared more strongly associated with hypertension while WC adjusted for BMI (residuals) was more evidently related with T2DM. Comparing with the lowest quartile of BMI residuals, the risk of hypertension increased 85% (95%CI: 1.59-2.15) in men and 1.23-fold (95%CI: 1.94-2.57) in women, whereas the risk of T2DM did not increase significantly in both sexes. On the other hand, the ORs of the highest versus the lowest quartile WC residuals for T2DM were 1.75 (95%CI: 1.33-2.30) in men and 2.37 (95%CI: 1.78-3.15) in women, higher than the OR of 1.57 (95%CI: 1.35-1.82) in men and 1.13 (95%CI: 0.98-1.30) in women for hypertension. We further evaluated the potential joint effect of BMI and WC on T2DM and hypertension (table 4). The participants were classified into normal weight (BMI 18.5-23.9 kg/m²), overweight $(24.0-27.9 \text{ kg/m}^2)$, or obese ($\geq 28 \text{ kg/m}^2$) based on data from Chinese adults, and were defined as with normal or increased WC using sex-specific cut-offs (85 cm in men and 80 cm in women) [19]. The risk of T2DM and hypertension increased across groups defined by BMI and WC, with the highest risk observed among men with the lowest BMI but a higher WC, and among those with the highest BMI and a higher WC for hypertension. However, no significant interaction was observed between BMI and WC (all *P* values for interaction tests > 0.05).

Discussion

In this representative sample of the adult population in Shanghai, the largest city in China, we observed an increased prevalence of central obesity, hypertension and T2DM over the decade spanning 2002-2009. In contrast, BMI did not change over the same period. Our results present a snapshot of overt versus central obesity in the Chinese population and suggest that the epidemic of central obesity in this population, which has been more closely associated with the prevalence of T2DM, may lead to a more rapidly growing burden of T2DM in China.

8 <u>226</u>

Chinese adults have lower rates of overweight and obesity than their Western counterparts

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 37 of 46

1 2

BMJ Open

2
3 4 5 6 7
5
6
7
8
9
10
11
12
13
14
15
16
1/
18
7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 8 9 30
20 21
∠ ı 22
23
24
25
26
27
28
29
30
31
29 30 31 32 33 34 35 36 37 38 39 40
33
34
35
36
37
38
39
40 41
41 42
42 43
43 44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

227	using the WHO criteria (BMI \ge 25 kg/m ² for overweight and BMI \ge 30 kg/m ² for obesity) [15 16].
228	Nevertheless, increasing trends of BMI in Chinese adults have been well documented [18 20]. In
229	two national nutritional surveys undertaken in 1982 and 1992 in China, the prevalence of
230	overweight/obesity (BMI \ge 25 kg/m ²) in subjects 20-70 years of age was 10% and 15%,
231	respectively. Between 1992 and 2002, the combined prevalence of overweight and obesity increased
232	from 14.6 to 21.8% [21]. Interestingly, the increase in BMI among Chinese adults has slowed down
233	during past decades [2]. In this study, we did not observe an increase in BMI and prevalence of
234	obesity defined by the Chinese obesity standards or by WHO criteria (data not shown). Instead, we
235	observed a significant increase in WC, a measure of central obesity between surveys. Our
236	observation of increased WC in Chinese adults, without a concomitant increase in BMI, represents
237	an increasing burden of central obesity in this population. The increase in central obesity indicates
238	an upward trend in body fat percentages in the population who have been previously observed with
239	higher body fat percentages compared to other ethnic people with the same BMI [22 23].
240	Both epidemics of overall and central obesity parallel a continuously increasing prevalence of
241	hypertension and T2DM in China [21]. Several studies indicate that overall obesity (BMI) is more
242	strongly associated with hypertension, while central obesity (WC) is more strongly associated with
243	T2DM [17 24-26]. The rationale for these associations is based on the notion that central obesity
244	
244	reflects specific accumulation of visceral adipose tissue. Excess visceral adipose tissue is
244 245	reflects specific accumulation of visceral adipose tissue. Excess visceral adipose tissue is metabolically unfavorable due to productions of free fatty acids and inflammatory mediators.
245	metabolically unfavorable due to productions of free fatty acids and inflammatory mediators.
245 246	metabolically unfavorable due to productions of free fatty acids and inflammatory mediators. Overall obesity, on the other hand, represents a greater overall physiologic strain and effects
245 246 247	metabolically unfavorable due to productions of free fatty acids and inflammatory mediators. Overall obesity, on the other hand, represents a greater overall physiologic strain and effects vascular and cardiac parameters more significantly. In this study, we observed a significant increase
245 246 247 248	metabolically unfavorable due to productions of free fatty acids and inflammatory mediators. Overall obesity, on the other hand, represents a greater overall physiologic strain and effects vascular and cardiac parameters more significantly. In this study, we observed a significant increase in prevalence of T2DM regardless of gender or age groups, which was more pronounced than the
245 246 247 248 249	metabolically unfavorable due to productions of free fatty acids and inflammatory mediators. Overall obesity, on the other hand, represents a greater overall physiologic strain and effects vascular and cardiac parameters more significantly. In this study, we observed a significant increase in prevalence of T2DM regardless of gender or age groups, which was more pronounced than the change in the prevalence of hypertension during the period of 2002-03 and 2009. We also observed
 245 246 247 248 249 250 	metabolically unfavorable due to productions of free fatty acids and inflammatory mediators. Overall obesity, on the other hand, represents a greater overall physiologic strain and effects vascular and cardiac parameters more significantly. In this study, we observed a significant increase in prevalence of T2DM regardless of gender or age groups, which was more pronounced than the change in the prevalence of hypertension during the period of 2002-03 and 2009. We also observed a closer association of central obesity with the prevalence of T2DM than with the prevalence of

