Supplemental Data

A										
	Initial Screening			• 1	1 st Confirmation			2 nd Confirmation		
	MLL-AF9 transduced cells			MLL-AF9 MLL-AF1	MLL-AF9 transduced cells & MLL-AF10 leukemia cells			MLL-AF9 transduced cells		
	Cell Growth				Cell Growth			Cell Transformation		
		Cell Growth								
в										
	PTPN21	ZAP70	BUB1	ΙΚΚγ	GCK	CDC25C	WEE1	INSR	HR1	
	PLK1	ΙΚΚβ	PPP2CB	FGFR1	PPM1J	MAPK4	CDK8	GPRK4	YANK3	
	MAST1	ΙΚΚα	WNK2	PPP1R 14A	МЕТ	PPP1R8	ATR	MLK2	H11	
	PPP4C	VRK3	MAPK13	ULK1	LATS2	IRAK3				

Figure S1, related to Figure 1. Summary of single cell-based shRNA screening and confirmation strategy.

- (A) A lentiviral-based shRNA knockdown approach was applied on a gene-per-gene basis. Puromycin was added in R20/20 culture medium for selection three days after virus transduction. Two rounds of cell growth analyses (equal number of cells were plated in R20/20 medium, and cell numbers were counted after two days) were performed using mouse MLL-AF9 transduced cells in the initial screening, followed by cell growth confirmation studies in mouse MLL-AF9 transduced cells and MLL-AF10 leukemia cells. MLL-AF9 transduced cells were used in the final cell transformation analysis (equal number of cells were plated in methylcellulose-containing medium, and colony numbers were counted after five days).
- (B) Candidate kinases and phosphatases identified in shRNA screen. Shading indicates candidates implicated in NF-κB signaling pathways.

Table S1, related to Figure 1. shRNA sequences in lentiviral-based kinase/phosphataseshRNA Library. Provided as an Excel file

Table S2, related to Figure 1. Gene sets used for GSEA analyses. Provided as an Excel file

Figure S2, related to Figure 2. Human MLL cell lines show enhanced sensitivity to IKK inhibitors.

- (A) Human leukemia cell lines were cultured in the absence or presence of the indicated concentrations of IKK inhibitors III, IV or VII for four days. Cell growth rate was determined by MTT assay and expressed relative to vehicle treated samples. Similar results were obtained by direct cell count (data not shown). MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide.
- (B) The growth of human myeloid cell lines MV4;11 (MLL-AF4 translocation), OCI-AML3 (NPM1c⁺) and Kasumi (AML-ETO translocation) was assessed after three days culture in the absence or presence of the indicated concentrations of IKK inhibitors III, IV or VII. The results are expressed as the relative cell number compared to vehicle treated cells.
- (C) Human MLL leukemia cell lines (MV4;11, RS4;11, SEMK2, HB, ML-2, KP-L-RY, B1, Mono Mac 6, and THP1) and non-MLL leukemia cells lines (RCH-ACV, REH, Kasumi, K562, NALM-6, HAL-01, SUP-B15, and 697) were cultured in the absence or presence of IKK inhibitors III (4 μ M) or VII (2 μ M) for four days. The results are expressed as the relative cell number compared to vehicle treated cells.
- (D) ML-2 and K562 cells were transduced with lentiviral vectors expressing the indicated shRNAs. Cell numbers were enumerated at three days, and expressed relative to cells transduced with control shRNA. All error bars represent SD of triplicate analyses.

Figure S3, related to Figure 3. Depletion of components of the IKK complex reduces cell growth and colony formation of mouse MLL leukemia cells.

- (A) Mouse MLL-AF10 leukemia cells were stably transduced with lentiviral vectors expressing control shRNA or shRNAs targeting *lkkα*, *lkkβ*, or *lkkγ*. Cells were cultured for two days and viable cell numbers are expressed relative to the number obtained with control shRNA transduced cells.
- (B) Mouse MLL-AF10 leukemia cells transduced with control or *lkk* shRNAs were plated in methylcellulose medium for five days and colonies were enumerated and expressed relative to the number obtained with control shRNA transduced cells.
- (C) Mouse E2A-PBX1 transduced cells and normal hematopoietic progenitors were transduced with control or *lkk* shRNAs and plated in methylcellulose medium for five days and colonies were enumerated and expressed relative to the number obtained with control shRNA transduced cells. All error bars represent SD of triplicate analyses.

Figure S4, related to Figure 4. Depletion of Rela reduces cell growth and colony formation of mouse MLL leukemia cells.

- (A) Mouse MLL-AF10 and MLL-AF9 leukemia cells transduced with lentiviral vectors expressing control or two different *Rela* shRNAs were cultured for two days. Cell numbers were counted and expressed relative to the numbers obtained with control shRNA transduced cells.
- (B) Mouse MLL-AF10 leukemia cells were transduced with lentiviral vectors expressing control or *Rela* shRNAs. Protein levels of Rela were detected by western blot analysis.
- (C) Mouse MLL-AF10 leukemia cells and bone marrow c-kit⁺ cells (normal hematopoietic progenitors) were transduced with lentiviral vectors expressing control or *Rela* shRNAs. Colony numbers were enumerated after five days, and expressed relative to the numbers obtained with control shRNA transduced cells. All error bars represent SD of triplicate analyses.
- (D) Survival curves are shown for cohorts of mice transplanted with mouse MLL-AF9 transformed cells (1 x 10^6) transduced with control or *Rela* shRNAs (n = 3 each cohort). Acute leukemia was confirmed by peripheral blood leukocyte count and necropsy. Log-rank Test was used for statistical analysis (p = 0.03).

Figure S5, related to Figure 5. IKK inhibitor treatment reduces proliferation and increases differentiation of mouse and human MLL cells.

- (A) GSEA plot shows downregulation of cell cycle process related genes in human MLL cell line MV4;11 treated with IKK inhibitor versus vehicle treated cells.
- (B) Mouse MLL-AF9 transduced cells were cultured in the presence of 2 μM IKK inhibitor IV or 1 μM IKK inhibitor VII for two days, and BrdU incorporation was quantified by flow cytometry analysis.(C) IKK inhibitor treatment substantially reduced proliferation of human MLL cell line MV4;11, but not non-MLL cell line K562. Cells were cultured in the presence IKK inhibitor VII (1 μM) for two days, and BrdU⁺ population was analyzed by flow cytometry. Representative results are shown for one of two independent experiments.
- (D) Quantification results of (C) from two independent experiments. Error bars represent SD.
- (E) Quantification of mouse MLL-AF9 cell populations with indicated morphological features after two days of IKK inhibitor VII treatment (1 μM).
- (F) Flow cytometry analysis of Mac-1 surface expression by mouse MLL-AF9 transduced cells after two days of 1 μ M IKK inhibitor VII treatment.

Table S3, related to Figure 5. Gene sets used for GSEA analyses. Provided as an Excel file

Figure S6, related to Figure 6. Treatment with IKK inhibitors reduces LSC population in mouse and human MLL cells.

- (A) GSEA analysis identifies enrichment of NF-κB targets expressed in the GMP population of MLL-AF9 knockin mice. The normalized enrichment score (NES) is correlated with NF-κB target gene expression between normal GMP and MLL-AF9 GMP by using public dataset (GSE10627).
- (B) GSEA plot shows downregulation of MLL LSC maintenance signature genes in human MLL cell line MV4;11 treated with IKK inhibitor versus vehicle treated cells.
- (C) GSEA plot shows downregulation of core ESC-like gene module in human MLL leukemia cell line MV4;11 treated with IKK inhibitor versus vehicle treated cells.
- (D) GSEA plot shows downregulation of poor prognosis AML genes in human MLL leukemia cell line MV4;11 treated with IKK inhibitor versus vehicle treated cells.
- (E, F) Total cell numbers (E) are shown for mouse MLL-AF9 and MLL-AF10 leukemia cells following treatment for 2-3 days with IKK inhibitor IV or VII. IKK inhibitors were then removed and equal numbers of viable cells were plated in methylcellulose medium to analyze CFC frequencies (F), which correlated with LSCs. Error bars represent SD of triplicate analyses.

Table S4, related to Figure 6. Gene sets used for GSEA analyses. Provided as an Excel file

Figure S7, related to Figure 7. RELA depletion reduces *MEIS1* and *HOXA9* gene expression in human cells.

- (A, B) GSEA plot shows downregulation of MLL-ENL target genes (A) and HOXA9 and MEIS1 upregulated target genes (B) in human MLL cell line MV4;11 treated with IKK inhibitor versus vehicle treated cells.
- (C, D) MV4;11 (C) and ML-2 (D) cells transduced with lentiviral vectors expressing control or RELA shRNAs were assessed for MEIS1 or HOXA9 transcript levels by qRT-PCR. Results are displayed relative to control shRNA-transduced. Error bars represent SD of triplicate analyses.

Table S5, related to Figure 7. Gene sets used for GSEA analyses. Provided as an Excel file

Figure S8, related to Figure 8. There is no significant change of MLL-AF10 level after IKK inhibitor treatment.

Mouse MLL-AF10 leukemia cells were cultured in the absence or presence of IKK inhibitors (IV or VII) for two days. Protein level of HA-MLL-AF10 was detected by antibodies against the HA epitope tag.

Supplemental Experimental Procedures

Cell culture

Human leukemia cell lines were cultured in RPMI 1640 medium supplemented with 10% fetal bovine serum (FBS), penicillin/streptomycin/L-glutamine (PSG), and non-essential amino acids (NEAA). Transformed mouse myeloid cells or leukemia cells were cultured in RPMI 1640 medium supplemented with 20% FBS, 20% WEHI-conditioned medium and PSG (R20/20 medium), or in methylcellulose-containing medium (Methocult M3231, Stem Cell Technologies) with cytokines as previously described (Lavau et al., 1997). HEK-293T and Phoenix-Eco cells were maintained in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% FBS and PSG.

Mice

C57BL/6 mice were purchased from the Jackson Laboratories (Bar Harbor, Maine). *RelA*^{+/-} mice were maintained on a mixed genetic background by interbreeding.

Isolation of mouse myeloid progenitors

Normal hematopoietic progenitors (c-kit⁺ cells) were isolated from mouse bone marrow using CD117 (c-kit) microbeads (130-091-224, Miltenyi Biotec) and autoMACS magnetic cell sorting.

shRNA design, virus generation, and cell transduction

The design of shRNAs (Tables S1 and below) used the RNAi consortium (TRC) shRNA library database (http://www.broadinstitute.org/rnai/public/) to predict suitable target regions in the gene of interest. Sense and antisense oligonucleotides for each shRNA duplex were annealed and cloned into lentiviral-based shRNA expression vectors pLKO.pig (pLKO.1 <u>P</u>uro^R-<u>I</u>RES-<u>G</u>FP)

11

or pLKO.pim (pLKO.1 <u>P</u>uro^R-<u>I</u>RES-<u>m</u>Cherry) using published protocols (Schaniel et al., 2010), and confirmed by sequencing.

Target	shRNA sequence
Human RELA-1	CGGATTGAGGAGAAACGTAAA
Human RELA-2	GCCTTAATAGTAGGGTAAGTT
Mouse Rela-1	GCGAATCCAGACCAACAATAA
Mouse Rela-2	CGGATTGAAGAGAAGCGCAAA
Mouse <i>lkkα</i> -1	GCTCTCTTGAAGGTTGATGTA
Mouse <i>lkkβ</i> -1	GCTGCACATTTGAATCTGTAA
Mouse <i>lkkβ</i> -2	CCTAAGTTTGACTATCCTATA
Mouse <i>lkkβ</i> -3	GCTTGCACTTTAGCCAGAGAA
Mouse <i>lkkγ</i> -1	GTAGCCAAACAGGAATTGATT
Mouse Ikky-2	GCTCCTGATATGGACACTCTA
Mouse Ikky-3	GCCTTAAAGGAGTTGGAGCAA
Mouse Ikky-4	CCACACTTAAGGGCTTGCTTT

Lentiviruses were generated by lipofectamine 2000-mediated co-transfection of shRNA constructs with *pCMV-dR8.2* (packaging) and *pCMV-VSVG* (envelope) into HEK-293T cells. Mouse and human cells were transduced with virus supernatants supplemented with 6 μ g/ml polybrene (sc-134220, Santa Cruz Biotechnology) overnight, changed to fresh medium the following day, and cultured another 3 days under puromycin (0.8-1 μ g/ml) selection. Retroviruses were generated in Phoenix-Eco cells and the resulting virus supernatants were supplemented with 4 μ g/ml polybrene for transduction of mouse cells by spinoculation (2500 rpm, 32 °C for 2.5 hr).

Apoptosis and proliferation analyses

Apoptotic cells were quantified on the basis of annexin V staining (88-8007, eBioscience) by flow cytometry. BrdU incorporation assays were performed according to the manufacturer's protocol (559619, BD Pharmingen). Following a 2 hr pulse with BrdU, cells were co-stained with 7-aminoactinomycin D (7-AAD) and analyzed by flow cytometry for quantification of DNA

12

content. Flow cytometry data were acquired on a FACSAria using FACS Diva Software (BD Biosciences) and analyzed using FlowJo (TreeStar Software).

May–Grünwald–Giemsa cytospin staining

Following IKK inhibitor treatment, cells (5 x 10^4) were suspended in 100 μ l PBS/20% FBS and cytospun onto glass slides at 600 rpm for 5 min. After fixation with methanol, cells were stained with May–Grünwald (Sigma) and Giemsa (Sigma) according to the manufacturer's protocol.

Quantitative real-time PCR

RNA was isolated using TRIzol reagent (15596-026, Invitrogen) and cDNA was synthesized using SuperScript III First-Strand Synthesis System (18080051, Life Technologies). Quantitative PCR analysis was performed using an ABI 7900HT with SYBR green and primers. All signals were quantified using the Δ Ct method and were normalized to the levels of *GAPDH* (*Gapdh*) or β -Actin.

Primer sequences used in quantitative real-time PCR analyses				
Target	Primer sequence			
Mouse Hoxa9	Forward: CCCCGACTTCAGTCCTTGC			
	Reverse: GATGCACGTAGGGGTGGTG			
Mouse Meis1	Forward: CATGATAGACCAGTCCAACCGA			
	Reverse: ATTGGCTGTCCATCAGGGTTA			
Mouse Rela	Forward: TGCGATTCCGCTATAAATGCG			
	Reverse: ACAAGTTCATGTGGATGAGGC			
Mouse <i>lkkα</i>	Forward: GGTTTCGGGAACGTCAGTCTG			
	Reverse: GCACCATCGCTCTCTGTTTT			
Mouse <i>lkkβ</i>	Forward: CTGAAGATCGCCTGTAGCAAA			
	Reverse: TCCATCTGTAACCAGCTCCAG			
Mouse <i>lkkγ</i>	Forward: GAGGCCCTGGTAGCCAAAC			
	Reverse: ATGGCAGCCAACTTTCAGCTT			
Mouse Gapdh	Forward: AGGTCGGTGTGAACGGATTTG			
	Reverse: TGTAGACCATGTAGTTGAGGTCA			
Mouse β -Actin	Forward: GGCTGTATTCCCCTCCATCG			
	Reverse: CCAGTTGGTAACAATGCCATGT			
Human HOXA9	Forward: TACGTGGACTCGTTCCTGCT			
	Reverse: CGTCGCCTTGGACTGGAAG			
Human MEIS1	Forward: GGGCATGGATGGAGTAGGC			
	Reverse: GGTCCCCATACATCGTGGAG			

Human RELA	Forward: GTGGGGACTACGACCTGAATG
	Reverse: GGGGCACGATTGTCAAAGATG
Human GAPDH	Forward: AAGGTGAAGGTCGGAGTCAAC
	Reverse: GGGGTCATTGATGGCAACAATA

Primer sequences used in ChIP assays				
Target	Primer sequence			
H4 promoter	Forward: GACACCGCATGC AAAGAATAGCTG			
	Reverse: CTTTCCCAAGGCCTTTACCACC			
Ey-globin	Forward: GAGAGTTTTTGTTGAAGGAGGAGC			
	Reverse: CAGGAGTGTCAGAAGCAAGTACGT			
Hoxa9 (-2087)	Forward: CTGTCTCTCCGCTTCCATTC			
	Reverse: CTGACCAGCTTCCCTTATGC			
Hoxa9 (-1473)	Forward: CAAACTGGGGCACTGGTACT			
	Reverse: TTCTGTGGTCTCAGGCAGTG			
Hoxa9 (-1171)	Forward: GAGCATGAGGTGTTGTGTGG			
	Reverse: CCAAAAGGGGGAAAATTCAT			
Hoxa9 (-536)	Forward: TGTCAGAGCGTTGGAAAGTG			
	Reverse: TGTGAATTTTGTGCCTTCCA			
Hoxa9 (24)	Forward: ACCAGAGCGGTTCATACAGG			
	Reverse: CAGACTGGAGATGGGGAAAA			
<i>Meis1</i> (-1551)	Forward: TTTGGGTGAGCTCATTTTCC			
	Reverse: GGCTCTCGTGGCTTAGATTG			
Meis1 (-1379)	Forward: GGGCGCAGAAACATAAAGAG			
	Reverse: TCCACTTCGGAAGCTGAGAT			
Meis1 (-687)	Forward: ACGTCCGGACTCAAAGTGAC			
	Reverse: TGGAACTGGACTGGAAAAGG			
Meis1 (-471)	Forward: CAGTCCAGTTCCAGCTCCTC			
	Reverse: TCGAAATTATTGGGGTCTGC			
Meis1 (153)	Forward: GCAGTTGCAAAGAGGGAGAG			
	Reverse: GGTTGTCAACGTGGTGAATG			
Meis1 (764)	Forward: CCATTATGGGGGGTATGGATG			
	Reverse: GGTACTGATGCGAGTGCAGA			

Supplemental Reference

Schaniel, C., Lee, D.-F., and Lemischka, I. R. (2010). Exploration of self-renewal and pluripotency in ES cells using RNAi. Methods Enzymol. *477*, 351-365.