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I. General Experimental Protocols 
1H and 13C NMR spectra were recorded on Varian Inova 500 (500 MHz), Varian Inova 300 (300 

MHz), Varian VXR 300 (300 MHz), and Bruker Avance 500 (500 MHz) spectrometers. 1H NMR 
chemical shifts in CDCl3 are referenced to TMS (δ 0.00 ppm). Non-first order multiplets are identified as 
"nfom". 13C NMR chemical shifts in CDCl3 are referenced to chloroform (δ 77.16 ppm). A spurious spike 
at ca. 5 ppm is sometimes present in the copies of the 1H NMR spectra that were processed using iNMR 
software. TMS is present in some 13C NMR samples (δ ca. 0.0 ppm). The following format is used to 
report resonances: chemical shift in ppm [multiplicity, coupling constant(s) in Hz, integral, and 
assignment]. 1H NMR assignments are indicated by structure environment, e.g., CHaHb. Some complex 
structures are numbered in order to simplify proton assignment numbering and naming. Coupling 
constant analysis was guided by methods we have described elsewhere.1,2 Quantitative 1H NMR (i.e. 
qNMR) spectra were obtained on a Bruker Avance 500 (500 MHz) spectrometer. Acquisition parameters 
were modified as described by Paul et al.3 (e.g., 256 transients and d1 delay time of 13.0 seconds). 

Infrared spectra were recorded on a Midac Corporation Prospect 4000 FT-IR spectrometer. The most 
intense and/or diagnostic peaks are reported, and all spectra were collected in attenuated total reflectance 
(ATR) mode as thin films on a germanium window. 

High-resolution mass spectrometry (HRMS) measurements were made on one of two instruments. 
Chemical ionization mass spectrometry was performed on a Finnigan MAT 95 (CIMS) mass 
spectrometer. Samples were introduced via capillary gas chromatography using an oven temperature 
profile of 25-320 ºC ramped at 50 ºC/min. Electrospray ionization (ESI) mass spectrometry was 
performed on a Bruker BioTOF II (ESI-TOF) instrument using PEG or PPG as an internal 
standard/calibrant. Samples were introduced as solutions in methanol or acetonitrile.   

MPLC refers to medium pressure liquid chromatography (25-200 psi) using hand-packed columns of 
Silasorb silica gel (18-32 µm, 60 Å pore size), a Waters HPLC pump, a Waters R401 differential 
refractive index detector, and a Gilson 116 UV detector. Flash chromatography was performed using E. 
Merck silica gel (230-400 mesh). Thin layer chromatography was performed on glass or plastic backed 
plates of silica gel and visualized by UV detection and/or a solution of ceric ammonium molybdate, 
anisaldehyde, potassium permanganate, or phosphomolybdic acid. 

Reactions requiring anhydrous conditions were performed under an atmosphere of nitrogen or argon 
in flame or oven dried glassware. Piperidine, diisopropylamine and triethylamine for cross-coupling 
reactions were deaerated by a freeze-pump-thaw cycle and then stored in a Schlenk flask or by direct 
purging with N2 gas immediately prior to use. Anhydrous THF, diethyl ether, toluene, and methylene 
chloride were taken immediately prior to use after being passed through a column of activated alumina. 
Reported (external) reaction temperatures are the temperature of the heating bath. HDDA reactions, 
including those that were carried out at temperatures above the boiling point of the solvent, were typically 
performed in a screw-capped vial or culture tube fitted with an inert, teflon-lined cap. Those carried out in 
deuterated solvents were often performed directly in a capped 5 mm NMR sample tube. 



Supplementary Information Alkane Desaturation via Concerted Double Page 4 of 101 
 Hydrogen Atom Transfer to Benzyne 

General Procedure A: Alkyne Bromination 
Powdered AgNO3 (0.1 equiv) was added to a stirred solution of alkyne (1.0 equiv) and N-

bromosuccinimide (NBS, 1.1 equiv) in acetone (0.1 M) at rt. After 1 h the slurry was either i) filtered 
through Celite® (acetone eluent) and concentrated or ii) partitioned between Et2O and water, further 
extracted with Et2O, washed with brine, dried (MgSO4), and concentrated. The crude material was 
typically purified by flash chromatography on silica gel. 

 

General Procedure B: Cadiot–Chodkiewicz Alkyne Cross-Coupling 
CuCl (0.05 equiv) was added to a stirred solution of alkyne (partner A, 1.0 equiv) and 1-bromoalkyne 

(partner B, 1.5 equiv) in freshly deaerated piperidine (0.3 M) at 0 ºC and under an inert atmosphere. After 
1 h the reaction mixture was diluted with satd. aq. NH4Cl and extracted with EtOAc or Et2O. The 
combined organic extracts were washed with brine, dried (MgSO4), and concentrated. The crude material 
was typically purified by flash chromatography on silica gel. 

 

General Procedure C: Tandem HDDA/Alkane Double Hydrogen Atom Transfer 
A solution of HDDA triyne or tetrayne precursor in cyclooctane (ca. 0.01 M) was heated at the 

indicated temperature in a culture tube fitted with an inert, Teflon®-lined cap. After 12-48 h (as specified) 
the reaction mixture was loaded onto a bed of silica gel and washed sequentially with hexanes, to remove 
the excess cyclooctane, and ethyl acetate. The ethyl acetate fraction was concentrated to provide the crude 
product mixture. This material was typically purified by flash chromatography on silica gel. 

 

Tabular Inset Notes (a-f) for Fig. 3a 
aIsolated yields from experiments carried out in neat 2H-donor solvent ([12]o = 0.01 M). bWe have 

observed that norbornene4 and 2,3-dihydrofuran adduct with HDDA-generated benzynes. cBy qNMR3 
analysis of experiments performed in CDCl3 containing 20 molar equiv each of cyclopentane and the 
second donor. dFrom 2H vs. 2D-incorporation using a 1:10 molar ratio of cyclopentane and THF-d8. eΔG‡ 
values (kcal mol-1) were determined using M06-2X/6-311+G(d,p). fFor the TS leading to 2,3-
dihydrofuran.  
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II. Preparation procedures and characterization data for all new compounds   
 
3-(9-Oxo-1-(trimethylsilyl)-9H-fluoren-2-yl)propyl acetate (10-h2) 

 

 
A solution of known acetate 84 (20 mg, 0.057 mmol) in THF (6 mL) was heated to 85 °C for 18 h. 

The resulting solution was concentrated and purified using flash column chromatography 
(hexanes:EtOAc 15:1) to yield 10-h2 (15 mg, 0.043 mmol, 75%) as a golden oil.  
1H NMR (500 MHz, CD3Cl): δ 7.57 (d, J = 7.3 Hz, 1H, H8), 7.42-7.46 (m, 3H, H4/H5/H6), 7.24-7.26 

(nfom, 1H, H7), 7.22 (d, J = 7.6 Hz, 1H, H3), 4.11 (t, J = 6.5 Hz, 2H, CH2O), 2.85 (d, J = 8.0 Hz, 2H, 
ArCH2), 2.07 (s, 3H, CH3CO), 1.86 (nfom, 2H, CH2CH2O), 0.45 [s, 9H, Si(CH3)3]. 

1H NMR (500 MHz, CD3OD): δ 7.59 (ddd, J = 7.4, 1.0, 1.0 Hz, 1H, H8), 7.58 (d, J = 7.6 Hz, 1H, H4), 
7.53 (ddd, J = 7.3, 1.0, 1.0 Hz, 1H, H5), 7.51 (ddd, J = 7.5, 7.5, 1.1 Hz, 1H, H6), 7.33 (d, J = 7.7 Hz, 
1H, H3), 7.29 (ddd, J = 7.4, 7.4, 1.1 Hz, H7), 4.11 (t, J = 6.4 Hz, 2H, CH2O), 2.89 (br t, J = 8.0 Hz, 
2H, ArCH2), 2.04 (s, 3H, CH3CO), 1.87 (nfom that includes J = 8.1 and 6.2 Hz, 2H, CH2CH2O), and 
0.43 [s, 9H, Si(CH3)3]. 

13C NMR (125 MHz, CDCl3): δ 195.5, 171.3, 149.2, 144.1, 143.6, 141.2, 140.6, 135.4, 134.7, 134.0, 
128.9, 124.1, 121.1, 119.7, 63.9, 33.2, 32.5, 21.2, and 2.6 ppm. 

IR (neat): 2950, 2848, 1739, 1713, 1606, 1586, 1467, 1438, 1386, 1365, 1245, 1183, 1043, 862, and 847 
cm-1. 

HRMS (ESI-TOF): Calcd for C21H24NaO3Si+ [M+Na]+ requires 375.1387; found 375.1386. 

An analogous experiment using THF-d8 gave 10-d2. The 1H NMR spectrum is provided in section V 
(page 52).  

An analogous experiment using a 6:1 molar ratio of THF-d8 and THF-h8 gave an ca. 1:1 mixture of 10-d2 
(page and 10-h2. The 1H NMR spectrum is provided in section V (page 53). 
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Synthesis of indenone 14 from 12 (Fig. 3A of manuscript) 

 

1-(2-(Penta-1,3-diyn-1-yl)phenyl)-3-(trimethylsilyl)prop-2-yn-1-ol (S1) 

 

MAPP Gas® was bubbled through THF (50 mL) for 1 h at 0 °C to give a 1.4 M solution of propyne 
in THF as determined by integrations (solvent vs. CH3C≡CH, propene, allene, and propane were also 
present) of the No-D 1H NMR spectrum5. 1-(2-Ethynylphenyl)-3-(trimethylsilyl)prop-2-yn-1-ol6 (433 mg, 
1.90 mmol), TMEDA (70 µL, 0.47 mmol), NiCl2 (32 mg, 0.25 mmol), and CuI (41 mg, 0.22 mmol) were 
added to the propyne/THF solution (14 mL). An oxygen balloon was introduced through a septum and the 
reaction mixture was allowed to warm to room temperature with stirring. After 24 h the reaction mixture 
was diluted in satd. aq. NH4Cl and extracted with EtOAc. The combined organic extracts were washed 
with brine, dried (MgSO4), and concentrated. Purification by flash chromatography (hexanes:EtOAc 6:1) 
gave triyne S1 as an orange-yellow oil (266 mg, 1.00 mmol, 53%).  
1H NMR (500 MHz, CDCl3): δ 7.69 (dd, J = 7.8, 1.5 Hz, 1H, H6), 7.50 (dd, J = 7.7, 1.5 Hz, 1, H3), 7.39 

(ddd, J = 7.6, 7.6, 1.4 Hz, 1H, H4or5), 7.28 (ddd, J = 7.6, 7.6, 1.4, Hz, 1H, H4or5), 5.82 (d, J = 5.7 
Hz, 1H, ArCHOH), 2.45 (d, J = 5.7 Hz, 1H, OH), 2.04 (s, 3H, CCH3), and 0.20 [s, 9H, Si(CH3)3]. 