however, our study was unable to make a causal inference. The nature of the cross-sectional study design limits our ability to directly evaluate the influence of overall and central obesity as well as the change of their prevalence on the risk of hypertension and T2DM. The differences in several demographic characteristics between the participants of the two surveys indicate the changes in general population over time. However, selection bias could not be excluded. There are several strengths in this study, including the strict process of multistage sampling in adult population in Shanghai, anthropometric measurement according to a standardized protocol and fasting and postprandial blood glucose tests for the participants. Conclusions

In summary, this study describes the potential association of central obesity with an upward trend of T2DM. Our findings provide useful information about the growing burden of type 2 diabetes and hypertension in Chinese adults and suggest the need for further study in other rapidly changing populations in China.

268 Acknowledgements

We thank Dr. Xiao-ou Shu and Dr. Hui Cai of Vanderbilt University for their contributions in study design and data analysis. The authors thank the study participants of the two cross-sectional surveys and the healthcare workers in each community involved.

272 Footnotes

Contributors YR and MM contributed to data collection, data analysis and draft of the paper. 274 YR, YYL, QDY, and LS contributed to data collection and quality control. LJM contributed to 275 revision of the paper. HZ contributed to data clean and analysis. RL and WHX contributed to study 276 design, statistical analysis and revision of the paper. All authors contributed to the interpretation of 277 data and revision of the manuscript. All authors approved the final version.

BMJ Open

1 2	278	Funding This study was supported by the Key Program of Shanghai Municipal Committee of
3 4	279	Science and Technology (04 DZ19502), the Shanghai Medical Development Program (01ZD001)
5 6 7	280	and the Shanghai Municipal Health Bureau (GWDTR201204). W. H. Xu was supported by a
8 9	281	training grant from the Fogarty International Center (D43 TW008313 to X. O. Shu). The funders
10 11	282	had no role in study design, data collection or analysis, decision to publish, or preparation of the
12 13	283	manuscript.
14 15 16	284	Conflict of Interest: None declared.
17 17 18 19 20 21 22 3 24 25 26 27 28 9 0 31 23 34 35 37 38 9 40 41 23 44 56 7 28 9 0 31 23 34 35 37 89 40 41 24 34 45 67 56 7 55 57 55 57 58 59	285	Conflict of Interest: None declared.

