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eAppendix 

 

Details of our marginal structural models. 

 

We used the following marginal structural models for our primary analyses.  For our primary 

analyses, both were weighted using a single set of inverse probability weights that combine three 

different inverse probability weights – one for confounding, one for censoring due to death, and 

one for censoring due to non-death drop-out.   

 

 

Where   k is the age at cognitive testing 

I(a(k)=1) is an indicator for whether the participant has a history of hypertension  

   at age k 

 

cum(a )  is a cumulative measure of years since hypertension initiation 

(A)  

 

E(Ya (k)) = β0 + β1I(a(k) =1) + β2k  

 

(B) 

 

E(Ya (k)) = β0 + β1I(a(k) =1) + β1I(a(k) =1)* (cum(a )) + β1I(a(k) =1)* (k − cum(a )) + β4k  



k-

 

cum(a )  is the age at initiation of hypertension 

 

We refer the reader to a paper by Hernan and colleagues1 for sample code and a discussion of the 

derivation and use of stabilized inverse probability weights in the context of longitudinal data.  

However, we reproduce formulas for inverse probability of exposure weights and inverse 

probability of censoring weights here, adapted to the context of our study, and discuss their 

application in the current analyses.   

 

Details of computation of stabilized inverse probability weights. 

 

We calculated stabilized inverse probability of exposure weights, which address confounding, in 

our longitudinal data using the following process: 

 

(a) We began with a dataset with one row per study visit.  We used a logistic regression model to 

model the relationship between converting to having a history of hypertension at the next visit 

given the history of hypertension status at the current visit, the history of time-varying 

confounders, and the baseline covariates.  Note that history of hypertension is monotonic, such 

that once a participant converts to having a history of hypertension the probability of having a 

history of hypertension at the next visit is one.  As such, our dataset for the logistic regression 

model only contained visits at which a person has not yet converted to having a history of 

hypertension.  By extension, history of hypertension was not included as a variable in the logistic 

model because there is no variation in the data – every visit in the dataset has no history of 

hypertension at the current visit, although they could either remain non-hypertensive or become 



hypertensive at the next visit.  We then created a variable with the predicted probability of 

converting to having a history of hypertension at the next visit from the logistic regression model 

for all visits where the participant had not yet converted to having a history of hypertension and 

added it to the full dataset with one line per visit.  This variable was used to derive the 

denominator of our stabilized inverse probability of exposure weights.  

 

(b)  We then repeated this process, omitting all covariates from the logistic regression model.  

This second variable was used to derive the numerator of the stabilized inverse probability of 

exposure weights.  

 

(c)  We used the following formula to calculate the stabilized inverse probability of exposure 

weight for each visit (indexed by t) summarized in eTable 1. 

 

 

 

   = History of hypertension at visit t 

   = History of hypertension prior to visit t 

   = History of time-varying covariates up through visit t 

    = Baseline covariates 

 

Note that the probabilities in the formula do not refer to the predicted probability of having a 

history of hypertension at visit t, Pr(Htt=1), or the predicted probability of lacking a history of 

hypertension at visit t, Pr(Htt=0).  Instead, the probability of interest is the predicted probability 
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of having the history of hypertension status actually observed at visit t.   Also note that the 

quantity following the product term was one for all visits where participants had already 

converted to having a history of hypertension at visit t-1. 

 

(d) In our case, we use a dataset with one row per person for our marginal structural linear model 

because we have one outcome measure per person and use summary exposure variables.  

Therefore, the inverse probability of exposure weights from the final visit of each participant 

(t=max) as calculated above are the final weights we would use in our analyses if we were not 

also using weights for dependent censoring.  

 

Stabilized inverse probability of censoring weights, which account for dependent censoring, can 

be calculated using a similar process. Because we hypothesized two different censoring 

mechanisms, we actually calculated two sets of weights.  For weights to account for censoring 

due to death, we used the following formula:            
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Dt
   = Died prior to visit t?  (1=yes, 0=no) 

   = History of hypertension prior to visit t 

   = History of time-varying covariates up to visit t 

    = Baseline covariates 
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And for censoring due to non-death drop-out, we used the following formula: 
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Ct
   = Non-death drop-out prior to visit t?  (1=yes, 0=no) 

Dt
   = Died prior to visit t?  (1=yes, 0=no) 

   = History of hypertension prior to visit t 

   = History of time-varying covariates up to visit t 

    = Baseline covariates 

 

As before, we began with a dataset with one line per study visit.  It is important to note that the 

variables that predict drop-out (L,V) may differ by censoring mechanism (death, non-death).  It 

is also important to note that our censoring mechanisms are ordered in time, with death 

preceding non-death drop-out, which accounts for the inclusion of Dt=0 in the denominator of 

the weights for non-death censoring.  

 

The process for the calculation of each set of inverse probability of censoring weights is similar.  

