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1. Cramer-Rao Lower Bound Analysis

The advantage of the 2D approach as demonstrated in the paper is de-
pendent upon the number of points, m, sampled in the indirect dimension, as
well as the ratio RT1 of the T1 relaxation time constants. We calculated the
Cramer-Rao lower bound (CRLB) [1, 2, 3] as a function of m, using, as an
example, a signal comprised of two with components (T1, T2, weight) = (25
ms, 100 ms, 60%) and (35 ms, 300 ms, 40%) at SNR = 100. Fig 1 shows that
precision improved rapidly up to ∼ m = 6, after which this improvement
was less marked. We therefore selected m = 6 in our simulations and ex-
periments as representing a reasonable tradeoff between experimental speed
and accuracy. Similarly, we found the 2D approach to provide no benefit
in the case of equal component T1’s, and to become increasingly advanta-
geous with increasing difference between T1 relaxation time constants (Fig.
2). Substantial improvements were seen for RT1 > ∼ 1.5, with the degree
of improvement tapering off for RT1 > 2. It is clear that these results for m
and RT1 must be regarded as representative; they will clearly be dependent
upon component SNR, T2s and weights.
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Figure 1: Cramer-Rao lower bound as a function of m for a simulated signal with two
components with (T1, T2, weight) = (25 ms, 100 ms, 60%) and (35 ms, 300 ms, 40%) at
SNR = 100.
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Figure 2: Cramer-Rao lower bound as a function of the ratio RT1 of the T1 relaxation
time constants for a simulated signal with two components with (T1, T2, weight) = (25
ms, 100 ms, 60%) and (35 ms, RT1×100 ms, 40%) at SNR = 100.
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