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This material extends the result section of [1] by providing

cost function plots and a simulation study of a helical scan of

the XCAT phantom [2].

References to equations, tables, figures, bibliography are

within this material unless they are specified.

I. COST FUNCTION

In [1], we computed root mean square difference (RMSD)

within region-of-interest (ROI) to evaluate the convergence

rate of the proposed algorithm. Another way to assess the

convergence rate is computing the cost function Ψ(x) in [1,

Eqn. (2)] at each iteration. We used the following metric:

ξ(n) = 20 log10

(

Ψ(x(n))−Ψ(x(∞))

Ψ(x(∞))

)

[dB] (1)

to better visualize how the cost function decreases each

iteration. We used double precision and triple for loops when

accumulating Ψ(x(n)) to ensure high accuracy.

Fig. 2 shows plots of ξ(n) for the choices of parameters used

in [1, Fig. 5 and 6] for two real 3D scans; GE performance

phantom (GEPP) and shoulder region scan. Fig. 2(a) shows

that for the GEPP case, the NU-OS methods decreased the cost

function at about the same rate than the ordinary OS method,

or even perhaps slightly slower. In contrast, when we plotted

RMSD distance to the converged image within the ROI [1, Fig.

5], NU-OS converged significantly faster. The reason for this

different behavior is that the cost function plot considers all

voxels, even those outside the ROI which are not of interest

clinically. It is known that OS methods are not guaranteed

to converge and apparently the non-ROI voxels are either

not converging or perhaps approaching a larger limit-cycle,

presumably due to the poor sampling in the padded slices

outside the ROI, even with the stabilizing methods outside

ROI described in [1, Section V]. Therefore, cost function plots

may not provide practical measures of convergence rate for

OS methods, particularly with acceleration. Future research on
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trying to further stabilize the NU-OS-SQS algorithm outside

the ROI also may be helpful.

The final drops at the right in Fig. 2(a) show that aver-

aging sub-iterations at the last iteration, as described in [1,

Section IV.C], can compensate for the limit-cycle, particularly

outside the ROI.

Unlike Fig. 2(a), the plots in Fig. 2(b) and 2(c) of shoulder

region scan look similar to the plots of RMSD within ROI

in [1, Fig. 6]. The scan geometry of each data set might

explain these behavior of cost function in Fig. 2, where the

shoulder region scan is a helical scan with pitch 1.0 and

7 helical turns and thus the corresponding image space has

relatively few voxels outside the ROI, compared with GEPP

data that is acquired by a helical scan with pitch 0.5 and 3
helical turns. Therefore, we can expect the cost function of

shoulder region scan to be less affected by instability outside

the ROI. Slower convergence of NU-OS-SQS algorithm at

early iterations in Fig. 2(c) means that some choices of initial

update-needed factor ũ
(0)
j were not good enough for voxels

outside the ROI. The effect of averaging at the last iterations

is apparent in Fig. 2(b) and 2(c), because the instability outside

the ROI is suppressed by the averaging.

II. SIMULATION DATA

A. Simulation data

We simulated a helical CT scan data by using XCAT phan-

tom [2]. We first acquired a 1024×1024×154XCAT phantom

for 500 [mm] transaxial field-of-view (FOV) at 70 [keV],

where ∆x = ∆y = 0.4883 [mm] and ∆z = 0.6250 [mm].

(See Fig. 1.)
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Fig. 1. A simulated XCAT phantom: a center slice of 1024 × 1024 × 154
XCAT phantom. (Images are cropped for better visualization.)
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Fig. 2. Plots of ξ(n) in (1) as a function of run time for different choice of DRA parameters for (a) GE performance phantom and (b-c) a shoulder region
scan.

We simulated a helical scan using the blank scan factor bi =
106 and the mean number of background events ri = 0 with

Poisson noise. The sinogram data is in 888× 64× 2934 (the

number of detector columns×detector rows×projection views)

space with pitch 1.0. Then, we reconstructed a 512×512×154
image where ∆x = ∆y = 0.9766[mm] and ∆z = 0.6250[mm]

using the proposed NU-OS-SQS algorithm.

B. Results

We use a cost function that is similar to the cost function

used in [1, Section V]. We solve a PWLS function with a

potential function ψk(t) , ω̄kψ(t) in [1, Eqn. (45)] using a

spatial weighting parameter:

ω̄k , 50 ·

Np
∏

j=1
ckj 6=0

max {κj , 0.01 κmax} (2)

that provides uniform resolution properties [3], where

κj ,

√

√

√

√

∑Nd

i=1 aijwi
∑Nd

i=1 aij
(3)

and the value of κmax , maxj κj is used in (2) to avoid under-

regularizing some voxels with very small κj . Fig. 3 illustrates

both RMSD within ROI and ξ(n) versus computation time,

which we run the algorithm on the machine described in [1].

In Fig. 3(a), we evaluated the convergence rate using RMSD

within ROI between current and converged image, where

the converged image was generated by many iterations of a

(convergent) SQS. We used parameters of DRA function that

are used in [1, Fig. 5 and 6], and we observed similar trends.

We also illustrate the plot of ξ(n) versus run time in Fig. 3(b),

which looks very similar to Fig. 3(a). This is because we

regularized relatively more than two other experiments in this

simulation experiment, and thus instability outside the ROI

that can be caused by NU-OS-SQS methods is not apparent

here.

In Fig. 4(a), the reconstructed images of (NU-)OS-SQS

show that NU method accelerates OS-SQS and reaches closer

to the converged image after the same computation time (88

min.). This is apparent when comparing the difference images

between the reconstructed and converged images in Fig. 4(b),

particularly around the spine.
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Fig. 3. A simulated XCAT phantom: plots of (a) RMSD and (b) ξ(n) versus run time for different choice of parameters t for ǫ = 0.05 in g(v) = max
{

vt, ǫ
}

.
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Fig. 4. A simulated XCAT phantom: (a) A center slice of reconstructed image by OS-SQS(82) and NU-OS-SQS(82)-g(v) = max
{

v10, 0.05
}

after about
88 min. (b) Difference between the reconstructed and converged images are additionally shown to illustrate the acceleration of NU approach. (Images are
cropped for better visualization.)
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