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1.  Members of the Network Project of the Deutsche Krebshilfe “Molecular 
Mechanisms in Malignant Lymphomas” (Alphabetical order)  

Pathology group: Thomas F.E. Barth1, Heinz-Wolfram Bernd2, Sergio B. Cogliatti3, Alfred C. 

Feller2, Martin L. Hansmann4, Michael Hummel5, Wolfram Klapper6, Peter Möller1, Hans-

Konrad Müller-Hermelink7, Ilske Oschlies6, German Ott20, Andreas Rosenwald7, Harald 

Stein5, Monika Szcepanowski6, Hans-Heinrich Wacker6. Genetics group: Thomas F.E. 

Barth1, Petra Behrmann8, Peter Daniel9, Judith Dierlamm8, Stefan Gesk,10 Eugenia 

Haralambieva7, Lana Harder10, Paul-Martin Holterhus11, Ralf Küppers12, Dieter Kube13, Peter 

Lichter14, Jose I. Martín-Subero10, Peter Möller1, Eva M. Murga-Peñas8, German Ott20, 

Claudia Philipp12, Christiane Pott15, Armin Pscherer14, Julia Richter10, Andreas Rosenwald7, 

Itziar Salaverria10,Carsten Schwaenen16, Reiner Siebert10, Heiko Trautmann15, Martina 

Vockerodt17, Swen Wessendorf16, Bioinformatics group: Stefan Bentink18, Hilmar Berger19, 

Christian W Kohler18, Dirk Hasenclever19, Markus Kreuz19, Markus Loeffler19, Maciej 

Rosolowski19, Rainer Spang18. Project coordination: Benjamin Stürzenhofecker13, Lorenz 

Trümper13, Maren Wehner13. Steering committee: Markus Loeffler19, Reiner Siebert10, 

Harald Stein5, Lorenz Trümper13.  

1Institute of Pathology, University Hospital of Ulm, Germany, 2Institute of Pathology, 

University Hospital Schleswig-Holstein Campus Lübeck, Germany, 3Institute of Pathology, 

Kantonsspital St. Gallen, Switzerland, 4Institute of Pathology, University Hospital of Frankfurt, 
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Germany, 5 Institute of Pathology, Campus Benjamin Franklin, Charité–Universitätsmedizin 

Berlin, Germany, 6 Institute of Hematopathology, University Hospital Schleswig-Holstein 

Campus Kiel/ Christian-Albrechts University Kiel, Germany, 7Institute of Pathology, University 

of Würzburg, Germany, 8 University Medical Center Hamburg-Eppendorf, Hamburg, 

Germany, 9Department of Hematology, Oncology and Tumor Immunology, University 

Medical Center Charité, Germany, 10 Institute of Human Genetics, University Hospital 

Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel, Germany, 11Division of 

Pediatric Endocrinology and Diabetes, Department of Pediatrics, University Hospital 

Schleswig-Holstein Campus Kiel / Christian-Albrechts University Kiel, Germany, 12Institute for 

Cell Biology (Tumor Research), University of Duisburg-Essen, Germany, 13Department of 

Hematology and Oncology, Georg-August University of Göttingen, Germany, 14German 

Cancer Research Center (DKFZ), Heidelberg, Germany, 15 Second Medical Department, 

University Hospital Schleswig-Holstein Campus Kiel/ Christian-Albrechts University Kiel, 

Germany, 16 Cytogenetic and Molecular Diagnostics, Internal Medicine III, University Hospital 

of Ulm, Germany, 17Department of Pediatrics I, Georg-August University of Göttingen, 

Germany, 18Institute of Functional Genomics, University of Regensburg, Germany, 19Institute 

for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Germany 20 

Institute of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany. 

2. Data preparation 

Prior to generating correlated gene sets (CGSs), the data sets were prepared to remove 
noisy measurements and to deal with multiple probes per gene which were additionally 
highly correlated. The aim of the data preparation was to eliminate noisy probesets and 
strong but uninteresting correlations among probesets.  