13C NMR (125 MHz, CDCl3): δ 143.5, 133.7, 129.5, 128.4, 127.1, 120.8, 104.2, 91.9, 82.1, 79.9, 71.3, 
64.4, 63.5, 4.8, and -0.1. 

IR (neat): 3406, 2960, 2242, 2173, 1482, 1449, 1250, 1037, 983, 846, and 761 cm-1. 

HR ESI-MS: C17H18NaOSi+ [M+Na+] requires 289.1019; found 289.1013. 

TLC: Rf 0.5 (4:1 Hex/EtOAc). 
 

1-(2-(Penta-1,3-diyn-1-yl)phenyl)-3-(trimethylsilyl)prop-2-yn-1-one (12) 

 

MnO2 (2.21 g, 25 mmol) was added to a stirred solution of triyne S1 (247 mg, 0.93 mmol) in CH2Cl2 
(2.5 mL) at room temperature. After 15 h the reaction mixture filtered through a small column of SiO2 
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(EtOAc eluent). The crude reaction mixture was sufficiently pure to give triynone 12 (220 mg, 0.83 
mmol, 89%) as a brown oil. 
1H NMR (500 MHz, CDCl3): δ = 8.08 (dd, J = 7.8, 1.6 Hz,1H, H6), 7.60 (dd, J = 7.7, 1.5 Hz, 1H, H3), 

7.49 (ddd, J = 7.5, 7.5, 1.5 Hz, 1H, H4), 7.44 (ddd, J = 7.6, 7.6, 1.5, Hz, 1H, H5), 2.04 (s, 3H, CCH3), 
and 0.31 [s, 9H, Si(CH3)3]. 

13C NMR (125 MHz, CDCl3): δ = 176.6, 139.2, 135.7, 132.6, 131.8, 128.5, 122.2, 101.6, 101.5, 82.9, 
80.9, 72.3, 65.0, 4.9, and -0.5. 

IR (neat): 2961, 2246, 2152, 1648, 1480, 1235, 1014, 850, and 757 cm-1. 

HR ESI-MS: C17H16NaOSi+ [M+Na+] requires 287.0863; found 287.0866. 

TLC: Rf 0.4 (9:1 Hex/EtOAc). 

2-Methyl-1-(trimethylsilyl)-9H-fluoren-9-one (14) 

 

Fluorenone 14 was prepared following general procedure C (96 ºC, 24 h) from triyne 12 (38 mg, 
0.144 mmol) and cyclooctane (14 mL). The crude material was purified by flash chromatography 
(hexanes:EtOAc 19:1) to give fluorenone 14 (37 mg, 0.139 mmol, 97%) as a yellow solid. 
1H NMR (500 MHz, CDCl3): δ 7.57 (ddd, J = 7.3, 1.1, 1.0 Hz, 1H, H8), 7.44 (m, 2H, H5 and H6), 7.39 

(d, J = 7.6 Hz, 1H, H4), 7.24 (nfom, 1H, H7), 7.19 (ddd, J = 7.6, 1.5, 0.8 Hz, 1H, H3), 2.47 (s, 3H, 
CH3), and 0.42 [s, 9H, Si(CH3)3]. 

13C NMR (125 MHz, CDCl3): δ 195.6, 145.3, 144.2, 143.0, 141.4, 140.3, 135.7, 134.6, 134.0, 128.6, 
124.0, 120.8, 119.5, 25.3, and 2.6.  

IR (neat): 2946, 1714, 1606, 1249, 862, 843, and 763 cm-1. 

HR ESI-MS: C17H18NaOSi+ [M+Na+] requires 289.1019; found 289.1047. 

TLC: Rf 0.5 (9:1 Hex/EtOAc). 

MP: 65–69 ºC. 
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A similar procedure to that on the previous page was used to obtain the yields of transfer 
dehydrogenation included in Figure 3A. The specific volume of 2H-donor, masses for the starting triyne 
12 and isolated fluorenone 14, and yields are shown in Table S1.  

Table S1. Experimental quantities for preparative (i.e., instances when the product was purified by 
column chromatography) double hydrogen atom transfer to the benzyne 13 (from 12) from a variety of 
2H-donors. 

 

 

 

 

 

 

2H-donor
(solvent)

cyclooctane
cycloheptane
cyclopentane
norbornane
cyclohexane

THF
1,4-dioxane
n-heptane

Solvent
Volume

(mL)

14
8

12
12
5

13 
2

3.5

14

37
18
23
22
2

18
0
3

% yield

97%
94%
84%
66%
20%
60%
0%

30%

Mass (mg)
12

38
19
27
33
12
30
5
9

Conc.
of triyne
12 (M)

0.01
0.009
0.009
0.01

0.009
0.009 
0.009
0.01
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Synthesis of indenone 16a (Figure 3D of manuscript) 

 

2-(Hepta-1,3-diyn-1-yl)cyclohex-1-enecarbaldehyde (S2) 

 
CuI (5 mg, 0.03 mmol) was added to a stirred solution of 2-ethynylcyclohex-1-enecarbaldehyde7 (82 

mg, 0.61 mmol), pentyne (1.0 mL, 10 mmol), TMEDA (20 µL, 0.13 mmol), and NiCl2 (5 mg, 0.04 mmol) 
in THF solution (2 mL) at room temperature. An oxygen balloon was attached through a septum. After 24 
h the reaction mixture was diluted in satd. aq. NH4Cl and extracted with EtOAc. The combined organic 
extracts were washed with brine, dried (MgSO4), and concentrated. Purification by MPLC 
(hexanes:EtOAc 19:1) gave the sample of diyne S2 as a clear brown oil (43 mg, 0.22 mmol, 36%). 
1H NMR (500 MHz, CDCl3): δ 10.13 (s, 1H, CHO), 2.40 (m, 2H, =C-CH2), 2.35 (t, J = 7.0 Hz, 2H, 

≡CCH2), 2.27 (m, 2H, =C-CH2), 1.60-1.70 [m, 4H, CH2(CH2)2CH2], 1.61 (sext, J = 7.3 Hz, 2H, 
≡CCH2CH2), and 1.02 [t, J = 7.4 Hz, 3H, CH3]. 

13C NMR (125 MHz, CDCl3): δ 192.4, 146.1, 139.0, 88.7, 83.7, 71.5, 64.9, 32.3, 22.3, 22.0, 21.83, 21.79, 
21.1, and 13.7.  

IR (neat): 2933, 2869, 2229, 1742 w, 1677, and 1221 cm-1. 

HRMS (ESI-TOF): Calcd for C14H16NaO+ [M+Na+] requires 223.1093; found 223.1102. 

TLC: Rf 0.4 (19:1 Hex/EtOAc). 

1-(2-(Hepta-1,3-diyn-1-yl)cyclohex-1-en-1-yl)-3-(trimethylsilyl)prop-2-yn-1-ol (S3) 

 
n-BuLi (130 µL, 2.5 M in hexanes, 0.33 mmol) was added to a stirred solution of 

ethynyltrimethylsilane (54 µL, 0.38 mmol) in THF (380 µL) at -78 ºC. After 1 h a solution of aldehyde S2 
(38 mg, 0.19 mmol) in THF (200 µL) was added and the reaction mixture was allowed to warm to rt. 

pentyne

CuI, O2

S2

cyclooctane

25 °C

TMS-≡-H

n-BuLi

O O

S3

HO
TMS

S4

O
TMS

16a

TMSO

MnO2
0 ºC

pentyne, CuI

TMEDA, NiCl2, THF
O2, rt, 24 h, 36%

O O

S2

S2

O

TMS-≡-H, n-BuLi, THF

 -78 °C to rt, 0.5 h, 74%
S3

HO
TMS
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After 30 min satd. aq. NH4Cl was added and the mixture was extracted with EtOAc. The combined 
organic extracts were washed with brine, dried (MgSO4), and concentrated. The crude product triynol S3 
(43 mg, 0.14 mmol, 74%) was a clear red oil and used directly in the next reaction. 
1H NMR (500 MHz, CDCl3): δ 5.59 (s, 1H, CHOH), 2.32 (t, J = 7.0 Hz, 2H, ≡CCH2), 2.33 (m, 2H, =C-

CH2), 2.19 (m, 2H, =C-CH2), 1.94 (br s, 1H, ΟΗ), 1.55-1.75 (m, 4H, CH2(CH2)2CH2), 1.58 (sext, J = 
7.2 Hz, 2H, ≡CCH2CH2), 1.01 [t, J = 7.4 Hz, 3H, CH3], and 0.18 [s, 6H, Si(CH3)2C]. 

13C NMR (125 MHz, CDCl3): δ 146.3, 118.0, 104.1, 90.7, 85.7, 78.4, 73.4, 65.3, 64.7, 30.1, 23.7, 22.2, 
22.0, 21.9, 21.7, 13.7, and 0.0. 

IR (neat): 3440, 2934, 2235, 2170, 1250, 1028, and 845 cm-1. 

HRMS (ESI-TOF): Calcd for C19H26NaOSi+ [M+Na+] requires 321.1645; found: 321.1658. 

TLC: Rf 0.4 (6:1 Hex/EtOAc). 

1-(2-(Hepta-1,3-diyn-1-yl)cyclohex-1-en-1-yl)-3-(trimethylsilyl)prop-2-yn-1-one (S4) 

 
MnO2 (160 mg, 1.84 mmol) was added to a stirred solution of alcohol S3 (20 mg, 0.067 mmol) in 

CH2Cl2 (0.8 mL) at 0 ºC. After 6.5 h the reaction mixture was rapidly filtered through Celite® (Et2O 
eluent) and concentrated (0 ºC bath) to give ketone S4 (17 mg, 0.057 mmol, 85%) as a clear red oil. 
Because of the high reactivity of this ketone at ambient temperature this sample was characterized 
without further purification. 
1H NMR (500 MHz, CDCl3): δ 2.41 [m, 4H, =C-(CH2)2], 2.34 (t, J = 7.0 Hz, 2H, ≡CCH2), 1.63 (m, 4H, 

CH2(CH2)2CH2), 1.58 (sext, J = 7.2 Hz, 2H, ≡CCH2CH2), 1.00 [t, J = 7.4 Hz, 3H, CH3], and 0.28 [s, 
6H, Si(CH3)2C]. 