For each set of weights, we created a dataset including all visits, with one line per visit, where 

the person could conceivably be censored by the mechanism of interest prior to the next visit.   

The dataset for censoring due to death contained all visits except those where the person 

completes cognitive testing, as we administratively censor each individual at that point.  The 

dataset for censoring due to non-death drop-out contained all visits except those where the 
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person completes cognitive testing or is known to die prior to the next potential visit.  We used 

logistic regression models to predict the probability of not being censored at the next visit and 

used these predicted probabilities to calculate the weights using the formulas above.  Again, for 

the current analyses, since our analytical dataset has only one line per person, if we were only 

applying a single weight for censoring, we would weight our analyses by the stabilized inverse 

probability of censoring weight at the last study visit.  This inverse probability of censoring 

weight is the product of the final inverse probability of censoring weights for death and the final 

inverse probability of censoring weights for non-death drop-out. 

 

In our study, we needed a single set of weights that function as inverse probability weights for 

confounding, censoring due to death, and non-death censoring.  To compute these summary 

weights, we take the inverse probability of exposure weight, the inverse probability of censoring 

due to death weight and the inverse probability of censoring due to drop out weight at the 

participant’s last visit and simply multiply them together.   Characteristics of each set of inverse 

probability weights calculated from our data and the final combined weight used in our analyses 

are provided in eTable 1. 
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eTable 1.  Characteristics of Final Stabilized Inverse Probability Weights Among 

Persons Who Completed Cognitive Testing 

  Weight 

  

Censoring 

Due To 

Death 

Censoring 

Due to 

Drop-Out Confounding 

Combined 

Weight 

Mean (Standard Deviation) 0.99 (0.36) 1.02 (0.38) 1.01 (1.82) 1.00 (1.85) 

Minimum 0.62 0.82 0.10 0.10 

1st Percentile 0.68 0.84 0.12 0.12 

5th Percentile 0.74 0.86 0.23 0.22 

10th Percentile 0.77 0.88 0.30 0.27 

50th Percentile 0.91 0.96 0.67 0.62 

90th Percentile 1.24 1.15 1.68 1.67 

95th Percentile 1.47 1.33 2.42 2.61 

99th Percentile 2.52 1.59 6.70 8.72 

Maximum 5.07 10.58 38.47 27.36 

 

  



eTable 2.  Sensitivity analyses for the association between a 1 year difference in age at onset and 

duration since hypertension initiation prior to cognitive testing and age-adjusted mean cognitive test 

z-score. 

  Beta (95% Confidence Interval) 

  

Alternate derivation 

of age at onset of 

hypertension 

Restricting to those 

under 35 at 

enrollment 

Incorporating a 4 

year prodromal 

period 

Truncating weights 

at the 1st/99th 

percentile 

Age at 

onset 
-0.01 (-0.03, 0.004) 0.001 (-0.03, 0.04) -0.006 (-0.02, 0.01) -0.002 (-0.02, 0.02) 

Duration 

Since 

Initiation  

-0.03 (-0.05, -0.01) -0.02 (-0.05, 0.02) -0.02 (-0.04, 0.002) -0.02 (-0.03, 0.003) 

 

 



 

eFigure 1.  Simple causal direct acyclic graphs 
under the null hypothesis of no association 
between hypertension and cognition that 
show causal structures resulting in selection 
bias due to association between  study 
participation (S) and both hypertension (HT) 
and cognitive function (Cog).  In A) 
hypertension and cognitive function both 
have direct effects on participation.  In B) the 
association between participation and both 
cognition or hypertension attributable to a 
common cause (L).  For example, L could be a 
genetic variant or lifestyle factors, like diet.  If 
the entire association between participation 
and both hypertension and cognition were 
due to L, and if we were able to measure and 
adjust for L in our regression models, there 
would be no bias.  However, the causal 
structure is more likely a combination of A) 
and B), as illustrated in C). 
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eFigure 2.  A simple, explanatory causal direct acyclic graph under the null hypothesis of no 
association between hypertension and cognition and the assumption of no unmeasured 
confounding illustrating the potential for time-varying confounding in our data (although we 
show only three study visits prior to cognitive assessment here, the pattern can easily 
extend to any number of assessments).  HTi is hypertension diagnosis at time i, Cog is 
cognitive test scores at the end of follow-up, Ci is a time-varying confounder at time i, and Ui
is an unmeasured, time-varying common cause of C and Cog.  Note that C meets both 
criteria for time-varying confounding, as it A) predicts both cognitive status at the end of 
follow-up and subsequent hypertension diagnosis and B) is predicted by prior hypertension 
diagnosis. Associations obtained without conditioning on C are biased, as C is a common 
cause of hypertension diagnosis and cognition, and associations obtained with conditioning 
on C are biased due to the backdoor path created due to conditioning on a collider (C), 
suggesting the need for other methods (e.g. inverse probability weighting) to obtain 
unbiased estimates.
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