In the BL/DLBCL data set of Hummel et al. (2006) [1] (accesion number GSE4475), 
probesets without Entrez ID or with variance below 0.05 were excluded. Then, the following 
procedure was applied to each group of probe sets having the same Entrez ID:  

1. Select a probe set with the highest variance. 

2. Find probe sets which correlate well with the probe set selected in step 1 (Pearson’s 
correlation coefficient greater or equal 0.7). 

3. Aggregate the selected probe sets by computing their average. From now on the 
average is a new “probe set” represented by the name of the probe set selected in 
step 1. 

4. Go to 1 and repeat the procedure on the remaining probe sets until all probe sets are 
processed.  

The procedure resulted in 9580 from the initial 22283 features.  

In the BL/DLBCL data set of Dave et al. (2006) [2] (accession number GSE4732), we used 
gene symbols instead of Entrez IDs to identify multiple probes which measure expression of 
the same gene. Moreover, we did not apply the initial variance filter since the used platform 
(LymphDx) was customized for lymphoma. The 2745 probes in the original data set were 
aggregated with the above procedure to 2460 probes. 

In the data set of 364 DLBCL and related mature aggressive B-cell lymphomas (“extended 
DLBCL data set”, accession numbers GSE4475, GSE10172, GSE22470) which was used in 
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the main part of this study, probe sets were selected using the same procedure as the one 
applied to the BL/DLBCL data set of Hummel et al. (2006). As a result, 9473 probe sets 
remained in the data set. 

The labels of consensus clusters in the BL/DLBCL data set of Hummel et al. (2006) were 
obtained from Stefan Bentink. He transferred them from the data set in which they were 
originally generated to the data set of Hummel et al. (2006) as previously described [3]. 

3. Generation of correlated gene sets (CGSs) 

To identify sets of correlated genes we used a similar procedure as in [4]. Each gene 

pi ,,11   was considered as a “central” gene of a gene set. The gene set included a gene 

i  if all of the following conditions were satisfied: 

1. The total sum of squares of gene i  was not greater than that of the “central” gene 1i , 

i.e., )()()()(
1111 iiiiiiii xxxxxxxx   where 

1i
x  and ix  are vectors of 

expression values of the central gene 1i  and the gene i , respectively. 

2. The correlation of genes 1i and i  was positive and its square was at least equal to a 

given constant c . 

3. Gene i  was among the 30 genes which were most strongly positively correlated with 

gene 1i .   

We used Spearman’s rank correlation iiSr ,; 1
 and 5.0c . The value of 0.5 is the lowest 

possible value which ensures that any two genes in a set created in such a way have a non-
negative correlation. Similar value for the correlation threshold has beeen recommended by 
other authors [5]. Next, gene sets which consisted only of the central gene were eliminated. 
To extract non-overlapping gene sets, all gene sets were first sorted into descending order 
by 





mi

iiSiiiim rO
11111 ;)()( xxxx , 

where m is the set of indices of the genes in the gene set. Thus, a gene set had a high 
position in the ranking if its central gene showed high variability, if other genes from the set 
were highly correlated with the central gene and if the gene set contained a large number of 
genes. Next, we went from the top to the bottom of the list of the ranked gene sets each time 
selecting a gene set only if it did not overlap with any preceding, already accepted gene set 
from the list. Finally, from the remaining, non-overlapping gene sets, top 50 gene sets were 
selected for further analysis. 

Our motivation for limiting the maximal size of a gene set to 30 was:  

1. It made more probable that gene sets which represented correlated but distinct 
biological processes would remain in the analysis after the selection of non-
overlapping gene sets. Without the limit on the size of a gene set such gene sets 
would likely overlap with each other and only one of them would remain in the 
analysis. 