13C NMR (125 MHz, CDCl3): δ 177.4, 144.2, 131.9, 102.5, 101.4, 89.2, 85.7, 73.9, 66.1, 33.5, 25.6, 21.9, 
21.8 (2x), 21.6, 13.7, and -0.5.  

IR (neat): 2936, 2225, 2149, 1610, 1591, 1249, 861, and 846 cm-1. 

HRMS (ESI-TOF): Calcd for C19H24NaOSi+ [M+Na+] requires 319.1489; found 319.1474. 

TLC: Rf 0.4 (9:1 Hex/EtOAc). 

7-Propyl-8-(trimethylsilyl)-1,2,3,4-tetrahydro-fluoren-9-one (16a) 

 
Indenone 16a was prepared following general procedure C (25 ºC, 48 h) from ketone S4 (17 mg, 

0.057 mmol) and cyclooctane (6 mL). The crude material was purified by MPLC (hexanes:EtOAc 39:1) 
to give the indenone 16a (11 mg, 0.037 mmol, 64%) as a clear amber oil.  
1H NMR (500 MHz, CDCl3): δ 7.02 (d, J = 7.3 Hz, 1H, H5), 6.83 (d, J = 7.3 Hz, 1H, H6), 2.66 (br t, J = 

8.0 Hz, 2H, ArCH2), 2.38 (tt, J = 6.0, 2.7 Hz, 2H, H12), 2.19 (tt, J = 6.1, 2.7 Hz, 2H, H42), 1.79 

MnO2, CH2Cl2
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S4

O
TMS
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(nfom, 2H, CH2(CH2)2CH2), 1.71 (nfom, 2H, CH2(CH2)2CH2), 1.49 (br sext, J = 7 Hz, 2H, CH2CH3), 
0.94 (t, J = 7.3 Hz, 3H,CH3), and 0.38 [s, 9H, Si(CH3)3].  

13C NMR (125 MHz, CDCl3): δ 199.2, 157.0, 149.2, 143.4, 138.6, 138.4, 133.1, 132.7, 118.7, 39.0, 27.1, 
22.6, 22.21, 22.20, 19.7, 13.9, and 2.5. 

IR (neat): 2953, 2874, 1714, 1607, 1248, 968, 862, 849, and 769 cm-1. 

HRMS (ESI-TOF): Calcd for C19H26NaOSi+ [M+Na+] requires 321.1645; found: 321.1677. 

TLC: Rf 0.5 (9:1 Hex/EtOAc). 
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Synthesis of indane 16b (Figure 3D of manuscript) 

 

Dimethyl 2,2-bis(6-((tert-butyldimethylsilyl)oxy)hexa-2,4-diyn-1-yl)malonate (S5) 

 
Tetrayne S5 was prepared following general procedure B from dimethyl 2,2-di(prop-2-yn-1-

yl)malonate8 (166 mg, 0.8 mmol), ((3-bromoprop-2-yn-1-yl)oxy)(tert-butyl)dimethylsilane9 (620 mg, 2.5 
mmol), CuCl (30 mg, 0.30 mmol), and piperidine (3.0 mL). Purification by flash chromatography 
(hexanes:EtOAc 3:1) gave the tetrayne S5 (340 mg, 0.63 mmol, 78%) as a clear amber oil. 
1H NMR (500 MHz, CDCl3): δ 4.35 (s, 4H, CH2OSi), 3.77 (s, 6H, CO2CH3), 3.08 (s, 4H, CH2CC), 0.90 

[s, 18H, SiC(CH3)3], and 0.11 [s, 12H, Si(CH3)2].  
13C NMR (125 MHz, CDCl3): δ 168.7, 75.8, 74.2, 69.4, 68.1, 56.8, 53.5, 52.2, 25.9, 24.0, 18.4, and -5.1. 

IR (neat): 2955, 2930, 2857, 1746, 1254, 1212, 1089, 837, and 780 cm-1.  

HRMS (ESI-TOF): Calcd for C29H44NaO6Si2
+ [M+Na+] requires 567.2569; found 567.2543. 

TLC: Rf 0.4 (3:1 hex:EtOAc). 
 

Dimethyl 5-(((tert-butyldimethylsilyl)oxy)methyl)-4-(3-((tert-butyldimethylsilyl)oxy)prop-
1-yn-1-yl)-1H-indene-2,2(3H)-dicarboxylate (16b) 
 

 
Indane 16b was prepared following general procedure C (110 ºC, 14 h) from tetrayne S5 (28 mg, 0.05 

mmol) and cyclooctane (5 mL). The crude material was purified by MPLC (hexanes:EtOAc 3:1) to give 
the indane 16b (17 mg, 0.03 mmol, 61%) as a clear amber oil.  
1H NMR (500 MHz, CDCl3): δ 7.36 (d, J = 7.8 Hz, 1H, H7), 7.15 (d, J = 7.8 Hz, 1H, H6), 4.83 (s, 2H, 

ArCH2O), 4.59 (s, 2H, C≡CCH2O), 3.75 (s, 6H, CO2CH3), 3.66 (s, 2H, H32), 3.59 (s, 2H, H12), 0.95 
[s, 9H, SiC(CH3)3], 0.94 [s, 9H, SiC(CH3)3], 0.17 [s, 6H, Si(CH3)2], and 0.10 [s, 6H, Si(CH3)2].  
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13C NMR (125 MHz, CDCl3): δ 172.2, 142.7, 142.2, 138.2, 125.0, 124.2, 116.0, 96.4, 80.2, 63.4, 59.9, 
53.1, 52.5, 40.8, 40.6, 26.1, 26.0, 18.6, 18.5, -4.9, and -5.1. 

IR (neat): 2952, 2923, 2857, 1739, 1249, 1105, 1084, 838, and 780 cm-1.  

HRMS (ESI-TOF): Calcd for C29H46NaO6Si2
+ [M+Na+] requires 569.2725; found 569.2704. 

TLC: Rf 0.3 (6:1 hex:EtOAc). 
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Synthesis of phthalide 16c (Figure 3D of manuscript) 

 

5-Phenylpenta-2,4-diyn-1-yl propiolate (S6) 

 
To a solution of 5-phenylpenta-2,4-diyn-1-ol10 (312 mg, 2.0 mmol) and propiolic acid (154 mg, 2.2 

mmol) in dichloromethane cooled at 0 °C was added DCC (494 mg, 2.4 mmol) and DMAP (12 mg, 0.1 
mmol). The reaction mixture was stirred for an additional 30 min at this temperature. The resulting slurry 
was filtered through Celite®, concentrated, and purified with column chromatography (hexanes:EtOAc 
12:1) to give ester S6 (270 mg, 1.3 mmol, 65%) as a dark yellow oil.  
1H NMR (CDCl3, 500 MHz): δ 7.50 (br d, J = 7.4 Hz, 2H, ArHo), 7.38 (tt, J = 7.5, 1.4 Hz, 1H, ArHp), 

7.33 (br dd, J = 7.3, 7.3 Hz, ArHm), 4.93 (s, 2H, CH2O), and 2.97 (s, 1H, C≡CH). 
13C NMR (CDCl3, 125 MHz): δ 151.9, 132.9, 129.8, 128.7, 121.2, 79.6, 76.3, 74.7, 74.0, 73.0, 72.5, and 

54.3 ppm. 

IR: 3283, 2932, 2856, 2250, 2121, 1722, 1649, 1596, 1491, 1441, 1368, 1209, 963, 755, and 689 cm-1.  

HRMS (ESI-TOF): Calcd for C14H8AgO2
+ [M+Ag+] requires 314.9570; found 314.9587. 

6-Phenylisobenzofuran-1(3H)-one (16c) 

 
Phthalide 16c was prepared following general procedure C (120 ºC, 48 h) from ester S6 (21 mg, 0.10 

mmol) and cyclooctane (10 mL). The crude material was purified by flash column chromatography 
(hexanes:EtOAc 3:1) to yield phthalide 16c (11 mg, 0.053 mmol, 53%). The 1H NMR spectrum is 
consistent with the reported data11. 
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Synthesis of isoindolinone 16d (Figure 3D of manuscript) 

 

 

1-Iodoundeca-2,4-diyne (S7) 

 
PPh3 (1.15 g, 4.4 mmol), I2 (1.2 g, 4.8 mmol), and imidazole (0.56 g, 8 mmol) were sequentially 

added to a stirred solution of undeca-2,4-diyn-1-ol12 (678 mg, 4.1 mmol) in CH2Cl2 (20 mL) at 0 °C. After 
2 h the reaction mixture was diluted with CH2Cl2 and washed with satd. aq. Na2S2O3. The organic extract 
was washed with brine, dried (Na2SO4), and concentrated. Purification by flash chromatography 
(hexanes:EtOAc 12:1) gave the iodide S7 (1.0 g, 3.7 mmol, 90%) as a pale yellow oil. This compound 
was stored in a refrigerator as a precaution toward decomposition. 
1H NMR (500 MHz, CDCl3): δ 3.75 (t, J = 1.2 Hz, 2H, CH2I), 2.27 (tt, J = 7.0, 1.1 Hz, 2H, C≡CCH2CH2), 

1.53 (tt, J = 7.3, 7.3 Hz, 2H, C≡CCH2CH2), 1.41-1.34 (m, 2H), 1.33-1.23 (m, 4H), and 0.89 (t, J = 7.2 
Hz, 3H, CH3). 

13C NMR (125 MHz, CDCl3): δ 83.2, 72.2, 70.6, 65.0, 31.5, 28.7, 28.3, 22.7, 19.6, 14.3 and -18.1 ppm. 

IR (neat): 2953, 2929, 2857, 2248, 1460, 1378, 1255, and 1143 cm-1. 

GC-MS: Retention time 8.39 min; electron impact (70 eV), m/z (ion, rel int): 274 (M+, 4), 203 (M+-
C5H11, 5), 147 (M+-I, 7), 127 (I+, 18), 119 (C9H11+, 51), 105 (C8H9+, 100), 91 (C7H7+, 95), and 77 
(C6H5+, 66). 