2 3	286	REFERENCES
4	287	1. Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes
5	288	(Lond) 2008; 32 (9):1431-7 doi: ijo2008102 [pii]
6 7	289	10.1038/ijo.2008.102[published Online First: Epub Date]].
8	290	2. Popkin BM. Recent dynamics suggest selected countries catching up to US obesity. Am J Clin Nutr
9	291	2010; 91 (1):284S-88S doi: ajcn.2009.28473C [pii]
10	292	10.3945/ajcn.2009.28473C[published Online First: Epub Date]].
11 12	293	3. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res
12	294	Clin Pract 2010; 87 (1):4-14 doi: S0168-8227(09)00432-X [pii]
14	295	10.1016/j.diabres.2009.10.007[published Online First: Epub Date] .
15	296	4. Hu FB. Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes care 2011; 34 (6):1249-57 doi:
16 17	297	10.2337/dc11-0442[published Online First: Epub Date]].
17 18	298	5. Wu YK, Lu CQ, Gao RC, Yu JS, Liu GC. Nation-wide hypertension screening in China during 1979-1980. Chin Med
19	299	J (Engl) 1982; 95 (2):101-8
20	300	6. Wu X, Duan X, Gu D, Hao J, Tao S, Fan D. Prevalence of hypertension and its trends in Chinese populations. Int J
21	301	Cardiol 1995; 52 (1):39-44 doi: 016752739502443Z [pii][published Online First: Epub Date]].
22 23	302	7. Wu Y, Huxley R, Li L, et al. Prevalence, awareness, treatment, and control of hypertension in China: data from the
24	303	China National Nutrition and Health Survey 2002. Circulation 2008; 118 (25):2679-86 doi:
25	304	10.1161/CIRCULATIONAHA.108.788166
26	305	118/25/2679 [pii][published Online First: Epub Date]].
27 28	306	8. [A mass survey of diabetes mellitus in a population of 300,000 in 14 provinces and municipalities in China (author's
29	307	transl)]. Zhonghua Nei Ke Za Zhi 1981; 20 (11):678-83
30	308	9. Wang K, Li T, Xiang H. [Study on the epidemiological characteristics of diabetes mellitus and IGT in China].
31	309	Zhonghua Liu Xing Bing Xue Za Zhi 1998; 19 (5):282-5
32 33	310	10. Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China. The New England journal of
34	311	medicine 2010; 362 (12):1090-101 doi: 10.1056/NEJMoa0908292[published Online First: Epub Date]].
35	312	11. Nyamdorj R, Qiao Q, Lam TH, et al. BMI compared with central obesity indicators in relation to diabetes and
36	313	hypertension in Asians. Obesity (Silver Spring) 2008; 16 (7):1622-35 doi: 10.1038/oby.2008.73
37 38	314	oby200873 [pii][published Online First: Epub Date]].
39	315	12. Ostchega Y, Hughes JP, Terry A, Fakhouri TH, Miller I. Abdominal obesity, body mass index, and hypertension in
40	316	US adults: NHANES 2007-2010. Am J Hypertens 2012; 25 (12):1271-8 doi: 10.1038/ajh.2012.120
41	317	ajh2012120 [pii][published Online First: Epub Date]].
42 43	318	13. Barrett-Connor E. Epidemiology, obesity, and non-insulin-dependent diabetes mellitus. Epidemiol Rev
44	319	1989;11:172-81
45	320	14. Weber MB, Oza-Frank R, Staimez LR, Ali MK, Narayan KM. Type 2 diabetes in Asians: prevalence, risk factors,
46	320	and effectiveness of behavioral intervention at individual and population levels. Annu Rev Nutr
47 48	321	2012; 32 :417-39 doi: 10.1146/annurev-nutr-071811-150630[published Online First: Epub Date]].
49	322	15. Lu B, Yang Y, Song X, et al. An evaluation of the International Diabetes Federation definition of metabolic
50	323	syndrome in Chinese patients older than 30 years and diagnosed with type 2 diabetes mellitus. Metabolism
51	324	2006; 55 (8):1088-96 doi: S0026-0495(06)00138-7 [pii]
52 53	325	10.1016/j.metabol.2006.04.003[published Online First: Epub Date]].
54	320	
55	327	16. Tseng CH. Body mass index and waist circumference as determinants of coronary artery disease in Taiwanese adults with type 2 diabetes mellitus. Int J Obes (Lond) 2006; 30 (5):816-21 doi: 0803218 [pii]
56 57		
57 58	329 330	10.1038/sj.ijo.0803218[published Online First: Epub Date] .
59		17. Feng RN, Zhao C, Wang C, et al. BMI is strongly associated with hypertension, and waist circumference is strongly
60	331	associated with type 2 diabetes and dyslipidemia, in northern Chinese adults. Journal of epidemiology / Japan