2. The presence of different tumor entities in our data set could generate correlations 
among functionally unrelated genes. For example, a large number of genes were 
correlated to some extent because of their differential expression between Burkitt 
lymphomas and the DLBCLs in the BL/DLBCL data set of Hummel et al. (2006). 
Setting the maximum size of a gene set to 30 meant that the effective correlation 
threshold for creating gene sets among such genes was higher than c . Thus, the 

modification made the method of creating gene sets more adaptive to the level of 
background correlation among the neighboring genes.  
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3. One consequence of introducing a limit on the size of a gene set was that several 
smaller gene sets were created instead of a large one. This fact had an impact on the 
unsupervised analyses of the samples giving more importance to biological 
processes which involved a large number of genes since they were represented by 
several and not only one gene set. 

The 50 CGSs created with the above procedure in both BL/DLBCL data sets [1,2] contained 
overall only a small fraction of the assayed genes – 6.8% (649 from 9580) and 8.9% (219 
from 2460), respectively. To examine the overall overlap between the gene sets generated in 
the two data sets, we considered only unique genes (mapped by gene symbol) which were 
measured on both platforms and belonged to the gene sets. There were 141 such genes in 
the data set of Hummel et al. (2006) and 168 such genes in the data set of Dave et al. 
(2006). From these, 65 overlapped which means that on average, about 40% of the genes 
from one list were also present in the other.  

4. Summaries of the CGSs 

For summarizing expression of a gene set we used the formulas developed in [6]. 

Specifically, given an pn  data matrix X  with columns representing genes and rows 

representing samples, we define an “individual coordinate” for patient j  and gene i  by 

)()(1
iiii

iji

ji

xx

n

n
k

xxxx 




  

where ix  is a vector of expression values of gene i . “Individual coordinate” is the individual 

contribution of patient j  to variable i  (the relative expression of gene i in patient j ). 

Individual coordinates of the members of gene set m  can be summarized with the “individual 

set coordinate” defined by   





 



mh mi

hi

mi

ji

jm

r

k

k  

where hir  in the denominator is the correlation between genes h  and i , given by 

)()()()(

)()(

iiiihhhh

iihh
hir

xxxxxxxx

xxxx




 . 

Thus, the expression of gene set m  in the n  samples is characterized by the vector 

 '21 nmmmm kkk k , and the matrix of the set coordinates of all gene sets is given by 

 
321 mmm kkkK  . 

For simplicity, we do not use the term “set coordinate” in the main text of this study. Instead, 
we use the term CGS (correlated gene set) to denote a set of correlated genes and also its 
summary, i.e., its set coordinate. 

5. Unsupervised analysis using principal components of the CGSs 

For sorting arrays and CGSs in the heat maps we used a previously published method [6,7]. 

We explain it here using the singular value decomposition '2/1
DVK   and denoting the i th 

eigenvalue and the corresponding eigenvectors by i , iv  and id , respectively. In a heat 

map, it is desirable that the arrays (the rows of matrix K ) which show similar expression with 
respect to their CGSs are arranged close to each other. Moreover, their arrangement should 
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not be sensitive to noise. One option to achieve it would be to sort the vectors representing 

the individual arrays (rows of matrix K ) according to the eigenvector 1v . Another way is to 

include the first and the second principal component in the sorting algorithm.   

In the practical implementation of this method, we standardized the n  row vectors of 

)( 21)2( vvV   to unit length so that they all lied on a unit circle. The order of the vectors on 

the circle determined the order of the corresponding arrays in the heat map. The leftmost and 
the rightmost arrays in the heat map were chosen such that the angle between the 
corresponding row vectors was maximal. For sorting the CGSs we used the row vectors of 

 2/1

22

2/1

1121)2( )(   vvKddD  in a similar way. In the simplified version of the 

procedure, arrays and the CGSs were ordered by the values of iv  and id , respectively, if the 

i th principal component was used. 

We modified the procedure sligthly for sorting arrays in one data set based on the vectors of 

principal component loadings computed in the other data set. Let AK  denote a matrix of set 

coordinates of gene sets generated in data set A, and BK  a matrix of set coordinates of 

gene sets generated in data set A and mapped to data set B. Moreover, let '
2/1

AAAA DVK   

and '
2/1

BBBB DVK   be their singular value decompositions. For sorting arrays and gene 

sets in data set B we used the row vectors of )2(ABDK  and )2(AD , respectively. If a gene set 

could not be mapped from one data set to the other then it was omitted from the 
computation. 