N-Phenyl-N-(undeca-2,4-diyn-1-yl)propiolamide (S8) 

 
NaH (60% dispersion in mineral oil, 44 mg, 1.1 mmol) was added to a stirred solution of N-

phenylpropiolamide13 (145 mg, 1 mmol) in THF (6 mL) pre-cooled at 0 °C. The resulting mixture was 
kept at this temperature for 30 min, after which iodide S7 (345 mg, 1.2 mmol) in THF (1.2 mL) was 
added dropwise. The reaction mixture was stirred for an additional 3 h and quenched by addition of satd. 
aq. NH4Cl. The resulting mixture was separated and the aqueous layer washed with EtOAc. The 
combined organic layers were washed with brine, dried, and concentrated. The residue was purified by 
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flash chromatography (hexanes:EtOAc 5:1) to give the amide S8 (122 mg, 0.42 mmol, 42%) as a pale 
yellow oil. 
1H NMR (500 MHz, CDCl3, as a 6:1 mixture of rotamers): major rotamer: δ 7.45-7.40 (m, 3H, ArHmHp), 

7.35 (d, J = 7.5 Hz, 2H, ArHo), 4.58 (s, 2H, NCH2), 2.82 (s, 1H, C≡CH), 2.45 (t, J = 7.0 Hz, 2H, 
C≡CCH2CH2), 1.51 (tt, J = 7.6, 7.6 Hz, 2H, C≡CCH2CH2), 1.37 (tt, J = 7.8, 7.8 Hz, 2H, 
C≡CCH2CH2CH2), 1.33-1.23 (m, 4H), and 0.89 (t, J = 7.1 Hz, 3H, CH3). Minor rotamer: δ 4.75 (s, 
NCH2), 3.28 (s, C≡CH). 

13C NMR (125 MHz, CDCl3): δ 152.7, 140.6, 129.6, 129.1, 128.5, 81.0, 80.5, 76.0, 69.9, 69.8, 64.8, 38.9, 
31.4, 28.7, 28.3, 22.7, 19.4, and 14.2 ppm. 

IR (neat): 2954, 2930, 2858, 2257, 2110, 1646, 1595, 1494, 1456, 1383, 1275, 1220, and 697 cm-1. 

HRMS (ESI-TOF): Calcd for C20H21NNaO+ [M+Na]+ requires 314.1515; found 314.1509. 

6-Hexyl-2-phenylisoindolin-1-one (16d) 

 
Isoindolinone 16d was prepared following general procedure C (120 ºC, 20 h) from amide S8 (15 mg, 

0.052 mmol) and cyclooctane (5 mL). The crude material was purified by flash column chromatography 
(hexanes:EtOAc 3:1) to yield the isoindolinone 16d (9 mg, 0.03 mmol, 58%) as a colorless solid.  
1H NMR (500 MHz, CDCl3): 7.87 (dd, J = 8.6, 1.0 Hz, 2H, PhHo), 7.74 (s, 1H, H7), 7.42 (dd, J = 8.6, 7.5 

Hz, 2H, PhHm), 7.43-7.39 (m, 2H, H4H5), 7.17 (tt, J = 7.4, 1.1 Hz, 1H, PhHp), 4.82 (s, 2H, CH2N), 
2.72 (br t, J = 7.8 Hz, 2H, ArCH2CH2), 1.69-1.62 (m, 2H, ArCH2CH2), 1.36-1.25 (m, 6H), and 0.88 
(br t, J = 7.0 Hz, CH3). 

1H NMR (500 MHz, CD3CN): 7.90 (dd, J = 8.8, 1.1 Hz, 2H, PhHo), 7.61 (dd, J = 1.6, 0.8 Hz, 1H, H7), 
7.50 (ddt, J = 7.7, 0.8, 0.8 Hz, 1H, H4), 7.48 (dd, J =7.7, 1.6 Hz, 1H, H5), 7.44 (dd, J = 8.8, 7.4 Hz, 
2H, PhHm), 7.18 (tt, J = 7.4, 1.8 Hz, 1H, PhHp), 4.86 (d, J = 0.8 Hz, 2H, NCH2), 2.73 (br t, J = 7.7 Hz, 
2H, ArCH2), 1.65 (br tt, J = 7.5, 7.5 Hz, 2H, ArCH2CH2), 1.38-1.26 (m, 6H), and 0.89 (br t, J = 7.0 
Hz, CH3). 

13C NMR (125 MHz, CDCl3): δ 168.0, 143.8, 139.9, 137.8, 133.5, 132.8, 129.3, 124.6, 123.9, 122.5, 
119.7, 50.8, 36.0, 31.9, 31.7, 29.1, 22.8, and 14.3 ppm. 

IR (neat): 2954, 2924, 2855, 1682, 1598, 1500, 1463, 1382, 1307, 1171, 1142, and 908 cm-1. 

HRMS (ESI-TOF): Calcd for C20H23NNaO+ [M+Na]+ requires 316.1672; found 316.1667. 

Mp: 121-123 °C. 
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Synthesis of isoindole 16e (Figure 3D of manuscript) 

 

((3-Bromoprop-2-yn-1-yl)oxy)triisopropylsilane (S9) 

 
TIPSCl (1.27 g, 6.6 mmol) was added to a solution of imidazole (449 mg, 6.6 mmol), DMAP (81 mg, 

0.66 mmol), and 3-bromo-2-propyn-1-ol14 (804 mg, 6.0 mmol) in DCM (20 mL) at 0 °C with stirring. 
After 2 h the reaction mixture was diluted with water (30 mL) and extracted with CH2Cl2 (2x20 mL). The 
combined organic extracts were washed with brine (20 mL), dried (MgSO4), and concentrated. 
Purification by flash chromatography (hexanes:EtOAc 19:1) gave the silylether S9 (1.57 g, 5.4 mmol, 
90%) as a pale yellow oil. 
1H NMR (500 MHz, CDCl3): δ 4.40 (2H, s, CH2OTIPS), 1.17-1.05 (3H, m, J = 5.5 Hz, Si(CH(CH3)2)3), 

and 1.08 [18H, d, J = 5.5 Hz, Si(CH(CH3)2)3].  
13C NMR (125 MHz, CDCl3): δ 78.7 (C-CH2OTIPS), 52.9 (CH2OTIPS), 44.4 (C-Br), 17.9 (SiCH(CH3)2), 

and 12.0 (SiCH(CH3)2. 

IR (neat): 2943, 2866, 2220, 1463, 1368, 1260, 1102, 1093, 1070, 1014, 997, 919, 882, 748, 688, 671, 
and 648 cm-1. 

GC-MS: Retention time 7.05 min; electron impact (70 eV), m/z (ion, rel int): 290/292 (M+, 2), 247/249 
(30), and 205/207 (100). 

TLC: Rf 0.6 (19:1 Hex/EtOAc). 

4-Methyl-N,N-bis(6-((triisopropylsilyl)oxy)hexa-2,4-diyn-1-yl)benzenesulfonamide (S10) 

 
CuCl (40 mg, 0.4 mmol) was added to a solution of 4-methyl-N,N-di(prop-2-yn-1-

yl)benzenesulfonamide15 (494 mg, 2.0 mmol) and 3-bromo-1-triisopropylsilyloxy-2-propyne S9 (1.28 g, 
4.4 mmol) in freshly deaerated piperidine (8 mL, 0.4 M) at 0 °C. After 3 h the reaction mixture was 
partitioned between EtOAc (20 mL) and satd. aq. NH4Cl (20 mL). The aqueous phase was extracted twice 
with EtOAc (2x15 mL) and the combined organic extracts were washed with brine (10 mL), dried over 
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MgSO4, and concentrated. Purification by flash column (hexanes:EtOAc 19:1)  gave tetrayne S10 (1.08 g, 
1.62 mmol, 81%). On some occasions following nominally this same procedure resulted in considerably 
reduced yields. There likely is an important unidentified variable that is important to control. 
1H NMR (500 MHz, CDCl3): δ 7.68 (2H, d, J = 8.0 Hz, Ar-H), 7.31 (2H, d, J = 8.0 Hz, Ar-H), 4.41 (4H, 

s, CH2OTIPS), 4.20 (4H, s, N-CH2), 2.43 (3H, s, Ar-CH3), 1.16-1.04 (6H, m, J = 5.5 Hz,  
OSi[CH(CH3)2]3), and 1.07 (36H, d, J = 5.5 Hz, OSi[CH(CH3)2]3). 

13C NMR (125 MHz, CDCl3): δ 144.4, 134.6, 129.8, 127.8, 77.6, 71.3, 70.3, 68.3, 52.2, 37.3, 21.6, 17.9, 
and 11.9. 

IR (neat): 2943, 2866, 1463, 1356, 1165, 1093, 1069, 996, 884, 748, and 685 cm-1. 

HR ESI-MS: [C37H57NNaO4SSi2]+ requires 690.3439; found 692.3446. 

TLC: Rf 0.35 (9:1 Hex/EtOAc). 

2-Tosyl-5-(((triisopropylsilyl)oxy)methyl)-4-(3-((triisopropylsilyl)oxy)prop-1-yn-1-yl) 
isoindoline (16e)  

 
Isoindole 16e was prepared following general procedure C (110 ºC, 14 h) from tetrayne S10 (20 mg, 

0.03 mmol) and cyclooctane (1 mL). The crude material was purified by MPLC (hexanes:EtOAc 19:1) to 
give the bicyclic-isoindole 16e (15 mg, 0.022 mmol, 75%). 
1H NMR (500 MHz, CDCl3): δ 7.77 (2H, d, J = 8.0 Hz, Ar-H), 7.51 (1H, d, J = 8.0 Hz, Ar-H), 7.31 (2H, 

d, J = 8.0 Hz, Ar-H), 7.13 (1H, d, J = 8.0 Hz, Ar-H), 4.89 (2H, br s, Ar-CH2OTIPS), 4.64 (2H, br s, -
CH2OTIPS or N-CH2), 4.63 (4H, br s, -CH2OTIPS or N-CH2), 2.41 (3H, s, Ar-CH3), 1.25-1.00 (6H, 
m, J = 5.5 Hz, Si[CH(CH3)2]3), 1.11 (18H, d, J = 5.5 Hz, Ar-CH2OSi[CH(CH3)2]3), and 1.07 (18H, d, 
J = 5.5 Hz, CH2OSi[CH(CH3)2]3). 

13C NMR (125 MHz, CDCl3): δ 143.8, 143.3, 138.9, 134.3, 133.9, 130.0, 127.7, 125.3, 122.4, 114.5, 
97.6, 78.6, 63.2, 54.2, 54.0, 52.6, 21.6, 18.2, 18.1, 12.2, and 12.1. 

IR (neat): 2942, 2865, 1463, 1351, 1273, 1165, 1098, 1068, 996, 882, 815, 765, and 684 cm-1. 

HR ESI-MS: [C37H59NNaO4SSi2]+ requires 692.3596; found 692.3589. 

TLC: Rf 0.25 (9:1 Hex/EtOAc). 