1	222	
2	332	Epidemiological Association 2012; 22 (4):317-23
3 4	333	18. Wildman RP, Gu D, Muntner P, et al. Trends in overweight and obesity in Chinese adults: between 1991 and
5	334	1999-2000. Obesity (Silver Spring) 2008;16(6):1448-53 doi: oby2008208 [pii]
6	335	10.1038/oby.2008.208[published Online First: Epub Date] .
7	336	19. Zhou BF. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in
8	337	Chinese adultsstudy on optimal cut-off points of body mass index and waist circumference in Chinese adults.
9	338	Biomed Environ Sci 2002;15(1):83-96
10 11	339	20. Wang H, Du S, Zhai F, Popkin BM. Trends in the distribution of body mass index among Chinese adults, aged 20-45
12	340	years (1989-2000). Int J Obes (Lond) 2007; 31 (2):272-8 doi: 0803416 [pii]
13	341	10.1038/sj.ijo.0803416[published Online First: Epub Date] .
14	342	21. Wang Y, Mi J, Shan XY, Wang QJ, Ge KY. Is China facing an obesity epidemic and the consequences? The trends in
15	343	obesity and chronic disease in China. Int J Obes (Lond) 2007; 31 (1):177-88 doi: 0803354 [pii]
16		
17 18	344	10.1038/sj.ijo.0803354[published Online First: Epub Date] .
19	345	22. Wang J, Thornton JC, Burastero S, et al. Comparisons for body mass index and body fat percent among Puerto
20	346	Ricans, blacks, whites and Asians living in the New York City area. Obes Res 1996;4(4):377-84
21	347	23. Araneta MR, Wingard DL, Barrett-Connor E. Type 2 diabetes and metabolic syndrome in Filipina-American
22	348	women : a high-risk nonobese population. Diabetes Care 2002;25(3):494-9
23	349	24. Jacobs EJ, Newton CC, Wang Y, et al. Waist circumference and all-cause mortality in a large US cohort. Archives of
24 25	350	internal medicine 2010;170(15):1293-301 doi: 10.1001/archinternmed.2010.201[published Online First: Epub
26	351	Date]].
27	352	25. InterAct C, Langenberg C, Sharp SJ, et al. Long-term risk of incident type 2 diabetes and measures of overall and
28	353	regional obesity: the EPIC-InterAct case-cohort study. PLoS medicine 2012;9(6):e1001230 doi:
29	354	10.1371/journal.pmed.1001230[published Online First: Epub Date]].
30	355	26. Li R, Shi L, Jia J, et al. Differentiating the Associations of Waist Circumference and Body Mass Index With
31 32	356	Cardiovascular Disease Risk in a Chinese Population. Asia-Pacific journal of public health / Asia-Pacific
33	357	Academic Consortium for Public Health 2012 doi: 10.1177/1010539512465306[published Online First: Epub
34		
35	358	Date] .
36	359	Date] .
37	360	
38 39		
40		
41		
42		
43		
44 45		
46		
47		
48		
49		
50 51		
52		
53		
54		
55		
56 57		
57 58		
59		
60		

- period of the r.

 population-based surveys

 Figure 2. Non-linear dose-response relationship of BMI and WC with hypertension and T2DM
- among participants of the two population-based surveys

BMJ Open

		1 st su	rvey	2 ⁿ	^d survey	P-value between surveys		
	Characteristics	Men (N=5,050)	Women (N=7,279)	Men (N=3,461)	Women (N=3,962)	In men	In women	
	Age (yrs., mean ± SD)	54.8 ± 10.8	53.1 ± 10.3	54.7 ± 9.5	54.7 ± 9.1	0.55	< 0.0001	
	Resident site (%)							
	Urban	71.1	63.0	72.4	72.0			
	Rural	29.0	37.0	27.7	28.0	0.19	<0.0001	
	Education (%)							
	No formal education	4.1	18.4	3.2	9.5			
	Primary school	18.2	23.0	14.7	17.7			
	Middle school	35.3	31.1	45.7	45.2			
	High school	27.6	22.6	27.6	23.8			
	Colleague or above	14.8	4.9	8.8	3.9	0.0025	<0.0001	
	Per capita income (yuan/mo.) (%)							
	<1000	37.0	45.5	4.9	4.0			
	1000-2999	38.3	38.4	41.8	46.7			
	3000-5000	22.5	17.9	33.2	33.3			
	>5000	2.2	1.3	20.0	16.0	<0.0001	<0.0001	
	Family history of type 2diabetes	12.3	13.1	16.4	19.0	<0.0001	<0.0001	
	Prevalence of type 2diabetes (%)	13.6	10.3	17.4	14.1	<0.0001	<0.0001	
	Prevalence of hypertension (%)	34.8	28.3	41.8	37.1	<0.0001	<0.0001	
	Cigarette smoking (%)	61.4	1.7	62.6	1.8	0.22	0.93	
	Alcohol drinking (%)	40.4	2.4	54.0	5.0	<0.0001	<0.0001	
	Leisure-time activity (%)	13.3	13.1	10.8	9.0	0.0009	<0.0001	
366	^{<i>a</i>} <i>P</i> for Wilcoxon tests or chi-square	e tests		C	2			