6. Validation of the CGSA method on two published BL/DLBCL data sets 

To validate the CGSA method, we examined whether the dimension reduction from several 
thousands of genes to only 50 CGSs led to loss of information related to the previously 
characterized lymphoma subtypes. We assessed this by looking at how well the CGSs could 
reproduce known molecular tumor classifications in an unsupervised manner. We began by 
identifying 50 CGSs in each of the two analyzed data sets. Next, we summarized expression 
of the genes in every CGS. Finally, we ordered the samples with respect to the values of 
their 50 CGSs.  
Figure 1 shows that the method of sorting the samples by their 1st principal component (PC1) 
reproduced the distinction into Burkitt lymphoma and other lymphoma types independently in 
the BL/DLBCL data set of Hummel et al. (2006) and in the BL/DLBCL data set of Dave et al. 
(2006). Moreover, Hummel et al. (2006) provided an index which quantifies similarity of a 
sample to a typical Burkitt lymphoma sample (mBL-index) with respect to gene expression. 
They used this index to split their cohort into molecular Burkitt lymphomas (mBL), 
intermediate cases and non-mBLs. Interestingly, this index shows a strong correlation (r = 
0.82 P = 2.85e-54) with our PC1. This close agreement with the results of Hummel et al. 
(2006) and Dave et al. (2006) confirms the validity of the CGSA method. Notably, the 
discovery of cases of Burkitt lymphoma using gene expression was the main objective of the 
two studies. For this purpose, the authors used other types of measurements in addition to 
gene expression while our approach was fully unsupervised. Figures 1A,B also show that 
one of the recently found groups of B-cell lymphomas termed “pathway activation patterns” 
[3] (PAP), PAP-1 and Burkitt lymphomas lie at the opposite ends of the spectrum of the 
cases. This is in accordance with the fact that Bentink et al. observed inverse expression 
pattern in the PAP-1 group as compared to the Burkitt lymphoma cases. Figure 1A also 
demonstrates the apparent similarity between the “host response” category [8] and PAP-1. 
Potentially more information about the structures present in the data can be gained by using 
the first two principal components instead of only the first principal component for ordering 
the samples and the CGSs. Figure S1A shows such an arrangement of the BL/DLBCL data 
set of Hummel et al. (2006). In addition to Burkitt lymphomas, tumors from several other 
PAPs are co-localized in Figure S1A. Whereas data from in vitro experiments were used to 
identify “pathway activation patterns”, our approach did not require any external data. When 
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we applied the same algorithm to the BL/DLBCL data set of Dave et al. (2006), a clear 
division in the activated B-cell-like diffuse large B-cell lymphomas (ABC), the germinal center 
B-cell-like diffuse large B-cell lymphomas (GCB) and Burkitt lymphoma emerged (Figure 
S1D). This is remarkable, since the original discovery of the ABC and GCB subtypes 
required biological expertise in the selection of the genes to be used for clustering samples. 
Further exploration of the BL/DLBCL data set of Hummel et al. (2006) revealed that in this 
data set the 5th principal component (PC5) discriminates between the ABC and GCB 
lymphomas. Using the PC1 and the PC5 to order the samples of this data set exhibited a 
pattern of ABC, GCB and Burkitt lymphomas (Figure S2A). Taken together, these results 
indicate that the 50 CGSs generated with our procedure retained information about the main 
molecular features of the analyzed data sets.  

a) Testing whether the unsupervised ordering of samples in the heatmaps 
reproduces known molecular subtypes of B-cell lymphomas 

To test whether the unsupervised ordering of samples by the principal components (PCs) of 
the CGSs (Figure 1, Figures S1 and S2) was non-random with respect to the known 
molecular subtypes of mature aggressive B-cell lymphomas we applied the strategy 
described in Section “Testing for association of the CGSs with other biologic features of the 
patients” to principal components of the CGSs (instead of the CGSs themselves). We tested 
all 50 PCs. Additionally, we computed (but did not use for testing) the areas under the 
receiver operating characteristic curves (AUC) and estimated their 95% confidence intervals 
by bootstrapping samples (1000 iterations). In case of multiple classes, the stated AUC is an 
average of all pairwise AUCs [9]. 

