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Web Figure 1. Kaplan–Meier estimates of event-free survival (A) and overall survival (B) in 2852 children with newly diagnosed acute lymphoblastic 

leukaemia treated in 15 consecutive Total studies at St. Jude Children’s Research Hospital, 1962 to 2007. Five-year event-free and overall survival 

estimates (±SE) are shown on the respective curves. 
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Supplementary Table 1: Inherited gene variants and risk of childhood acute lymphoblastic 

leukaemia 

Gene Function Risk allele 

frequency* 

Odds ratio†‡ P value‡ References 

IKZF1 Transcription factor (differentiation) 0.27 1.69 1.2x10-19 1-3 

ARID5B Transcriptional regulator 0.34 1.65 6.69 x10-19 1-3 

CEBPE Transcription factor (differentiation) 0.52 1.34 2.88 x10-7 1, 3 

CDKN2A (p16) Negative cell cycle regulator 0.15 1.42 3.01 x10-11 4 

*Frequency in the control (white, Caucasian) population. 
†
These odds ratio values apply to both B and T 

lymphoblastic leukaemia, and to the main molecular subtypes of the former including ETV6-RUNX1
+
 acute 

lymphoblastic leukaemia and hyperdiploid acute lymphoblastic leukaemia. The exception appears to be with 

ARID5B variants which predominantly impact on hyperdiploid B lymphoblastic leukaemia.
1, 2

 
‡
All odds ratios and P 

values were obtained from a single study,
1
 although similar values have been described in other studies.

2, 3
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Table 2. Key genetic alterations in B lymphoblastic leukaemia, by gene (referenced version) 

* Also mutated in non-Hodgkin lymphoma.  

Gene Alteration  Frequency Pathway and consequences  Clinical relevance References 

PAX5 

 

 

Focal deletions, 

translocations, sequence 

mutations 

 

31.7% Transcription factor needed for B-

lymphoid development; mutations 

impair DNA binding and 

transcriptional activation 

Not associated with adverse 

outcome 

5-7
 

IKZF1 

 

 

Focal deletions, sequence 

mutations 

15% of paediatric cases  

More than 80% of BCR-ABL1 

cases and 66% of cases of 

chronic myeloid leukaemia in 

lymphoid blast crisis 

Transcription factor needed for 

development of haemopoietic stem 

cells to lymphoid precursors; 

deletions and mutations result in 

loss of function or dominant 

negative isoforms. 

Associated with poor outcomes 
5, 6, 8, 9

 

 

   

  A third of cases of high-risk 

BCR-ABL1-negative disease 

 Tripling of cumulative incidence 

of relapse 

10-12 

  

Inherited variants 

   

Increased risk of developing 

disease 

 
1, 2

 

JAK1, 

JAK2 

 

 

Pseudokinase and kinase 

domain mutations 

 

18-35% of Down’s-syndrome-

associated cases, 11% of high-

risk BCR-ABL1-negative cases 

Mutations cause constitutive JAK-

STAT activation; transforms mouse 

Ba/F3-EpoR haemopoietic cell line 

 
13-16

 
 

CRLF2 

 

 

Rearrangement as IGH@-

CRLF2 or P2RY8-CRLF2 

resulting in 

overexpression 

5-16% of paediatric and adult 

cases and >50% of cases 

associated with Down’s 

syndrome 

 

 

Associated with mutant JAK in as 

much as 50% of cases; CRLF2 and 

JAK mutations cotransform in 

Ba/F3 cells, causing constitutive 

STAT activation 

 

 

 

 

 

17-20
 

 

 

 

 
 

  14% of paediatric high-risk 

cases of B lymphoblastic 

leukaemia 

Associated with IKZF1 alteration 

and JAK mutations 

Associated with poor outcome 
21, 22

 

CREBBP Focal deletion and 

sequence mutations 

19% of relapsed cases of B 

lymphoblastic leukaemia*  

Impaired histone acetylation and 

transcriptional regulation 

Mutations selected for at relapse 

and associated with 

glucocorticoid resistance  

23, 24
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Supplementary Table 2: Clinical tests with prognostic and therapeutic implications 

Test   Findings Prognostic risk Potential treatment* 

At diagnosis    

 Immunophenotyping Early T cell precursor phenotype High AML-directed therapy, JAK inhibitor 

  CRLF2 overexpression† High‡ JAK inhibitor§ 

     

 Cytogenetics/RT-PCR Hyperdiploidy (>50 chromosomes) Standard   

  t(12;21)(p13;q22)/ETV6-RUNX1 (TEL-AML1) Standard  

  Hypodiploidy (<44 chromosomes) High  

  t(9;22)(q34;q11)/BCR-ABL1 High ABL1 kinase inhibitor 

  11q23/MLL gene rearrangement High# Epigenetic therapy (eg, DNA methyltransferase inhibitor, histone 

methyltransferase inhibitor, histone deacetylace inhibitor), FLT3-inhibitor 

  iAMP21 High¶  

  t(17;19)(q22;p13)/TCF3-HLF High  

     

 Molecular analysis† IKZF1 alterations  High ABL1 kinase, PDGFRB, or JAK inhibitor 