 

 

 

TsN

OTIPS

OTIPS

cyclooctane, 110 °C

14 h, 75%
TsN

OTIPS

OTIPS

16eS10



Supplementary Information Alkane Desaturation via Concerted Double Page 19 of 101 
 Hydrogen Atom Transfer to Benzyne 

Synthesis of fluorenone 16f (Figure 3D of manuscript) 
 

 

1-(2-(7-Chlorohepta-1,3-diyn-1-yl)phenyl)-3-(trimethylsilyl)prop-2-yn-1-ol (S11) 

 
Triyne S11 was prepared following general procedure B from 1-(2-ethynylphenyl)-3-

(trimethylsilyl)prop-2-yn-1-ol6 (228 mg, 1.00 mmol), 1-bromo-5-chloropent-1-yne (from 5-chloro-1-
pentyne using general procedure A) (216 mg, 1.20 mmol), CuCl (30 mg, 0.30 mmol), and piperidine (2.7 
mL). Purification by flash chromatography (hexanes:EtOAc 6:1) gave the triyne S11 (139 mg, 0.42 
mmol, 42%) as a clear amber oil. 
1H NMR (500 MHz, CDCl3): δ 7.67 (dd, J = 7.8, 1.6 Hz, 1H, H6), 7.50 (dd, J = 7.7, 1.5 Hz, 1H, H3), 

7.40 (ddd, J = 7.7, 7.6, 1.5 Hz, 1H, H4), 7.29 (ddd, J = 7.6, 7.6, 1.4 Hz, 1H, H5), 5.82 (bs, 1H, 
ArCHOH), 3.68 (t, J = 6.3 Hz, 2H, CH2Cl), 2.59 (t, J = 6.8 Hz, 2H, C≡CCH2), 2.49, (bs, 1H, CH2OH), 
2.04 (p, J = 6.5 Hz, 2H, CH2CH2Cl), and 0.20 [s, 9H, Si(CH3)3]. 

13C NMR (125 MHz, CDCl3): δ 143.5, 133.8, 129.6, 128.5, 127.1, 120.6, 104.2, 91.9, 84.2, 79.4, 72.4, 
66.1, 63.5, 43.5, 31.1, 17.2, and 0.1. 

IR (neat): 3427, 2960, 2901, 2239, 2173, 1446, 1250, 1037, 846, and 761 cm-1. 

HRMS (ESI-TOF): Calcd for C19H21NaClOSi+ [M+Na+] requires 351.0942; found 351.0935. 

TLC: Rf 0.2 (6:1 hex:EtOAc) 

1-(2-(7-Chlorohepta-1,3-diyn-1-yl)phenyl)-3-(trimethylsilyl)prop-2-yn-1-one (S12) 

 
MnO2 (750 mg, 8.65 mmol) was added to a stirred solution of alcohol S11 (268 mg, 0.82 mmol) in 

CH2Cl2 (10 mL) at room temperature. After 14 h the reaction mixture was filtered through a small column 
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of SiO2 (EtOAc eluent) and purified by MPLC (hexanes:EtOAc 6:1) to give the triyne S12 (247 mg, 0.76 
mmol, 93%) as an amber oil.  
1H NMR (500 MHz, CDCl3): δ 8.10 (dd, J = 7.7, 1.6 Hz, 1H, H6), 7.60 (dd, J = 7.6, 1.5 Hz, 1H, H3), 

7.51 (ddd, J = 7.6, 7.5, 1.5, 1H, H4), 7.45 (ddd, J = 7.6, 7.6, 1.5 Hz, 1H, H5), 3.68 (t, J = 6.3 Hz, 2H, 
CH2Cl), 2.59 (t, J = 6.8 Hz, 2H, ArCH2), 2.03 (p, J = 6.5 Hz, 2H, CH2CH2CH2Cl), and 0.31[s, 9H, 
Si(CH3)3]. 

13C NMR (125 MHz, CDCl3): δ 176.6, 139.1, 135.8, 132.6, 132.0, 128.6, 121.9, 101.50, 101.49, 84.9, 
80.3, 73.3, 66.6, 43.6, 31.1, 17.3, and -0.6. 

IR (neat): 2964, 2243, 2152, 1641, 1560, 1481, 1296, 1250, 1232, 1012, 846, and 758 cm-1.  

HRMS (ESI-TOF): Calcd for C19H19NaClOSi+ [M+Na+] requires 349.0786; found 349.0780. 

TLC: Rf 0.3 (6:1 hex:EtOAc) 

2-(3-Chloropropyl)-1-(trimethylsilyl)-9H-fluoren-9-one (16f) 

 
Fluorenone 16f was prepared following general procedure C (100 ºC, 14 h) from triynone S12 (10 

mg, 0.03 mmol) and cyclooctane (3 mL). The crude material was purified by MPLC (hexanes:EtOAc 6:1) 
to give fluorenone 16f (6 mg, 0.02 mmol, 60%) as a yellow solid.  
1H NMR (500 MHz, CDCl3): δ 7.58 (ddd, J = 7.3, 0.9, 0.9 Hz, 1H, H8), 7.43-7.46 (m, 2H, H6/H5), 7.45 

(d, J = 7.6 Hz, 1H, H4), 7.24-7.27 (nfom, 1H, H7), 7.25 (d, J = 7.6 Hz, 1H, H3), 3.55 (t, J = 6.5 Hz, 
2H, CH2Cl), 2.95 (br t, J = 7.6 Hz, 2H, ArCH2), 1.97-2.03 (br p, J = 7.1 Hz, 2H, ArCH2CH2), and 
0.44 [s, 9H, Si(CH3)3]. 

13C NMR (125 MHz, CDCl3): δ 195.4, 148.5, 144.0, 143.6, 141.2, 140.7, 135.4, 134.7, 133.9, 128.8, 
124.1, 121.0, 119.6, 44.1, 36.0, 33.7, and 2.6. 

IR (neat): 2950, 2898, 1711, 1606, 1438, 1247, 1182, 861, 846, and 745 cm-1.  

HRMS (ESI-TOF): Calcd for C19H21NaClOSi+ [M+Na+] requires 351.0942; found 351.0918. 

TLC: Rf 0.2 (6:1 hex:EtOAc) 
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Gram-scale reaction of S14 to fluorenone 16g 

 

1-(2-(Hepta-1,3-diyn-1-yl)phenyl)-3-(trimethylsilyl)prop-2-yn-1-ol (S13) 

 
CuI (5 mg, 0.03 mmol) was added to a solution of 1-(2-ethynylphenyl)-3-(trimethylsilyl)prop-2-yn-1-

ol6 (1.52 g, 6.67 mmol), 1-bromopent-1-yne16 (1.35 g, 9.35 mmol), tetrabutylammonium bromide (13 mg, 
40 mmol), and diisopropylamine (67 mL) at 70 ºC under an inert atmostphere. Pd(OAc)2 (2 mg, 0.009 
mmol) was added after five minutes. After 14 h the reaction mixture was diluted in 2 M HCl and 
extracted with EtOAc. Purification by MPLC (hexanes:EtOAc 6:1) gave the triyne S13 (1.38 g, 4.69 
mmol, 70%) as a clear yellow oil. 
1H NMR (500 MHz, CDCl3): δ 7.69 (ddd, J = 7.8, 1.4, 0.5 Hz, 1H, H6), 7.50 (ddd, J = 7.7, 1.5, 0.5 Hz, 

1H, H3), 7.39 (ddd, J = 7.6, 7.6, 1.4 Hz, 1H, H4), 7.28 (ddd, J = 7.6, 7.6, 1.3 Hz, 1H, H5), 5.83 (d, J 
= 5.7 Hz, 1H, CHOH), 2.48 (d, J = 5.7, 1H OH), 2.36 (t, J = 7.0 Hz, 2H, CH2CH2CH3), 1.62 (sext, J = 
7.3 Hz, 2H, CH2CH3), 1.04 (t, J = 7.4 Hz, 3H, CH2CH3), and 0.20 (s, 9H, SiCH3). 

13C NMR (125 MHz, CDCl3): δ 143.4, 133.7, 129.4, 128.4, 127.1, 120.9, 104.2, 91.9, 86.5, 79.9, 71.8, 
65.2, 63.6, 21.9, 21.8, 13.7, and 0.0. 

IR (neat): 3439, 2963, 2239, 2173, 1701, 1250, 1038, 985, 844, and 761 cm-1. 

HRMS (ESI-TOF): Calcd for C19H22NaOSi+ [M+Na+] requires 317.1332; found 317.1318. 

TLC: Rf 0.3 (9:1 Hex/EtOAc). 

1-(2-(Hepta-1,3-diyn-1-yl)phenyl)-3-(trimethylsilyl)prop-2-yn-1-one (S14) 

 
MnO2 (1.79 g, 20.6 mmol) was added to a solution of alcohol S13 (611 mg, 2.08 mmol) in CH2Cl2 

(10 mL) and the resulting suspension was vigorously stirred for 15 h. The reaction mixture was filtered 
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through a plug of Celite® (EtOAc eluent) and concentrated to give the ketone S14 (450 mg, 1.54 mmol, 
74%) as a clear amber oil.  
1H NMR (500 MHz, CDCl3): δ 8.07 (dd, J = 7.8, 1.5 Hz, 1H, H6), 7.61 (dd, J = 7.7, 1.5 Hz, 1H, H3), 

7.49 (ddd, J = 7.6, 7.6, 1.5 Hz, 1H, H4), 7.43 (ddd, J = 7.6, 7.6, 1.5 Hz, 1H, H5), 2.36 (t, J = 7.0 Hz, 
2H, CH2CH2CH3), 1.61 (sext, J = 7.2 Hz, 2H, CH2CH3), 1.03 (t, J = 7.4 Hz, 3H, CH2CH3), and 0.31 
(s, 9H, SiCH3). 

13C NMR (125 MHz, CDCl3): δ 176.7, 139.1, 135.7, 132.6, 131.8, 128.4, 122.3, 101.6, 101.5, 87.2, 80.9, 
72.8, 65.8, 21.8 (likely 2x), 13.7, and -0.6. 

IR (neat): 2965, 2242, 2152, 1648, 1234, 1014, 847, and 756 cm-1. 

HRMS (ESI-TOF): Calcd for C19H20NaOSi+ [M+Na+] requires 315.1176; found 315.1192. 

TLC: Rf 0.4 (9:1 Hex/EtOAc). 

2-Propyl-1-(trimethylsilyl)-9H-fluoren-9-one (16g, gram-scale reaction) 

 
A solution of triynone S14 (1.21 g, 4.14 mol) in cyclooctane (410 mL) was heated at 85 °C in a 1000 

mL round bottom flask with stirring and under inert atmosphere. After 18 h the reaction mixture was 
loaded onto a bed of silica gel and washed sequentially with hexanes, to remove the excess cyclooctane, 
and ethyl acetate. The ethyl acetate fraction was concentrated to provide the crude product mixture. The 
crude material was purified by flash chromatography (hexanes:EtOAc 19:1) to give fluorenone 16g (820 
mg, 2.79 mmol, 67%) as an orange oil.  
1H NMR (500 MHz, CDCl3): δ 7.56 (ddd, J = 7.3, 1.0, 1.0 Hz, 1H, H8), 7.43 (m, 2H, H5 and H6), 7.42 

(d, J = 7.6 Hz, 1H, H4), 7.23 (nfom, 1H, H7), 7.21 (d, J = 7.6 Hz, 1H, H3), 2.73 (br t, J = 8.0 Hz, 2H, 
CH2CH2CH3), 1.54 (br sext, J = 7 Hz, 2H, CH2CH3), 0.97 (t, J = 7.3 Hz, CH2CH3), and 0.43 (s, 9H, 
SiCH3). 

13C NMR (125 MHz, CDCl3): δ 195.6, 150.7, 144.2, 143.2, 141.0, 140.4, 135.4, 134.5, 134.0, 128.6, 
124.0, 120.8, 119.5, 39.0, 27.1, 14.0, and 2.5. 

IR (neat): 2955, 2935, 2875, 1713, 1606, 1248, 968, 861, and 846 cm-1. 

HRMS (ESI-TOF): Calcd for C19H22NaOSi+ [M+Na+] requires 317.1332; found 317.1358. 

TLC: Rf 0.5 (9:1 Hex/EtOAc). 
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III. Computational details for double hydrogen atom transfer reactions 
 
DFT calculations were carried out in Gaussian 0917 using the M06-2X/6-311+G(d,p) functional18/basis set 
for geometry optimizations and frequency calculations. To identify starting geometries for the DFT 
calculations of the cyclic hydrocarbon donors, Monte Carlo conformational searches were carried out in 
MacroModel version 9.919. Each of the identified conformers was subjected to geometry optimization 
using the above DFT method. The optimized reactant and product geometries were found to have no 
imaginary frequencies and the optimized transition structure geometries were found to have only one 
imaginary frequency. The values for the “Sum of electronic and thermal Free Energies=” were used to 
determine the free energy (G) of each of the two reactants (GBenzyne and G2H-Donor) and of the transition 
structure (GTS) for each bimolecular double hydrogen atom transfer reaction. The ΔG‡ value for the 
double hydrogen atom transfer between the benzyne and each 2H-donor were determined using the 
following equation: 

 
where the G values were those of the lowest energy conformer of the 2H-donor, the o-benzyne, and the 
transition structure. 
 

ΔG‡ = GTS – (GBenzyne + G2H-Donor)



Supplementary Information Alkane Desaturation via Concerted Double Page 24 of 101 
 Hydrogen Atom Transfer to Benzyne 

Table S2. Computed free energies for all reactant, product, and transition structures used for determining 
the ΔG‡ (cf. Figure 3A and 4C in the manuscript) and ΔGRXN (i.e. for double hydrogen atom transfer 
between o-benzyne and cyclopentane) values. In cases where multiple conformers of a given reactant or 
transition structure were found, only the lowest energy structure is presented. For comparison we 
calculated the ΔG‡ for the double hydrogen atom transfer reaction between aryne 13 (from the 
manuscript) and cyclopentane and found it to be (reassuringly) similar to the corresponding ΔG‡ for the 
parent benzyne.  

 

Entry

1
2
3
4
5
6
7
8
9
10
11

12
13
14
15
16
17
18
19

Structure

o-Benzyne
Cyclooctane

Cycloheptane
Cyclopentane
Norbornane
Cyclohexane

THF
1,4-Dioxane

Benzene
Cyclopentene
Fluorynone 

(13 in manuscript)

1 + Cyclooctane
1 + Cycloheptane
1 + Cyclopentane
1 + Norbornane
1 + Cyclohexane

1 + THF
1 + 1,4-Dioxane

12 + Cyclopentane

Computed 
Free Energy

G (kcal•mol-1)

-144840.7
-197170.8
-172528.2
-123236.7
-171784.6
-147887.9
-145781.0
-192972.9
-145660.4
-122482.5
-641139.1

-341993.9
-317351.2
-268058.6
-316606.7
-292704.5
-290602.5
-337786.5
-764356.3

Reactant
and Product
Structures

Transition
Structures

GTS – GReactants

G12 – (G1 + G2)
G13 – (G1 + G3)
G14 – (G1 + G4)
G15 – (G1 + G5)
G16 – (G1 + G6)
G17 – (G1 + G7)
G18 – (G1 + G8)
G19 – (G4 + G11)

 ΔG‡

17.6
17.7
18.7
18.5
24.1
19.2
27.1
19.4
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Energies and geometries for all of the entries in Table S2 (Pages 23 – 46) 
Computed energy and geometry of o-benzyne 

 
Sum of electronic and thermal Free Energiesa = -230.818447 A.U.b  

Atom 
Type	  

Cartesian Coordinates (x,y,z)	  

C -1.459052 -0.132412 0.000018 

C -0.619665 -1.230665 -0.000010 

C 0.619772 -1.230671 -0.000012 

C 1.459048 -0.132316 0.000019 

C 0.702178 1.051807 -0.000005 

C -0.702256 1.051763 -0.000003 

H -2.540326 -0.134912 0.000002 

H 2.540323 -0.134729 0.000002 

H 1.224618 2.002344 -0.000019 

H -1.224760 2.002265 -0.000024 
a Used for the ΔG‡

M06-2X calculation. 
b Atomic Units = Hartrees 
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Computed energy and geometry of the lowest energy conformation of cyclooctane 

 
Sum of electronic and thermal Free Energiesa = -314.211943 A.U.b  

Atom 
Type	  

Cartesian Coordinates (x,y,z)	  

C 1.386062 1.302498 0.075459 

C 1.555205 0.000013 -0.708312 

C 1.386085 -1.302476 0.075458 

C -0.011757 -1.594145 0.645066 

C -1.181610 -1.318856 -0.319334 

C -1.932003 -0.000017 -0.088097 

C -1.181635 1.318835 -0.319336 

C -0.011786 1.594147 0.645064 

H 2.116816 1.330163 0.891727 

H 1.651515 2.125159 -0.597901 

H 0.872340 0.000008 -1.563660 

H 2.560936 0.000022 -1.140582 

H 1.651548 -2.125132 -0.597905 

H 2.116842 -1.330131 0.891723 

H -0.027389 -2.649099 0.932882 

H -0.170345 -1.039328 1.572997 

H -0.833023 -1.373252 -1.357020 

H -1.917232 -2.121427 -0.214552 

H -2.818322 -0.000026 -0.731086 

H -2.306930 -0.000020 0.943276 

H -0.833049 1.373237 -1.357022 

H -1.917272 2.121392 -0.214553 

H -0.027435 2.649103 0.932874 

H -0.170367 1.039333 1.572998 
a Used for the ΔG‡

M06-2X calculation. 
b Atomic Units = Hartrees 
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Computed energy and geometry of the lowest energy conformation of cycloheptane 

 
Sum of electronic and thermal Free Energiesa = -274.941457 A.U.b  

Atom 
Type	  

Cartesian Coordinates (x,y,z)	  

C -0.302164 -1.501933 -0.412011 

C -1.540652 -0.758057 0.103147 

C -1.540629 0.758091 -0.103154 

C -0.302128 1.501937 0.412016 

C 0.957234 1.228415 -0.423200 

C 1.775429 -0.000027 -0.000010 

C 0.957196 -1.228429 0.423215 

H -0.517731 -2.573709 -0.383694 

H -0.121706 -1.254041 -1.465273 

H -2.433889 -1.169259 -0.377531 

H -1.642722 -0.973246 1.173961 

H -1.642680 0.973282 -1.173970 

H -2.433859 1.169320 0.377513 

H -0.517671 2.573718 0.383692 

H -0.121687 1.254047 1.465280 

H 0.652717 1.122283 -1.470333 

H 1.616574 2.100311 -0.393454 

H 2.433845 -0.274850 -0.830377 

H 2.433899 0.274763 0.830324 

H 1.616513 -2.100345 0.393505 

H 0.652673 -1.122254 1.470341 
a Used for the ΔG‡

M06-2X calculation. 
b Atomic Units = Hartrees 
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Computed energy and geometry of the lowest energy conformation of cyclopentane  
 

 
Sum of electronic and thermal Free Energiesa = -196.390277 A.U.b 

Atom 
Type	  

Cartesian Coordinates (x,y,z)	  

C 0.385818 1.231221 -0.105059 

C 1.258905 0.011173 0.235529 

C 0.429546 -1.170900 -0.272733 

C -0.987219 -0.803866 0.182930 

C -1.080434 0.722828 -0.039973 

H 0.567075 2.070685 0.567847 

H 0.617753 1.576142 -1.115782 

H 1.380797 -0.074487 1.320421 

H 2.255624 0.066707 -0.205884 

H 0.473479 -1.208453 -1.366795 

H 0.767610 -2.135947 0.109375 

H -1.766379 -1.355194 -0.346028 

H -1.090109 -1.033565 1.247707 

H -1.601467 0.943684 -0.973666 

H -1.644074 1.207694 0.758645 
a Used for the ΔG‡

M06-2X calculation. 
b Atomic Units = Hartrees 
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Computed energy and geometry of the lowest energy conformation of norbornane  

 
Sum of electronic and thermal Free Energiesa = -273.756351 A.U.b  

Atom 
Type	  

Cartesian Coordinates (x,y,z)	  

C 0.000002 -1.129721 0.339789 

C 1.248387 -0.779489 -0.492222 

C 1.248383 0.779492 -0.492223 

C -0.000002 1.129721 0.339790 

C -1.248387 0.779489 -0.492222 

C -1.248384 -0.779492 -0.492223 

H 1.196535 -1.200976 -1.498320 

H 2.151392 -1.170004 -0.017696 

H 2.151388 1.170013 -0.017701 

H 1.196527 1.200977 -1.498322 

H -2.151392 1.170005 -0.017696 

H -1.196534 1.200976 -1.498320 

H -1.196528 -1.200977 -1.498322 

H -2.151388 -1.170013 -0.017700 

C 0.000000 0.000000 1.384438 

H -0.000003 2.147370 0.730337 

H 0.000003 -2.147371 0.730336 

H 0.891968 0.000001 2.016324 

H -0.891968 -0.000002 2.016324 
a Used for the ΔG‡

M06-2X calculation. 
b Atomic Units = Hartrees 
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Computed energy and geometry of the lowest energy conformation of cyclohexane  

 
Sum of electronic and thermal Free Energiesa = -235.674605 A.U.b  

Atom 
Type	  

Cartesian Coordinates (x,y,z)	  

C 1.211373 0.811084 -0.233837 

C -0.097080 1.454448 0.233650 

C -1.308099 0.643098 -0.233836 

C -1.211372 -0.811078 0.233847 

C 0.097074 -1.454448 -0.233651 

C 1.308100 -0.643103 0.233827 

H -2.234114 1.097326 0.129326 

H -0.100726 1.503293 1.329698 

H -0.166880 2.483590 -0.129270 

H 1.252818 0.838955 -1.329834 

H 2.067958 1.384997 0.130436 

H -1.252793 -0.838932 1.329846 

H -2.067962 -1.385004 -0.130393 

H 0.166880 -2.483590 0.129272 

H 0.100713 -1.503296 -1.329698 

H 1.352108 -0.664365 1.329875 

H 2.234109 -1.097319 -0.129368 

H -1.352089 0.664347 -1.329887 
a Used for the ΔG‡

M06-2X calculation. 
b Atomic Units = Hartrees 
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Computed energy and geometry of the lowest energy conformation of tetrahydrofuran  

 
Sum of electronic and thermal Free Energiesa = -232.317059 A.U.b  

Atom 
Type	  

Cartesian Coordinates (x,y,z)	  

C -0.727053 1.048685 0.001155 

C 0.814257 0.971705 -0.102986 

C -1.151828 -0.431331 0.118007 

H -1.051389 1.620296 0.871252 

H -1.157310 1.516745 -0.883978 

H 1.321852 1.642671 0.590240 

H 1.142241 1.214535 -1.114335 

H -1.402299 -0.679166 1.157989 

H -1.993612 -0.700530 -0.518644 

O -0.032045 -1.195054 -0.293715 

C 1.100281 -0.503504 0.196032 

H 1.199749 -0.668713 1.278647 

H 1.983193 -0.898732 -0.304702 
a Used for the ΔG‡

M06-2X calculation. 
b Atomic Units = Hartrees 
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Computed energy and geometry of the lowest energy conformation of 1,4-dioxane 

 
Sum of electronic and thermal Free Energiesa = -307.522164 A.U.b  

Atom 
Type	  

Cartesian Coordinates (x,y,z)	  

C 1.197526 -0.179741 -0.682838 

C -0.140416 -0.670677 -1.209619 

O -1.189925 0.151375 -0.732743 

C -1.197526 0.179741 0.682838 

C 0.140416 0.670677 1.209619 

O 1.189925 -0.151375 0.732743 

H 1.398345 0.828230 -1.072404 

H 2.006123 -0.846886 -0.984057 

H -0.305174 -1.707625 -0.884566 

H -0.172068 -0.628468 -2.299057 

H -2.006123 0.846886 0.984057 

H -1.398345 -0.828230 1.072404 

H 0.305174 1.707625 0.884566 

H 0.172068 0.628468 2.299057 
a Used for the ΔG‡

M06-2X calculation. 
b Atomic Units = Hartrees 
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Computed energy and geometry of benzene 

 
Sum of electronic and thermal Free Energiesa = -232.124771 A.U.b  

Atom 
Type	  

Cartesian Coordinates (x,y,z)	  

C -1.391337 -0.031931 0.000000 

C -0.667949 -1.220979 0.000009 

C 0.723285 -1.188838 0.000001 

C 1.391335 0.031992 0.000002 

C 0.668002 1.220950 0.000001 

C -0.723336 1.188808 -0.000005 

H -2.474672 -0.056246 -0.000007 

H -1.188429 -2.171454 -0.000018 

H 1.286545 -2.114684 -0.000021 

H 2.474673 0.056165 -0.000012 

H 1.188364 2.171490 0.000009 

H -1.286478 2.114725 0.000000 
a Used for the ΔG‡

M06-2X calculation. 
b Atomic Units = Hartrees 
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Computed energy and geometry of cyclopentene 

 
Sum of electronic and thermal Free Energiesa = -195.188423 A.U.b  

Atom 
Type	  

Cartesian Coordinates (x,y,z)	  

C -0.303216 -1.189786 0.000000 

C 0.078190 -0.333163 1.226730 

C 0.078190 1.069551 0.665108 

C 0.078190 1.069551 -0.665108 

C 0.078190 -0.333163 -1.226730 

H -1.384460 -1.346354 0.000000 

H 1.075923 -0.586623 1.604461 

H -0.618163 -0.460452 2.058666 

H 0.118614 1.956325 1.286629 

H 0.118614 1.956325 -1.286629 

H 1.075923 -0.586623 -1.604461 

H -0.618163 -0.460452 -2.058666 

H 0.174438 -2.170083 0.000000 
a Used for the ΔG‡

M06-2X calculation. 
b Atomic Units = Hartrees 
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Computed energy and geometry of fluorynone 13-comp 

 
Sum of electronic and thermal Free Energiesa = -1021.720925 A.U.b  

Atom 
Type	  

Cartesian Coordinates (x,y,z)	  

C -3.376586 -1.568926 0.000097 

C -4.662063 -1.019773 -0.000056 

C -4.840752 0.361839 -0.000211 

C -3.749231 1.236231 -0.000224 

H -3.214349 -2.640635 0.000236 

H -5.527599 -1.670916 -0.000050 

H -5.845969 0.766727 -0.000320 

H -3.892029 2.310480 -0.000332 

C -0.837833 -1.008104 0.000234 

C -2.304416 -0.699238 0.000066 

C -2.479968 0.686666 -0.000093 

C -0.121849 0.323846 -0.000073 

C -1.146687 1.312595 -0.000082 

C -0.655318 2.601049 -0.000016 

C 0.575819 2.780441 0.000059 

C 1.688362 1.973070 0.000020 

C 1.261215 0.600346 -0.000126 

C 3.100969 2.487509 0.000205 

O -0.355483 -2.113049 0.000702 

C 2.288681 -1.856895 -1.587161 

C 4.322963 -0.374847 -0.000942 

C 2.289512 -1.855642 1.587784 

H 3.647751 2.152402 0.881594 

H 3.647737 2.152968 -0.881414 

H 3.089526 3.576133 0.000552 

H 2.976890 -2.707580 -1.581617 

H 1.279030 -2.238808 -1.723083 

H 2.548916 -1.228829 -2.443826 

H 4.880949 -1.317754 -0.001166 
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H 4.632825 0.178075 -0.888607 

H 4.633637 0.178116 0.886409 

H 2.980000 -2.704485 1.584085 

H 2.547035 -1.225858 2.444011 

H 1.280667 -2.239973 1.722936 

Si 2.504424 -0.879762 -0.000135 
a Used for the ΔG‡

M06-2X calculation. 
b Atomic Units = Hartrees 



Supplementary Information Alkane Desaturation via Concerted Double Page 37 of 101 
 Hydrogen Atom Transfer to Benzyne 

Computed energy and geometry for the benzyne + cyclooctane TS  

 
Sum of electronic and thermal Free Energiesa = -545.002382 A.U.b  

Atom 
Type	  

Cartesian Coordinates (x,y,z)	  

C -3.040245 -1.361495 0.316047 

C -4.247015 -0.809740 -0.125296 

C -4.358290 0.553455 -0.435982 

C -3.270941 1.425609 -0.318634 

H -2.948716 -2.412130 0.563610 

H -5.116561 -1.449755 -0.226857 

H -5.313941 0.938303 -0.776410 

H -3.371011 2.477901 -0.557925 

C -2.022376 -0.425539 0.395875 

C -2.096565 0.821113 0.116074 

C 0.648616 0.928510 0.668793 

C 0.572092 -0.538036 0.789480 

C 1.038190 -1.460510 -0.332431 

C 2.520558 -1.856095 -0.299352 

C 3.544466 -0.765138 -0.628164 

C 3.646551 0.368932 0.409650 

C 2.988222 1.680815 -0.022369 

C 1.514578 1.561013 -0.418629 

H 0.454851 -2.384777 -0.264959 

H 0.786471 -1.022880 -1.303738 

H 2.751328 -2.267060 0.691415 

H 2.656187 -2.678187 -1.009562 

H 4.518670 -1.253071 -0.721337 

H 3.326379 -0.346024 -1.617992 

H 3.211565 0.034442 1.358402 

H 4.698776 0.576569 0.622436 

H 3.076402 2.406565 0.793908 
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H 3.546280 2.096839 -0.869052 

H 1.131924 2.561941 -0.638484 

H 1.419092 0.995813 -1.349229 

H 0.830106 1.403597 1.637048 

H 0.821655 -0.926838 1.778954 

H -0.454704 1.251789 0.410361 

H -0.651807 -0.740403 0.789043 
a Used for the ΔG‡

M06-2X calculation. 
b Atomic Units = Hartrees 
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 Computed energy and geometry for the benzyne + cycloheptane TS  
 

 
 

Sum of electronic and thermal Free Energiesa = -505.731727 A.U.b  

Atom 
Type	  

Cartesian Coordinates (x,y,z)	  

C 2.358479 1.403046 0.060657 

C 3.495967 0.752452 -0.427241 

C 3.562531 -0.646397 -0.503637 

C 2.496928 -1.455265 -0.095208 

H 2.302392 2.483378 0.122838 

H 4.346361 1.341932 -0.752210 

H 4.464594 -1.109434 -0.889494 

H 2.559396 -2.535682 -0.157045 

C 1.354614 0.526931 0.440710 

C 1.395998 -0.752587 0.379849 

C -1.984284 -1.251629 -1.004763 

C -2.529686 0.077388 -1.526323 

C -1.832764 1.322139 -0.978831 

C -1.992488 1.536455 0.531186 

C -1.097727 0.683237 1.420838 

C -1.176370 -0.780696 1.405238 

C -2.186496 -1.480841 0.497562 

H -2.481615 -2.060879 -1.548054 

H -0.915618 -1.328306 -1.239294 

H -2.450688 0.085597 -2.617895 

H -3.600512 0.138262 -1.292977 

H -0.765380 1.285451 -1.227790 

H -2.241525 2.197627 -1.492333 

H -1.784253 2.585329 0.760822 

H -3.041388 1.364091 0.810118 

H -2.115162 -2.553337 0.699332 

H -3.206159 -1.183397 0.776341 

H -1.010072 1.095076 2.426728 
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H -1.193987 -1.195366 2.414445 

H 0.052756 0.920203 0.996440 

H -0.107359 -1.135943 1.009797 
a Used for the ΔG‡

M06-2X calculation. 
b Atomic Units = Hartrees 
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Computed energy and geometry for the benzyne + cyclopentane TS  

 
Sum of electronic and thermal Free Energiesa = -427.178882 A.U.b  

Atom 
Type	  

Cartesian Coordinates (x,y,z)	  

C 1.936071 1.419798 -0.070021 

C 3.115873 0.758905 0.285953 

C 3.188398 -0.641143 0.322237 

C 2.086226 -1.442008 0.005123 

H 1.877126 2.501027 -0.103869 

H 3.995206 1.341273 0.538809 

H 4.124348 -1.112727 0.602504 

H 2.153516 -2.523320 0.032028 

C 0.943597 -0.727851 -0.334072 

C 0.895947 0.552441 -0.363669 

C -2.371611 0.035678 1.246519 

C -2.545284 -1.169909 0.313210 

C -1.739723 -0.763853 -0.928924 

C -1.674332 0.702123 -0.946129 

C -2.413744 1.230038 0.283738 

H -3.128781 0.089219 2.029962 

H -1.388913 -0.012579 1.725594 

H -3.601729 -1.289493 0.049659 

H -2.202332 -2.106892 0.755942 

H -3.451493 1.457333 0.014063 

H -1.971928 2.138038 0.699109 

H -1.840205 1.211877 -1.892960 

H -2.003653 -1.252317 -1.865291 

H -0.475229 0.951560 -0.736132 

H -0.614443 -1.118306 -0.733204 
a Used for the ΔG‡

M06-2X calculation. 
b Atomic Units = Hartrees 
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Computed energy and geometry for the benzyne + norbornane TS  

 
Sum of electronic and thermal Free Energiesa = -504.545282 A.U.b  

Atom 
Type	  

Cartesian Coordinates (x,y,z)	  

C 2.719658 1.430940 -0.014251 

C 3.848384 0.646372 0.243223 

C 3.788447 -0.754443 0.226184 

C 2.596051 -1.430207 -0.050577 

H 2.774227 2.513244 0.000175 

H 4.794312 1.131091 0.460305 

H 4.687618 -1.324789 0.432268 

H 2.547979 -2.512544 -0.065152 

C 1.568809 0.700687 -0.280430 

C 1.526190 -0.582597 -0.294306 

C -1.051181 -0.695977 -0.871667 

C -1.084265 0.771529 -0.864241 

C -1.914618 -1.124874 0.315531 

C -1.618703 0.008129 1.313436 

C -1.981254 1.131378 0.327073 

C -3.426935 0.742384 -0.059008 

C -3.381399 -0.814204 -0.069336 

H -1.746482 -2.142857 0.665394 

H -2.273815 -0.016736 2.187519 

H -0.575866 0.037794 1.635717 

H -1.869742 2.152263 0.690584 

H -4.134618 1.108662 0.688380 

H -3.716244 1.162826 -1.024082 

H -3.646084 -1.239757 -1.039259 

H -4.064838 -1.231953 0.673671 

H -1.201901 -1.213194 -1.818054 

H -1.296611 1.271064 -1.808927 
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H 0.050370 1.112787 -0.607556 

H 0.136599 -0.982596 -0.600762 
a Used for the ΔG‡

M06-2X calculation. 
b Atomic Units = Hartrees 
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Computed energy and geometry for the benzyne + cyclohexane TS  

 
Sum of electronic and thermal Free Energiesa = -466.454652 A.U.b  

Atom 
Type	  

Cartesian Coordinates (x,y,z)	  

C 2.558048 -1.432210 -0.021464 

C 3.677709 -0.656503 -0.339859 

C 3.625160 0.745027 -0.340818 

C 2.449767 1.432749 -0.022447 

H 2.606004 -2.514784 -0.020985 

H 4.610784 -1.149338 -0.591249 

H 4.517502 1.307386 -0.593581 

H 2.408576 2.515366 -0.020765 

C 1.426086 -0.687701 0.282230 

C 1.388866 0.592931 0.279567 

C -1.200384 0.705021 0.847346 

C -1.969783 1.359873 -0.290983 

C -3.397440 0.793354 -0.351894 

C -3.410445 -0.755278 -0.420161 

C -1.998506 -1.356843 -0.331628 

C -1.227653 -0.761596 0.840415 

H -1.456406 1.166837 -1.238606 

H -1.995669 2.444117 -0.163426 

H -3.937019 1.129170 0.538222 

H -3.921522 1.219624 -1.210683 

H -4.011180 -1.155360 0.401264 

H -3.887032 -1.092232 -1.344007 

H -2.055122 -2.443726 -0.240404 

H -1.453144 -1.150661 -1.258306 

H -1.479741 -1.207150 1.803753 

H -1.381706 1.159386 1.822023 

H -0.015245 0.991593 0.651721 

H -0.077625 -1.093173 0.683206 
a Used for the ΔG‡

M06-2X calculation. 
b Atomic Units = Hartrees 
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Computed energy and geometry for the benzyne + tetrahydrofuran TS 

 
Sum of electronic and thermal Free Energiesa = -463.104873 A.U.b  

Atom 
Type	  

Cartesian Coordinates (x,y,z)	  

C 1.785857 -1.368935 -0.146323 

C 3.017036 -0.851078 0.258615 

C 3.220388 0.532563 0.356529 

C 2.206252 1.443669 0.052873 

H 1.608090 -2.434081 -0.230493 

H 3.826792 -1.530131 0.500390 

H 4.189881 0.899580 0.677842 

H 2.389003 2.509880 0.133376 

C 0.849913 -0.383946 -0.422008 

C 0.980790 0.900737 -0.341891 

C -2.323308 -0.198769 1.211650 

O -2.193127 -1.238526 0.231388 

C -1.667861 -0.661355 -0.897495 

C -1.850454 0.800291 -0.887791 

C -2.656201 1.050157 0.396175 

H -3.094836 -0.508101 1.914434 

H -1.368500 -0.086622 1.735561 

H -3.726387 1.091928 0.182023 

H -2.362042 1.965315 0.909579 

H -1.844114 -1.260206 -1.787280 

H -2.275433 1.204697 -1.803738 

H -0.368824 -0.787448 -0.796966 

H -0.803076 1.263404 -0.767843 
a Used for the ΔG‡

M06-2X calculation. 
b Atomic Units = Hartrees 
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Computed energy and geometry for the benzyne + 1,4-dioxane TS  

 
Sum of electronic and thermal Free Energiesa = -538.297484 A.U.b  

Atom 
Type	  

Cartesian Coordinates (x,y,z)	  

C -2.018263 1.405022 0.046566 

C -3.269890 0.945620 -0.366027 

C -3.551915 -0.426345 -0.425090 

C -2.598541 -1.384806 -0.074682 

H -1.783838 2.461259 0.100855 

H -4.034507 1.661554 -0.645636 

H -4.535858 -0.747012 -0.751723 

H -2.838694 -2.441114 -0.124974 

C -1.355478 -0.896124 0.329851 

C -1.139680 0.380427 0.367537 

C 1.340084 0.425284 1.126588 

O 2.091019 1.342197 0.440495 

C 2.430906 0.939037 -0.882781 

C 2.973410 -0.472256 -0.852815 

O 1.958984 -1.353024 -0.419304 

C 1.421400 -1.013726 0.837652 

H 1.536303 0.978851 -1.515285 

H 3.167775 1.658484 -1.238271 

H 3.269067 -0.798024 -1.850162 

H 3.844015 -0.521637 -0.184469 

H 1.298249 0.688767 2.180728 

H 1.890609 -1.576306 1.651363 

H 0.083095 0.683424 0.776074 

H 0.311562 -1.374423 0.791167 
a Used for the ΔG‡

M06-2X calculation. 
b Atomic Units = Hartrees 
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Computed energy and geometry for the fluorynone 13-comp + cyclopentane TS 

 
 

Sum of electronic and thermal Free Energiesa = -1218.080249 A.U.b  

Atom 
Type	  

Cartesian Coordinates (x,y,z)	  

C -0.362336 3.686943 0.258095 

C 0.370684 4.868713 0.111076 

C 1.745371 4.845722 -0.116549 

C 2.427895 3.629507 -0.203637 

H -1.431241 3.708248 0.437063 

H -0.139373 5.822980 0.176810 

H 2.284941 5.778634 -0.225556 

H 3.496797 3.587032 -0.379268 

C 0.317876 2.485456 0.170220 

C 1.695595 2.467757 -0.058036 

C 2.158774 1.044103 -0.102145 

C -0.154523 1.088687 0.279565 

C 0.928534 0.194351 0.112867 

C 0.812697 -1.208560 0.171475 

C -0.486838 -1.735938 0.428616 

C -0.835710 -3.194959 0.566234 

O 3.296998 0.679082 -0.265888 

C 3.045916 -1.973642 -1.839435 

C 3.606383 -2.003784 1.277877 

C 2.059289 -4.155060 -0.086679 

H -0.280362 -3.665874 1.378368 

H -1.899496 -3.297848 0.786039 

H -0.624516 -3.751715 -0.347205 

C -1.460393 -0.757142 0.563625 

C -1.400302 0.532781 0.507435 

C -4.436356 -0.435864 -1.476031 

C -4.844517 0.757355 -0.601142 
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C -4.191039 0.436154 0.752781 

C -4.021815 -1.019043 0.806064 

C -4.511498 -1.622552 -0.506002 

H -3.404166 -0.305700 -1.814516 

H -5.933806 0.788973 -0.495135 

H -4.517551 1.714808 -1.010414 

H -4.638557 0.895263 1.632770 

H -4.240315 -1.545471 1.732634 

H -5.552526 -1.942633 -0.380522 

H -3.934442 -2.491566 -0.829580 

H 3.969778 -2.543307 -1.978809 

H 2.325378 -2.328403 -2.581989 

H 3.263810 -0.925073 -2.031539 

H 3.034937 -4.618060 -0.271851 

H 1.701125 -4.536823 0.870208 

H 1.389116 -4.498896 -0.876255 

H 4.516017 -2.579540 1.081426 

H 3.884775 -0.957483 1.387768 

H 3.187040 -2.361117 2.222735 

H -5.068363 -0.562713 -2.355671 

H -3.094770 0.871344 0.714339 

H -2.753492 -1.174082 0.766998 

Si 2.378655 -2.292823 -0.112813 
a Used for the ΔG‡

M06-2X calculation. 
b Atomic Units = Hartrees 
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V. Copies of 1H and 13C NMR spectra of all new compounds 
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