In the BL/DLBCL data sets of Hummel et al. (2006), the PC1 which was used to generate 
Figure 1A was significantly associated with the classification into mBL and other B-cell 
lymphomas (R2 = 0.59, AUC = 0.99 [0.985-0.998]), PC1 and PC2 (Figure S1A) with the 
PAPs (R2 = 0.72, 0.36, AUC = 0.82, 0.79) and with the consensus clusters (R2 = 0.36, 0.19, 
AUC = 0.77, 0.73). PC5 (Figure S2) was associated with the ABC and the GCB subgroups 
(R2 = 0.58, AUC = 0.95 [0.92-0.98], mBLs and cases unclassified with respect to ABC/GCB 
were excluded). All adjusted P = 0.001.  

In the BL/DLBCL data set of Dave et al. (2006), the PC1 (Figure 1B) was significantly 
associated with the molecularly defined BL and DLBCL groups (R2 = 0.53, AUC = 0.98 [0.96-
0.99]) and PC1 and PC2 (Figure S1D) with the PAPs (R2 = 0.75, 0.08 (adjusted P = 0.019), 
AUC = 0.83, 0.66). PC2 was associated with the ABC and GCB subgroups (R2 = 0.62, AUC 
= 0.96 [0.92-0.98], subgroups other than ABC and GCB were excluded from the test). All 
adjusted P = 0.001, unless otherwise stated.   

b) Rubustness of the results of the unsupervised analysis with respect to the 
number of the CGSs 

To examine robustness of the unsupervised analysis with respect to the number of the 
CGSs, we sorted the samples by the PC1 and PC2 in both analyzed data sets using not the 

top 50 but only the top 40, 30 and 20 CGSs ranked by mO  (Text S1). Figure S3 shows that 

the results remain very similar even for 30 CGSs. 

c) Rubustness of the results of the unsupervised analysis to the sampling error 
within one data set 

To determine how the ordering of samples depends on the sampling error, we split the 
BL/DLBCL data set of Hummel et al. (2006) into two parts. We used the division in the 
training set (113 samples) and the test set (107 samples) as given by the authors. Next, we 
applied the procedure of creating 50 CGSs to the two parts separately. We observed that the 
arrangement of the samples in one part of the data set was virtually independent of whether 
the CGSs used to order the samples were generated in the same or in the other part of the 
data set (Spearman’s rank correlation equal to 0.94 and 0.99 (P < 0.00001), respectively). 
The details are given in the following two paragraphs.  
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To determine how the unsupervised ordering of samples in the BL/DLBCL data set of 
Hummel et al. (2006) depended on the sampling error, we split this data set in two parts. We 
used the division in the training set (113 samples) and the test set (107 samples) as given in 
the original publication [1]. Next, we generated 50 CGSs independently in the two parts of 
the data set using the same method as the one applied to the complete data set. We used 
the 50 CGSs created in the training set to order the samples in the training set and 
(separately) in the test set. Similarly, we ordered the samples in the training set and also in 
the test set using the 50 CGSs which originated from the test set. Thus, we obtained two 
orderings of the training set and two orderings of the test set. As described in the next 
paragraph, we found that the orderings were highly correlated, with Spearman’s rank 
correlation equal to 0.94 and 0.99 (P < 0.00001) for the training set and for the test set, 
respectively.   