Table 1. Characteristics of participants in two population-based surveys in Shanghai, China

	No. of subjects			l Obesity			al obesity	APC	Hypertension		APC			APC
	1 st survey	2 nd survey	1 st survey	2 nd survey	(%)	1 st survey	2 nd survey	(%)	1 st survey	2 nd survey	(%)	1 st survey	2 nd survey	(%)
Men	-	-	-	-			-			-		-		
Overall	5050	3461	11.7	11.9	0.21	46.3	53.8	2.35	34.8	41.8	2.87	13.6	17.4	3.78
Age-groups														
35-	414	230	10.5	9.1	-2.11	41.8	45.2	1.22	15.2	11.7	-3.92	4.6	5.7	3.25
40-	574	302	10.0	8.3	-2.83	41.8	47.00	1.85	22.5	21.9	-0.43	7.8	7.6	-0.44
45-	837	445	12.6	12.6	-0.04	44.0	53.7	3.12	25.3	31.0	3.16	7.8	13.7	9.13
50-	833	739	12.2	10.8	-1.76	44.1	53.8	3.12	33.1	40.3	3.07	12.7	18.3	5.72
55-	628	669	10.4	13.2	3.78	47.3	54.6	2.25	35.4	45.6	3.99	15.0	17.9	2.82
60-	507	513	10.5	15.4	6.18	48.7	56.1	2.19	44.6	51.7	2.29	15.6	20.1	3.98
65-	674	313	12.6	11.8	-0.99	51.4	61.0	2.67	49.4	59.4	2.88	20.8	26.2	3.64
70-	583	250	13.8	9.6	-5.40	51.1	54.0	0.85	50.9	65.2	3.87	24.2	25.6	0.88
Women														
Overall	7279	3962	13.8	13.8	0.02	41.7	54.2	4.10	28.3	37.1	4.28	10.3	14.1	4.84
Age-groups														
35-	615	251	7.5	7.2	-0.65	22.6	26.3	2.35	6.8	10.8	7.24	3.3	4.0	3.17
40-	1000	287	9.4	11.2	2.66	27.6	38.0	5.05	11.7	15.7	4.61	4.1	5.9	5.81
45-	1491	563	11.0	9.8	-1.82	32.3	42.6	4.38	19.3	23.5	3.03	5.8	8.7	6.32
50-	1309	866	15.1	14.1	-1.00	43.9	54.0	3.24	28.7	31.0	1.16	8.3	9.4	1.94
55-	838	818	15.7	13.6	-2.17	47.5	60.6	3.83	33.9	39.7	2.48	8.8	15.3	8.80
60-	610	585	19.2	18.1	-0.87	53.5	63.1	2.58	40.5	52.8	4.17	16.7	19.2	2.11
65-	799	327	18.0	18.4	0.28	59.0	66.1	1.76	48.4	59.3	3.17	23.7	27.8	2.54
70-	617	265	18.2	16.6	-1.36	60.2	68.7	2.05	51.4	64.5	3.57	21.4	27.2	3.75
All subjects														
Overall	12329	7423	13.0	12.9	-0.05	43.6	54.0	3.35	31.0	39.3	3.75	11.7	15.6	4.53
Age-groups ^a														
35-	1029	481	8.7	8.0	-1.04	30.3	33.9	2.39	10.2	11.2	1.49	3.8	4.7	3.63
40-	1574	589	9.6	10.1	0.11	32.7	41.3	4.14	15.6	17.9	2.92	5.5	6.5	3.41
45-	2328	1008	11.6	10.8	-0.77	36.5	46.6	4.16	21.5	26.2	3.46	6.5	10.5	8.22
50-	2142	1605	13.9	12.8	-1.53	44.0	53.9	3.19	30.4	34.6	0.90	10.0	12.8	4.69
55-	1466	1487	13.4	13.4	0.01	47.4	58.1	3.13	34.5	42.2	3.20	11.5	16.4	5.75
60-	1117	1098	15.2	16.9	1.59	51.3	59.9	2.39	42.4	52.3	3.29	16.2	19.6	2.96
65-	1473	640	15.6	15.4	-0.39	55.5	63.8	2.11	48.9	59.4	3.04	22.3	27.1	2.98
70-	1200	515	16.0	13.2	-2.94	55.8	61.5	1.52	51.2	64.9	3.71	22.8	26.4	2.32