  CRLF2 rearrangement High‡ JAK inhibitor§ 

  JAK1 or JAK2 mutation High JAK inhibitor 

  BCR-ABL1-like phenotype High ABL1 kinase, PDGFRB, or JAK inhibitor 

  NUP214-ABL1 High ABL1 kinase inhibitor 

  BCR-JAK2 High JAK inhibitor 

  IL7R mutation High  JAK inhibitor 

  CREBBP mutation High Histone deacetylase inhibitor 

  TP53 mutation High  

     

During treatment    

  Minimal residual disease  Positive  High   

*Clinical trials have not proven the efficacy of any therapies except ABL1 kinase inhibitor in acute lymphoblastic leukaemia with t(9;22)(q34;q11)/BCR-ABL1. †These tests have not been incorporated 
into routine clinical practice. ‡The subsets with IKZF1 alteration and/or BCR-ABL1-like gene expression profile. §The subsets with JAK mutations. #Especially in infants and adult patients. ¶Poor 

outcome when treated on standard-risk regimens.  

AML, acute myeloid leukaemia; JAK, Janus kinase; iAMP21, intrachromosomal amplification of chromosome 21; PDGFRB, platelet-derived growth factor receptor, beta polypeptide; RT-PCR, reverse-
transcriptase polymerase chain reaction. 
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Web Figure 2. Kaplan-Meier estimates of overall survival according to age at diagnosis in 11079 patients with acute lymphoblastic leukaemia newly 

diagnosed after January 1, 2000 who were registered in the Surveillance, Epidemiology and End Results (SEER) Program of the United States National 

Cancer Institute. Age in years is shown at right. Five-year overall survival estimates (±SE) are listed on the respective curves. 
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Supplementary Table 3: Antileukaemic drugs in current clinical trials 

 
Class Agent Target Indication 

Purine nucleoside analogue  

 Clofarabine
25

 Ribonucleotide reductase; DNA 

polymerase; mitochondria 

All ALL 

 Nelarabine
26

 Ribonucleotide reductase; DNA synthesis T-ALL 

 Forodesine Purine nucleoside phosphorylase T-ALL 

    

Vinca alkaloid   

 Vincristine sulfate 

liposome
27

 

Tubulin All ALL 

 

Kinase inhibitor 

ABL1 kinase inhibitor 

  

 Dasatinib;
28

 Nilotinib;
29

 

Imatinib;
30

 Ponatinib 

ABL1 kinase; platelet-derived growth 

factor receptor B  

BCR-ABL1-positive ALL; 

BCR-ABL1-like ALL (eg, 

NUP214-ABL1) 

Aurora kinase inhibitor 

 Alisertib Aurora A kinase  BCR-ABL1-positive ALL 

Janus kinase (JAK) inhibitor   

 Ruxolitinib; TG101348; 

CYT387 

JAK JAK-mutated ALL; BCR-

ABL1-like ALL (eg, BCR-

JAK2; mutated IL7R) 

 

Tyrosine kinase inhibitor 

  

 Lestaurtinib; Midostaurin; 

Sorafenib; Quizartinib; 

Tandutinib; Sunitinib  

FMS-like tyrosine kinase 3  MLL-rearranged ALL;  

hyperdiploid ALL 

Other molecular or signaling inhibitor  

Proteasome inhibitor    

 Bortezomib
31

 Ubiquitin-proteasome pathway All ALL 

   

Mammalian target of rapamycin (mTOR) inhibitor  

 Sirolimus; Temsirolimus; 

Everolimus 

mTOR All ALL 

 

Farnesyltransferase inhibitor  

 

 Tipifarnib; Lonafarnib Ras, lamin A  All ALL 

 

γ-Secreatase inhibitor 

  

 RO4929097 γ-Secretase T-ALL 

   

Angiogenesis inhibitor   

 Bevacizumab Vascular endothelial growth factor  All ALL 
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Apoptosis inducer  

 Obatoclax; Oblimersen Bcl-2 All ALL 

Chemokine receptor (CXCR4) antagonist  

 Plerixafor CXCL12 (SDF1)/CXCR4 axis  All ALL 

 

Epigenetic therapy 

  

DNA methyltransferase inhibitor  

 Azacitidine; Decitabine DNA methyltransferase All ALL 

Histone methyltransferase inhibitor  

 EPZ-5676 DOT1L MLL-rearranged ALL 

Histone deacetylase inhibitor   

 Vorinostat; Panobinostat; 

Depsipeptide; Valproic 

acid 

Histone deacetylase All ALL 

 

Immune therapy 

Monoclonal antibody 

  

 Blinatumomab
32

 CD19 (engages CD3 T cells) CD19-positive ALL 

 SAR3419 CD19 CD19-positive ALL 

 DT2219ARL CD19 and 22 CD19/CD22-positive ALL 

 Rituximab
33

 CD20 CD20-positive ALL 

 Epratuzumab;
34

 

Moxetumomab; 

Inotuzumab ozogamicin
35

 

CD22 CD22-positive ALL 

 Alemtuzumab
36

 CD52 CD52-positive ALL 

Cellular therapy   

  Natural killer cells  Killer immunoglobulin-like receptor 

(KIR)-ligand  

Donor KIR-recipient 

ligand mismatch 

 T cells with CD19-specific 

chimeric antigen receptor 

CD19 CD19-positive ALL 

ALL, acute lymphoblastic leukaemia 
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