A correlation of two orderings of samples was computed as follows. The method which we 
used to order samples with respect to the expression of the 50 CGSs [6] treats a sample as a 
vector in a space with 50 dimensions. These vectors are projected on a two dimensional 
plane using the first two principal components. Then, the samples can be ordered according 
to the direction of their vectors on the plane. The obtained ordering is described by a 
permutation of the sample names. Which sample name comes first in the permutation vector 
and whether the sample names in the vector are arranged clockwise or anti-clockwise is 
arbitrary, due to the circular nature of the ordering. As a correlation between two orderings of 
samples, we reported the absolute value of the maximum Spearman’s rank correlation of the 
corresponding permutation vectors. The maximization was over all samples being taken as 
the first elements of the permutation vectors. To determine the significance of the reported 
correlation, we repeated the computation with 100,000 simulated random pairs of orderings 
of the 113 samples. The maximum absolute value of correlation obtained from this simulation 
of the null distribution of correlations was equal to 0.46, suggesting that the observed 
correlations of 0.94 and 0.99 had p-values far below 0.00001.   

d) Reproducibility of the results of the unsupervised analysis across data sets 

Next, we asked whether given an ordering of samples in one data set, we could obtain a 
similar ordering in the other data set. That would be desirable, if, say, we identified a 
biologically or clinically relevant distinction in one data set and wished to classify patients 
from another data set according to that distinction. We mapped the CGSs created in the 
BL/DLBCL data set of Hummel et al. (2006) to the data set of Dave et al. (2006) by gene 
symbols and ordered the latter using the principal component loadings of the first two PCs 
computed in the former (Text S1, Section “unsupervised analysis using principal components 
of the CGSs”). The result is depicted in Figure S1B. Patients labeled as Burkitt lymphomas or 
PAP-1 still cluster as they did in the data set of Hummel et al. (2006). The size of the other 
PAP-s is small and their ordering should be interpreted with caution. The same procedure 
applied in the reverse direction, i.e., from the BL/DLBCL data set of Dave et al. (2006) to the 
data set of Hummel et al. (2006) reproduced the ordering into ABC, GCB and Burkitt 
lymphomas with striking accuracy (Figure S1C). Furthermore, we also obtained consistent 
results using the PC-loadings of the PC1 and PC5 from the data set of Hummel et al. (2006) 
to sort the samples of the data set of Dave et al. (2006) (Figure S2B). These analyses show 
that the orderings of samples generated with the CGSs are robust not only to sampling 
variability but also to the differences between microarray platforms. 

7. Testing for the association between the CGSs and other biologic features of the 
patients 

The matrix X  is assumed to be the pn  data matrix with columns representing genes 

(variables) and rows representing patients (samples). The matrix K  of set coordinates of the 
gene sets can be written as 

    EXXeeXXkkK )()(
2121

  mmmm , 
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where the matrix of weights E  is a function of )()( XXXX  . Our procedure is based on 

the general method by Läuter [4]. The method takes into account that matrix E  is random, 

i.e, that randomly selected genes are used. Let hF  denote a statistic for testing association 

between the set coordinate 
hmk  and a different feature of the same set of patients. For 

example, if this feature is the presence or absence of a specific genomic aberration, then hF  

can be the two-sample Beta-statistic.     

Our null hypothesis for a single set coordinate 
hmk  (with a fixed h ) is that its all !n  

permutations 


hmk  are equally likely. In other words, we assume that under the null 

hypothesis all patients are exchangeable. Consequently, we can use the permutation test to 

examine this hypothesis. If we wish to test for the association between 
hmk  and several other 

features, we can use the procedure of Westfall and Young [10] to adjust for multiple testing. 

Specifically, let  ...,,, )3()2()1(

hhh FFF  be the statistics corresponding to each of the features to 

be tested. From the null hypothesis that all !n  permutations 


hmk  are equally likely follows that 

the corresponding !n  vectors   )2()1(

hh FF  of statistics and also their maxima 

  )(max j

h
j

h FF  are equally likely. This property allows for the method of Westfall and Young 

to be used. An observed statistic 
)( j

hF  leads to significance on the level   if the number of 

permutations with 
 h

j

h FF )(
 is not higher than !n . The corresponding p-value is given by 

!