adjusted for sex according to the distribution in the first survey.

Page 45 of 46

BMJ Open

Table 3. Association of body size with hypertension and type 2 diabetes in two population-based surveys in

Shanghai, China

	No. of subjects with	Тур	e 2 diabetes only	Hy	pertension only	Both		
	neither diseases	Ν	OR (95%CI)	Ν	OR (95%CI)	Ν	OR (95%CI)	
BMI resid	uals							
Men								
Q1	1260	156	1.00	529	1.00	175	1.00	
Q2	1224	142	0.99 (0.77, 1.27)	583	1.16 (1.00, 1.34)	172	1.11(0.87, 1.41)	
Q3	1164	132	1.09 (0.84, 1.41)	651	1.50 (1.29, 1.74)	171	1.36(1.07, 1.73)	
Q4	1079	123	1.16 (0.88, 1.51)	709	1.85 (1.59, 2.15)	207	1.95(1.54, 2.47)	
	P for trend		0.2472		<0.0001		<0.0001	
Women								
Q1	1816	166	1.00	600	1.00	223	1.00	
Q2	1866	148	1.02 (0.80, 1.29)	629	1.29 (1.12, 1.48)	162	0.96(0.77, 1.21)	
Q3	1835	125	0.89 (0.69, 1.15)	687	1.51 (1.31, 1.73)	158	1.03(0.82, 1.31)	
Q4	1634	109	0.94 (0.73, 1.23)	847	2.23 (1.94, 2.57)	215	1.85(1.15, 2.98)	
-	P for trend		0.4864		< 0.0001		0.0067	
All subject	cts							
Q1	3048	330	1.00	1162	1.00	385	1.00	
Q2	3079	282	1.00 (0.84, 1.19)	1200	1.22 (1.11, 1.35)	363	1.03(0.87, 1.22)	
Q3	2998	278	0.98 (0.82, 1.18)	1346	1.50 (1.36, 1.67)	302	1.18(1.00, 1.40)	
Q4	2753	211	1.04 (0.86, 1.26)	1527	2.05 (1.85, 2.27)	433	1.88(1.60, 2.21)	
	P for trend		0.2280		<0.0001		<0.0001	
	·							
WC residu	uals							
Men								
Q1	1376	102	1.00	531	1.00	111	1.00	
Q2	1232	131	1.34 (1.02, 1.78)	601	1.23 (1.06, 1.42)	155	1.41(1.07, 1.84)	
Q3	1130	148	1.39 (0.70, 2.77)	644	1.39 (1.20, 1.62)	197	1.73(1.33, 2.25)	
Q4	989	172	1.75 (1.33, 2.30)	696	1.57 (1.35, 1.82)	262	2.25(1.74, 2.90)	
-	P for trend		<0.0001		<0.0001		<0.0001	
Women	•							
Q1	2019	80	1.00	598	1.00	108	1.00	
Q2	1935	102	1.17 (0.86, 1.59)	651	1.04 (0.91, 1.18)	117	0.94(0.71, 1.25)	
$\tilde{Q3}$	1708	172	2.04 (1.54, 2.70)	732	1.14 (0.99, 1.30)	194	1.40(1.08,1.82)	
Q4	1489	194	2.37 (1.78, 3.15)	782	1.13 (0.98, 1.30)	339	2.06(1.26, 3.38)	
× ·	<i>P</i> for trend	171	<0.0001	, 02	0.0216	557	<0.0001	
All subject			0.0001		0.0210		0.0001	
Q1	3453	161	1.00	1109	1.00	203	1.00	
Q2	3192	260	1.26 (0.99, 1.60)	1211	1.12 (1.01, 1.23)	260	1.16(0.82, 1.62)	
Q2 Q3	2838	301	1.66 (1.16, 2.36)	1373	1.12 (1.01, 1.23)	412	1.55(1.29, 1.87)	
Q3 Q4	2395	379	2.03 (1.66, 2.47)	1542	1.34 (1.09, 1.64)	608	2.18(1.83, 2.61)	
× '	<i>P</i> for trend	517	0.0001	1012	0.0021	000	<0.0001	

Missing value excluded from the analysis.