)(# )(
)(

n

FF
P h

j

hj

h


 , and the null hypothesis is rejected if )( j

hP . If the number !n  of all 

permutations 


hmk  is large, one should use a random subset consisting of r permutations. It is 

important, however, always to include the original, unpermuted 
hmk  in this subset.  

If several set coordinates are tested, the p-values obtained separately for each set 
coordinate from the above procedure can be adjusted across the set coordinates with the 
Bonferroni correction. In this second step of adjustment, we do not apply the Westfall-Young 
principle, because the necessary multivariate exchangeability conditions are not fulfilled in all 
cases.  

In the tests for association between the set coordinates and the recurrent genomic 
abnormalities we used two-sample Beta-statistics. The two groups compared were the group 
with and without a specific abnormality. For testing association with features other than 
genomic aberrations, we applied Beta-test for correlation, a test for two or more groups of 
samples, depending on the type of the variable tested. Then, we used the observed p-values 

as the statistics 
)( j

hF  in the procedure of Westfall and Young, i.e., we used a minP-

adjustment instead of a maxT-adjustment [10]. Accordingly, we substituted “min” for “max” 
and   for   at the appropriate places in the procedure described above. Since we tested 50 

set coordinates, we set the number of permutations to 50000r  such that the minimal 

attainable adjusted p-value was 0.001. 

8. Validation of the CAPs in an independent data set 

We obtained raw expression data from an independent data set of 414 DLBCL samples 
hybridized to the HG-U133plus2 GeneChip platform [11]. We normalized and summarized 
the data using a similar procedure to that applied to our data from the MMML-project. Next, 
we mapped the CGSs generated in our extended DLBCL data set to the data set of Lenz et 
al. (2008) [11] using Affymetrix IDs. We observed differences in expression between the 181 
CHOP-treated and the 233 Rituximab-CHOP-treated samples of Lenz et al. (2008) [11]. 
Therefore, we standardized the CGSs separately in these two data sets to remove this batch 
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effect. Finally, we clustered all 414 samples of Lenz et al. (2008) [11] with respect to the 50 
CGSs using the same algorithm as the one used to obtain the 3 CAPs (Partitioning around 
Medoids with Euclidean distances) and setting the number of clusters to 3. The result of the 
clustering is shown in Figure 2B. To examine whether the obtained clusters corresponded to 
our CAPs, we found centroids of each of the clusters generated in the data set of Lenz et al. 
(2008) [11] and in our extended DLBCL data set by computing the mean of each CGS over 
all samples from the appropriate subtype. Next, we computed correlations between the 
centroids from these two data sets (Figure 2C). A related method for presenting similarities 
between gene expression patterns found in expression subtypes across data sets was 
introduced previously [12]. 

9. Analysis of differential expression 

Analysis of differential expression was performed with the R-package limma (linear models 
for microarray data analysis) [13]. The p-values were adjusted to control the false discovery 
rate (FDR) at 0.05 using the method of Benjamini-Hochberg [14]. Since our gene expression 
data were normalized with the VSN method [15], we used generalized log-ratios as 
schrinkage estimators of the log fold changes [15]. The generalized log-ratios were 
computed as differences between the normalized intensity values. Since the generalized log-
ratios are approximately on the natural log scale, they had to be exponentiated to obtain the 
estimated fold changes. Before computing differerentially expressed genes, we removed 
probe sets without Entrez IDs and, in case of multiple probe sets per Entrez ID, we kept the 
probe set with the highest interquartile range in the analysis. This procedure resulted in 
12679 probe sets. From these, 10910 could be mapped to either an LE gene (3585) or an 
HE gene (7325).   

10. LE and HE genes 

We obtained a list of gene symbols of the LE and HE genes from the authors of the original 
publication [16]. We mapped them to Entrez IDs and then to Affymetrix IDs using 
Bioconductor [17]. From the 22283 probesets, 5248 could be mapped to an LE gene and 
12590 to an HE gene.  

11. Kernel density estimation 

Kernel density estimates of the gene expression distributions were computed using the 
function “density()” from the statistical software package R [18]. Default settings of this 
function were used. 

12. Pathway analysis with PAGE (Pathway Analysis of Gene Expression) 

The gene universe for this analysis was given by all Entrez IDs of the HE genes (n = 7325). 
There were 3394 HE genes which were not overexpressed in any of the CAPs and, 
therefore, do not appear in the Venn diagram (Figure 6A). Overlaps between the lists of 
differentially expressed genes and the Gene Ontology (GO) terms were evaluated using the 
PAGE method [19]. We used Biological Process annotations of the Gene Ontology and the 
default significance threshold of P<0.005. The resulting (log10-transformed) p-values are 
shown as heatmaps (negative log10 p-values for overrepresentation and log10 p-values for 
underrepresentation). Redundantly informative GO terms [19] were removed in the version of 
the computiation presented in the main text (Figure 6B). Figure S9 shows the result of the 
computation without removing the redundant GO terms. 

13. Discussion of the CGSA method and its relation to other approaches 

From the methodological perspective, there are some important distinctions between our 
approach and the previous related work in the field of gene expression analysis. The guiding 
principle of the method presented here is that every aspect of the construction and filtering of 
the CGSs depends solely on permutation-invariant statistics such as the overall variance and 
covariance of the genes. As a consequence, the tests for association of the CGSs with other 
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characteristics of the patients control the type I error rate [4]. In other words, data-dependent 
summaries of genes can be constructed and tested in the same data set. This is different 
from the majority of the literature on gene sets [20,21] which assumes that the gene sets to 
be tested in a data set were created independently from it. Another feature of our method is 
the focus on relatively few coordinately expressed sets of genes with large variance across 
samples [22,23]. We reasoned that genes not belonging to such sets are more likely to 
represent noise and, therefore, are better excluded. This view is supported by recent studies 
which indicate that genes which are relevant in cancer tend to form well-connected sub-
networks of interactions [24]. In contrast to our approach, most clustering techniques as, e.g., 
the popular method of hierarchical clustering [25], make use of all genes. Furthermore, our 
gene sets have a structure in which there is one central gene with which all other members 
of the gene set correlate. This construction can be justified by the observation that important 
genes tend to form highly connected hubs in coexpression- and other regulatory networks 
[5,26,27,28,29,30]. Moreover, this one-factor structure of the gene sets has advantages from 
the statistical point of view. Conditional on the central gene of a gene set, all other genes in 
this set tend to be partially uncorrelated. This adds to the statistical stability of a summary of 
the gene set [31]. 
Another general approach which is alternative to clustering is to decompose the data in a 
series of factors, mostly by principal component analysis (PCA) [7,32,33] but also using more 
complicated methods [22,34,35,36,37]. The CGSA relaxes the assumption made by the PCA 
about the orthogonality of the factors but remains computationally simple. The created 
factors (CGSs) adapt more closely and in a more flexible way to the correlation structure of 
the genes. Thus, correlated but biologically distinct phenomena can be potentially 
represented by separate factors. The interpretability of the results is enhanced by the fact 
that each factor is associated with a set of genes.  
The view that sets of coexpressed genes may be of special interest in gene expression 
analysis has been present in the literature for some time [5,25,38,39,40]. Moreover, some 
authors expressed the idea that the dimension of gene expression data can be reduced to a 
relatively small number of factors [7,33,41]. There is also a multitude of methods for testing 
differential expression on the level of gene sets [20,21]. An advantage of the strategy 
presented here is that it combines these ideas and approaches which have been up to now 
considered mostly in separation. As we have shown, the effective dimension reduction 
achieved by our method simplifies the study of relations between transcriptional, genomic 
and phenotypic features. Moreover, our recent research suggests that interpretations of the 
observed gene expression patterns in terms of pathway activities can be gained by mapping 
the CGSs to interventional cell line data [42]. 
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