OR: Adjusted for age (continuous variable), education (no formal education, primary school, middle school, high school, colleague or above, dummy variables), per capita income (<1000, 1000-2999, 3000-5000 and >5000 RMB Yuan / month, dummy variables), resident site (urban/rural area), family history of type 2 diabetes (yes/no), smoking (ever/never), alcohol drinking (ever/never), regular exercise (never/ever), phase of study (first /second survey); Additionally adjusted for sex (male/female) for all subjects.

		WC: Lower		WC: Higher			OR (95%CI) fo	or hypertension	OR (95%CI) for type 2 diabetes		
BMI	No. of	Hypertension	Diabetes	No. of	Hypertension	Diabetes	WC: Lower	WC: Higher	WC: Lower	WC: Higher	
	subjects	N (%)	N (%)	subjects	N (%)	N (%)	WC. Lower	WC. Higher	wC. Lower	WC: Higher	
Men											
<18.5	212	36	20	16	10	6	0.61(0.42, 0.89)	3.68(1.28, 10.59)	1.02(0.62, 1.67)	3.77(1.13, 12.56)	
18.5-23.9	3034	767	296	679	249	111	1.00	1.56(0.94, 2.57)	1.00	1.48(1.15, 1.90)	
24.0-27.9	1010	356	134	2530	1179	483	1.61(1.13, 2.32)	2.38(1.78, 3.17)	1.46(1.16, 1.83)	1.85(1.16, 2.96)	
≥28.0	36	20	4	960	580	224	3.91(1.95, 7.82)	4.67(3.97, 5.49)	1.71(0.55, 5.37)	2.60(2.12, 3.18)	
					P fo	r interaction	0.0	711	0.0	933	
Women											
<18.5	313	51	19	8	2	1	0.68(0.49, 0.94)	0.85(0.16, 4.51)	0.93(0.56, 1.54)	2.45(0.22, 26.72)	
18.5-23.9	4323	821	265	974	314	165	1.00	1.48(1.26, 1.75)	1.00	2.36(1.89, 2.94)	
24.0-27.9	1330	384	93	2724	1102	437	1.84(1.59, 2.14)	2.21(1.97, 2.49)	1.19(0.92, 1.53)	2.14(1.81, 2.54)	
≥28.0	81	32	9	1467	815	317	3.10(1.93, 5.00)	4.33(3.77, 4.96)	2.14(1.01, 4.52)	3.08(2.56, 3.71)	
					P fo	r interaction	0.3	524	0.4	011	
Total											
<18.5	525	87	39	24	12	7	0.65(0.51, 0.83)	2.25(0.85, 5.93)	0.97(0.68, 1.39)	3.45(1.18, 10.12	
18.5-23.9	7357	1588	561	1653	563	276	1.00	1.52(1.25, 1.85)	1.00	1.88(1.42, 2.49)	
24.0-27.9	2340	740	227	5254	2281	920	1.74(1.50, 2.03)	2.31(2.03, 2.62)	1.33(1.12, 1.58)	1.99(1.62, 2.45)	
≥28.0	117	5	13	2427	1395	541	3.34(2.26, 4.94)	4.46(4.02, 4.96)	2.00(1.07, 3.74)	2.85(2.49, 3.27)	
					P fo	r interaction	0.0	562	0.0	798	

2 Higher WC defined as \geq 85 cm for men and \geq 80 cm for women 3 OR: Adjusted for age (continuous variable), education (no forma

3 OR: Adjusted for age (continuous variable), education (no formal education, primary school, middle school, high school, colleague or above, dummy variables), per capita 4 income (<1000, 1000-2999, 3000-5000 and >5000 RMB Yuan / month, dummy variables), resident site (urban/rural area), family history of type 2 diabetes (yes/no),

5 smoking (ever/never), alcohol drinking (ever/never), regular exercise (never/ever), and phase of study (first /second survey).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml