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This paper provides the supplementary information for the article ”Modeling the effect of transient populations on
epidemics in Washington DC” submitted toScientific Reports. Section 1 describes the detailed process for gener-
ating transient population followed by supporting tables for simulation results in section 2. Details of the ordinary
differential equation (ODE) model are explained in Section3.

1 Synthetic Transient Population

We generated an augmented synthetic population for the Washington DC Metro Area, which combines a previously
generated resident population (the “base population” consisting of 4.13 million people) with a transient population
consisting of tourists and business travelers. Since details about generating the base synthetic population are not novel
to the present work and are described elsewhere [1], we only describe in detail the methodology for generating the
synthetic transient population.

1.1 Data Available

Demographic data about transients were obtained from Destination DC. We also used data from the the Smithsonian
Institution about daily numbers of visits to various Smithsonian museums. Finally, we used data from Dun & Brad-
street to identify places that tourists visit, based on Standard Industrial Classification (SIC) codes. The data sets used
for generating the synthetic population are listed in tableS1.

The methodology for generating the transient population broadly follows that for generating the base population. We
first use demographic data to represent transient individuals and transient parties (groups). Each transient party is
placed in a hotel which serves as their home for the period of the visit. Each transient individual is then assigned
activities to perform during the day like staying in the hotel, visiting museums and other tourist destinations (or work
activities, for business travelers), going to restaurants, and various night life activities. Each activity is represented by
the type of activity, the time each activity begins and ends,and the location for the activity. A location is chosen for
each activity based on the type of activity using Dun & Bradstreet data.
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Used for data source
Base US population American Community Survey

National Center for Education Stat.
National Household Travel Survey
Navteq
Dun & Bradstreet

Transient population Destination DC
(additional) Smithsonian visit counts

Table 1: Datasets used for population generation.

1.2 Tourist Population

1.2.1 Generating Synthetic Tourists

The goal here is to combine various demographic distributions and represent synthetic tourist parties and individuals
with demographics drawn from these distributions. According to data from Destination DC, about50000 visitors
visit Washington DC every day,55% of these are leisure travelers and the rest are business travelers. They also
provide distributions of age, household income, party size, marital status and if the household has children. Please
note that these data are given only for adult, overnight leisure travelers. Also age and marital status are individual
level demographics while household income and party size are household (or party) level demographics, and hence
they need to be treated differently. These distributions are not independent of each other within a party i.e, a married
couple is more likely to travel together and hence we cannot sample independently from the given distributions.

High Level View

Our approach is simple: we assume a small set of rules about party structure and then do sampling without replace-
ment from the given demographic distributions (since we know the total number of individuals to be generated) in
combination with these rules to generate the tourist population.

We start by generating first party member (called householder) by sampling age, marital status, income and party
size independently from the corresponding distributions and then generate other party members in relation to the
householder. For example, if a party member is married then with a certain probability his/her spouse will also be part
of the party and the age difference between them is assumed tobe within a certain range (±5 years in this case). All
party members should have same household/party level demographics, household income and party size. Whenever an
individual is assigned a demographic, the probabilities for selecting various categories of that demographic is adjusted
to model sampling without replacement. We also assign all individuals some other demographic variables as assigned
in the synthetic base population, e.g., sex (at random and inaccordance with marital status) and employee status record
(esr) and occupation code (socp) (by finding an individual with the closest income from the synthetic population of
Washington DC metro area and assigning correspondingesrandsocpcodes).

For the present study most of these demographic details are irrelevant because disease parameters are not chosen to
vary with demographic. However, that could be done in futurework, and the synthetic populations can also be used
for other studies where the demographic details are important.
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1.2.2 Assigning hotels

We identified hotels and lodging locations within I-495 looparea in Washington DC from Dun & Bradstreet (D&B)
data.D&B is a commercial data set that gives information about business locations like longitude-latitude of buildings,
number of employees (relative numbers), type of business going on there etc.

Each tourist party is assumed to stay at a hotel, which servesas their home location for the duration of the visit.
Taking into consideration that tourists prefer to stay neardowntown and each hotel has a capacity proportional to
number of employees there, a hotel location (i) is chosen from the available pool with probability proportional to
num employees(i)× eδ×distance from white house.

1.2.3 Assigning Activities

Since we could not find any data about activity sequences for tourists, we assumed a template for it, as illustrated in
figure S1. We assume that all individuals in a party travel together and hence have the same activity sequence and
go to the same locations. However within a location (building) they may go to different sublocations (rooms). Each
party’s activity sequence contains information about the type of activity and the start time and duration. Location and
sublocation are decided later.

Figure 1: Activity template for tourists.

Each party starts the day with a hotel activity. It is followed by breakfast which could happen at the same hotel (with
60% probability) or at some other location (with40% probability). Each tourism activity shown in figure S1 is divided
into one or more tourism activities with some travel time between them. Each party goes for lunch after12 : 00 pm
which is again followed by one or more tourism activities andthen dinner. After dinner, with50% probability they go
back to the hotel directly and stay for the rest of the day. Otherwise they go for a night life activity and then back to
their hotel. Each pair of activities is separated by travel time of0 mins to one hour.

1.2.4 Locating Activities

We identified locations for tourism, eating, and night life activities fromD&B data. Tourism activity locations include
places like museums, art galleries, planetarium, historical societies, and botanical and zoological gardens. Eating
activity locations include various restaurants and night life activity locations include bars and pubs, night clubs, and
movie theatres.

Assuming that most of the transients to Washington DC visit museums which are around the National Mall and plan
their trip around that area, we choose locations for all activities based on the distance from the National Mall. Each
location has a capacity (again assumed to be proportional tothe number of employees at that location according to
D&B). Considering both of these factors, a location (i) is chosen from the available locations for a given activitytype
with probability proportional tonum employees(i)× eδ×distance from national mall.
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The Smithsonian Institution provides data about daily visit counts at various museums. To match the number of visits
in our synthetic population at museum locations with these counts, we adjusted weights (number of employees) from
D&B data for these museums. However, the number of transients isnot sufficient to account for all the visits to some
museum locations. For example, the National Air and Space Museum has about 80000 visits per day. So we adjusted
the activities of some individuals in the base population and routed them to these locations to match the visit counts
exactly. This also creates mixing between the transient andthe base population, which is an important factor in the
spread of disease.

1.2.5 Sublocation Modeling

An activity location typically corresponds to a building and sublocations correspond to rooms in the building. Sublo-
cation modeling involves deciding which room a person visits and hence with whom he comes into contact. All
individuals present at the same sublocation at the same timeare assumed to be in contact with each other. All individ-
uals in a party are assumed to meet each other at the hotel and hence are assigned same sublocation.

For other locations, we follow the assumption made in the creation of the base population [1], that sublocations have a
capacity of 25 people, and that each person, upon arriving ata location is assigned to a sublocation where he remains
for the duration of his activity at that location. In reality, people would come into contact with more than25 people
at major tourist venues like the National Air and Space Museum and the National Museum of Natural History. Also,
inside museums, they do not stay at the same location during the entire period of their visit. They keep moving from
one exhibition to another. We therefore create a simple stochastic process modeling movement between sublocations
at for the four biggest tourism locations - the National Air and Space Museum (NASM), the National Museum of
Natural History (NMNH), the National Museum of American History (NMAH) and the National Art Gallery (NAG).
For these four locations, we decided the number of sublocations by looking at their floor plans. While modeling visits
to these locations, a person’s visit is divided into the interval of 5 to 15 minutes and a person keeps moving to different
sublocations (chosen at random) within the location.

1.3 Business Travelers

The process used is similar to the synthetic tourist population generation process.

1.3.1 Generating Synthetic Business Travelers

We could not find any demographic data for business travelers. The only information available is that about45%
of the transients are business travelers. We followed the same procedure as for generating tourists but with some
assumptions. Each business traveler is assumed to be by himself and hence party size is assumed to be1. Age is
assumed to be between18 to 70 years. Marital status is chosen from unmarried, married, and divorced/widowed with
equal probability. The household income distribution is assumed to be Gaussian with peak and standard deviation
equal to the maximum and average household income in Washington DC metro area respectively.

We assigned other demographic variables i.e., sex,socp, esr following the same process as for tourist population.

1.3.2 Assigning Hotels

Business travelers are assigned hotels the exact same way astourists.
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1.3.3 Assigning Activities

Here also, since we could not find any data about the activity sequences for business travelers, we assumed a template
for it. The activity sequence created contains informationabout the type of activity and the start time and duration.
Location and sublocation choice are described in the next subsections. The template for activities is as shown in figure
S2.

Figure 2: Activity template for business travelers.

Each business traveler starts the day at a hotel and hence with hotel activity. It is followed by breakfast which could
happen at the same hotel (with60% probability )or at some other location (with40% probability). After breakfast,
he leaves for work and stays there until lunch. After lunch, he goes back to work and stays there until dinner. After
dinner, he goes back to the hotel and stays for the rest of the day. Here also, each pair of activities is separated by a
travel time of0 mins to one hour.

1.3.4 Locating Activities

The process used to assign activity locations is quite similar to that of tourists. Here we identified locations for work
from the D&B data (these are also used as work locations for the base synthetic population) and eating (same as for
tourists). Activity locations are assigned the same way as for tourists.

1.3.5 Sublocation Modeling

For sublocation modeling, we follow the same process as usedfor the base synthetic population.
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2 Detailed simulation results

In this section we present results from simulation including statistical analysis of outcomes.

Table 2: The fraction of infections (residents + transients) over120 days at four major tourist locations (average over
50 iterations): the National Air and Space Museum (NASM), the National Museum of Natural History (NMNH), the
National Museum of American History (NMAH), and the National Gallery of Art (NGA).

Museum No Museums Museums Healthy Healthy Healthy Healthy
Intervention closed closed behavior behavior behavior behavior

(5 days) (14 days) 80% 60% 40% 20%
Residents only

NASM 0.033413 0.028599 0.027349 0.030576 0.029372 0.053294 0.000972
NMNH 0.028815 0.023072 0.020470 0.025957 0.023839 0.021263 0.000681
NMAH 0.017859 0.014188 0.011787 0.015265 0.012453 0.003830 0.000299
NGA 0.003242 0.002632 0.001025 0.001616 0.000692 0.0001960.000034

Residents and transients
NASM 0.067039 0.060212 0.055637 0.050779 0.038752 0.024470 0.002433
NMNH 0.056805 0.049966 0.044430 0.042688 0.031852 0.015943 0.001745
NMAH 0.031314 0.026539 0.022244 0.024012 0.016521 0.006404 0.000762
NGA 0.007305 0.005076 0.002608 0.004030 0.001656 0.0004590.000091

2.1 Statistical Analysis

We compare various scenarios (residents only, residents + transients, and two intervention strategies, closing museums
(four most-visited locations) and practice of helathy behavior (at these museums with the compliance rate of 50%),
with 50 simulations for each case) in terms of the day when disease peaks, the fraction of residents infected at peak
and the fraction of residents infected cumulatively over the course of simulation.

For comparing various scenarios, we first visualize data (i.e., the day of peak for each scenario) as a scatter plot and
remove outliers before performing statistical tests. We perform following set of comparisons:

• Evaluating the effect of transients: To see if having transients in the city makes any difference to disease
dynamics of the city, we compare residents only and residents + transients scenarios (without any intervention).
We use independent samples t-test for comparison.

• Evaluating the effect of interventions in the presence of transients: For residents + transients population,
we compare various intervention strategies to no intervention scenario (for residents + transients) to see if
these interventions make any difference. We use Tukey’s HSDtest (withα = 0.05) for comparison. Tukey’s
HSD test assumes data to be normally distributed and homogeneity of variances. As we have enough number
of samples (even after removing outliers), we can assume data to be normally distributed using central limit
theorem. However not all groups have equal variance (as seenin scatter plots). Hence, we choose maximal set
of scenarios which satisfy the test of homogeneity of variances and compare those using Tukey’s HSD test. For
the rest of the intervention scenarios, we do pairwise comparison with no intervention scenario using Welch two
sample t-test. Doing multiple t-tests in this fashion can lead to type I error (rejecting null hypothesis when it
is actually true) but all the p-values that we obtain from t-tests are very small (< 1.333e − 08). Hence, we are
fairly confident that there is a significant difference whenever t-test rejects the null hypothesis.

• Evaluating the effect of interventions in the absence of transients: For residents only population also, we
compare various intervention strategies to no intervention scenario (for residents only) to see if we get similar
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results in the absence of transients as well. We use the same methodology and tests as used for the residents +
transients population.

2.1.1 Comparing the day of peak
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Figure 3: Scatter plots showing the day of peak verses group where groups are defined as follows: 1 - No interventions
(residents only), 2 - Museums closed for5 days (residents only), 3 - Museums closed for14 days (residents only), 4 -
Healthy behavior80% (residents only), 5 - Healthy behavior60% (residents only), 6 - Healthy behavior40% (residents
only), 7 - Healthy behavior20% (residents only), 8 - No interventions (residents + transients), 9 - Museums closed for
5 days (residents + transients), 10 - Museums closed for14 days (residents + transients), 11 - Healthy behavior80%
(residents + transients), 12 - Healthy behavior60% (residents + transients), 13 - Healthy behavior40% (residents +
transients), 14 - Healthy behavior20% (residents + transients). We remove outliers from each group before performing
statistical tests.
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Evaluating the effect of transients

Table 3: Independent sample t-test (α = 0.05) comparing the day of peak for residents only and residents +transients
scenarios (without any interventions). Significance level(0.019) for the Levene’s test for equality of variance is less
thanα = 0.05, which suggests that the variances of these two scenarios are not equal. As the significance level
(0.000) for t-test (in the line for ”equal variance not assumed”) is less thanα = 0.05, we can conclude that disease
peaks significantly earlier when the transients are considered.

Levene’s Test for t-test for
Equality of Equality of
Variances Means

F Sig. t df Sig.(2 tailed) Mean Std. Error 95% Confidence
Difference Difference Interval of

the Difference

Lower Upper
Equal variances 5.722 0.019 4.646 97 0.000 10.116 2177 5.795 14.437

assumed
Equal variances 4.661 89.509 0.000 10.116 2.170 5.804 14.428

not assumed

Evaluating the effect of interventions in the presence of transients

Table 4: Levene test of homogeneity of variances (α=0.05) comparing the day of peak for following scenarios, for
residents + transient population: no intervention, close museums (5 days), close museums (14 days), healthy behavior
80%, and healthy behavior 60%. The significance value (0.065) is greater thanα (0.05). Hence, the variances are equal
for all scenarios and we can proceed towards ANOVA.Note: Variances for ”Healthy behavior 40%” and ”healthy
beahvior 20%” scenarios differ from other scenarios. So we compare them with ”no intervention” scenario using
Welch t-test later.

Levene statistic df1 df2 Sig.
2.249 4 232 0.065

Table 5: Analysis of variance (ANOVA) (α=0.05) comparing the day of peak, to see if any of the following scenarios
for residents + transient population differ: no intervention, close museums (5 days), close museums (14 days), healthy
behavior 80%, and healthy behavior 60%. The significance value (0.000) is less thanα (0.05). Hence, at least one
scenario differs from others and we can proceed towards Tukey’s HSD test to see which scenarios differ.Note:
Variances for ”Healthy behavior 40%” and ”healthy beahvior20%” scenarios differ from other scenarios. So we
compare them with ”no intervention” scenario using Welch t-test later.

Sum of Squares df Mean Square F Sig.
Between Groups 25292.020 4 6323.005 71.004 0.000
Within Groups 20659.913 232 89.051

Total 45951.932 236
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Table 6: Tukey’s HSD test (α = 0.05) comparing the day of peak for following scenarios, for residents + transients
population: no intervention, close museums (5 days), closemuseums (14 days), healthy behavior 80%, and healthy
behavior 60%. Scenarios in the same group (e.g. ”No intervention”, ”Close museum (5 days)”, and ”close Museums
(14 days)” are in group 1) are statistically similar to each other and scenarios in different groups (e.g. ”No intervention”
is in group 1 and ”Healthy behavior 80%” is in group 2) are statistically different from each other and hence one is
significantly better than the other.Note:Variances for ”Healthy behavior 40%” and ”healthy beahvior20%” scenarios
differ from other scenarios. So we compare them with ”no intervention” scenario using Welch t-test later.

Group N Subsets forα=0.05

1 2 3
No intervention 49 52.20

Close museums (5 days) 49 52.24
Close museums (14 days) 50 51.68

Healthy behavior 80% 46 67.22
Healthy behavior 60% 43 77.74

Sig. 0.998 1.000 1.000

Table 7: Welch t-tests (α = 0.05, it assumes inequality of variances) comparing the day of peak for following interven-
tion scenarios to the ”no intervention” scenario (with mean= 52.2041), for residents + transients population: healthy
behavior 40% and healthy behavior 20%. In all cases, p-values (2.2e-16) are less thanα (0.05). So these scenarios
differ significantly from the ”no intervention” scenario. Doing multiple t-tests in this fashion can lead to type I error
(rejecting null hypothesis when it is actually true) but allp-values obtained here are very small. So we are reasonably
confident that these interventions delay peak significantlyas compared to the ”no intervention” scenario.

Scenario t df p-value mean 95% Confidence Interval

Lower Upper
Healthy behavior 40% -21.2452 78.08 2.2e-16 100.11364 -52.39900 -43.42011
Healthy behavior 20% -20.0582 69.712 2.2e-16 102.32558 -55.10557 -45.13743

Evaluating the effect of interventions in the absence of transients

Table 8: Levene test of homogeneity of variances (α=0.05) comparing the day of peak for following scenarios, for
resident population: no intervention, close museums (5 days), close museums (14 days), healthy behavior 80%, and
healthy behavior 60%. The significance value (0.694) is greater thanα (0.05). Hence, the variances are equal for all
scenarios and we can proceed towards ANOVA.Note: Variances for ”Healthy behavior 40%” and ”healthy beahvior
20%” scenarios differ from other scenarios. So we compare them with ”no intervention” scenario using Welch t-test
later.

Levene statistic df1 df2 Sig.
0.557 4 245 0.694
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Table 9: Analysis of variance (ANOVA) (α=0.05) comparing the day of peak to see if any of the followingscenarios
for resident population differ: no intervention, close museums (5 days), close museums (14 days), healthy behavior
80%, and healthy behavior 60%. The significance value (0.000) is less thanα (0.05). Hence, at least one scenario
differs from others and we can proceed towards Tukey’s HSD test to see which scenarios differ.Note: Variances for
”Healthy behavior 40%” and ”healthy beahvior 20%” scenarios differ from other scenarios. So we compare them with
”no intervention” scenario using Welch t-test later.

Sum of Squares df Mean Square F Sig.
Between Groups 38861.560 4 9715.390 58.069 0.000
Within Groups 40990.040 245 167.306

Total 79851.600 249

Table 10: Tukey’s HSD test (α = 0.05) comparing the day of peak for following scenarios, for resident population:
no intervention, close museums (5 days), close museums (14 days), healthy behavior 80%, and healthy behavior 60%.
Scenarios in the same group (e.g. ”No intervention”, ”Closemuseum (5 days)”, and ”close Museums (14 days)” are
in group 1) are statistically similar to each other and scenarios in different groups (e.g. ”No intervention” is in group
1 and ”Healthy behavior 80%” is in group 2) are statisticallydifferent from each other and hence one is significantly
better than the other.Note: Variances for ”Healthy behavior 40%” and ”healthy beahvior20%” scenarios differ from
other scenarios. So we compare them with ”no intervention” scenario using Welch t-test later.

Group N Subsets forα=0.05

1 2 3
No intervention 49 62.32

Close museums (5 days) 49 62.28
Close museums (14 days) 50 61.22

Healthy behavior 80% 46 72.36
Healthy behavior 60% 43 94.02

Sig. 0.993 1.000 1.000

Table 11: Welch t-tests (α = 0.05, it assumes inequality of variances) comparing the day of peak for following
intervention scenarios to the ”no intervention” scenario (with mean = 62.32), for resident population: healthy behavior
40% and healthy behavior 20%. In all cases, p-values (2.2e-16) are less thanα (0.05) and hence these scenarios
differ significantly from the ”no intervention” scenario. Doing multiple t-tests in this fashion can lead to type I error
(rejecting null hypothesis when it is actually true) but allp-values obtained here are very small. So we are reasonably
confident that these interventions delay peak significantlyas compared to the ”no intervention” scenario.

Scenario t df p-value mean 95% Confidence Interval

Lower Upper
Healthy behavior 40% -32.9557 49.013 2.2e-16 119.98 -61.17597 -54.14403
Healthy behavior 20% -32.9693 49 2.2e-16 120.00 -61.19576 -54.16424
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2.1.2 Comparing the fraction of residents infected at peak

2 4 6 8 10 12 14

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Group

Fr
ac

tio
n 

of
 re

si
de

nt
s 

in
fe

ct
ed

 a
t p

ea
k

Figure 4: Scatter plots showing the fraction of residents infected at peak verses group where groups are defined as
follows: 1 - No interventions (residents only), 2 - Museums closed for5 days (residents only), 3 - Museums closed
for 14 days (residents only), 4 - Healthy behavior80% (residents only), 5 - Healthy behavior60% (residents only), 6
- Healthy behavior40% (residents only), 7 - Healthy behavior20% (residents only), 8 - No interventions (residents
+ transients), 9 - Museums closed for5 days (residents + transients), 10 - Museums closed for14 days (residents +
transients), 11 - Healthy behavior80% (residents + transients), 12 - Healthy behavior60% (residents + transients),
13 - Healthy behavior40% (residents + transients), 14 - Healthy behavior20% (residents + transients). We remove
outliers from each group before performing statistical tests.

Evaluating the effect of transients

Table 12: Independent sample t-test (α = 0.05) comparing the fraction of resident infections at peak for residents
only and residents + transients scenarios (without any interventions). Significance level (0.000) for the Levene’s test
for equality of variance is less thanα = 0.05, which suggests that the variances of the two scenarios are not equal.
As the significance level (0.000) for t-test (in the line for ”equal variance not assumed”) is less thanα = 0.05, we can
conclude that there are significantly more number of residents infected at peaks when the transients are considered.

Levene’s Test for t-test for
Equality of Equality of
Variances Means

F Sig. t df Sig.(2 tailed) Mean Std. Error 95% Confidence
Difference Difference Interval of

the Difference

Lower Upper
Equal variances 52.505 0.000 -68.897 98 0.000 -0.0077 0.0001 -0.0080 -0.0075

assumed
Equal variances -68.897 59.649 0.000 -0.0077 0.0001 -0.0080 -0.0075

not assumed
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Evaluating the effect of interventions in the presence of transients

Table 13: Levene test of homogeneity of variances (α=0.05) comparing the the fraction of residents infected at peak for
following scenarios, for residents + transient population: no intervention, close museums (14 days), healthy behavior
80%, healthy behavior 40%, and healthy behavior 20%. The significance value (0.302) is greater thanα (0.05). Hence,
the variances are equal for all scenarios and we can proceed towards ANOVA.Note:Variances for ”close museums (5
days)” and ”healthy beahvior 60%” scenarios differ from other scenarios. So we compare them with ”no intervention”
scenario using Welch t-test later.

Levene statistic df1 df2 Sig.
1.222 4 222 0.302

Table 14: Analysis of variance (ANOVA) (α=0.05) comparing the fraction of residents infected at peakto see if
any of the following scenarios for residents + transient population differ: no intervention, close museums (14 days),
healthy behavior 80%, healthy behavior 40%, and healthy behavior 20%. The significance value (0.000) is less than
α (0.05). Hence, at least one scenario differs from others andwe can proceed towards Tukey’s HSD test to see which
scenarios differ.Note: Variances for ”close museums (5 days)” and ”healthy beahvior 60%” scenarios differ from
other scenarios. So we compare them with ”no intervention” scenario using Welch t-test later.

Sum of Squares df Mean Square F Sig.
Between Groups 0.010 4 0.002 2787.491 0.000
Within Groups 0.000 222 0.000

Total 0.010 226

Table 15: Tukey’s HSD test (α = 0.05) comparing the fraction of residents infected at peak for following scenarios, for
residents + transients population: no intervention, closemuseums (14 days), healthy behavior 80%, healthy behavior
40%, and healthy behavior 20%. Scenarios in the same group are statistically similar to each other and cases in
different groups (e.g. ”No intervention” is in group 4 and ”Healthy behavior 80%” is in group 3) are statistically
different from each other. So one is significantly better than the other. Note: Variances for ”close museums (5
days)” and ”healthy beahvior 60%” scenarios differ from other scenarios. So we compare them with ”no intervention”
scenario using Welch t-test later.

Group N Subsets forα=0.05

1 2 3 4 5
Healthy behavior 20% 39 0.02625249354
Healthy behavior 40% 40 0.03002136255
Healthy behavior 80% 48 0.03945132879

No intervention 50 0.04201985456
Close museums (14 days) 50 0.04285123094

Sig. 1.000 1.000 1.000 1.000 1.000
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Table 16: Welch t-tests (α = 0.05, it assumes inequality of variances) comparing the fraction of residents infected at
peak for following intervention scenarios to the ”no intervention” scenario (with mean = 0.04201985), for residents
+ transients population: Close museums (5 days) and healthybehavior 60%. In all cases, p-values (2.2e-16) are less
thanα (0.05). Hence, these scenarios differ significantly from the ”no intervention” scenario. Doing multiple t-tests
in this fashion can lead to type I error (rejecting null hypothesis when it is actually true) but all p-values obtained here
are very small. So we are reasonably confident that these interventions reduces the fraction of residents infected at
peak significantly as compared to the ”no intervention” scenario.

Scenario t df p-value mean 95% Confidence Interval

Lower Upper
Close museums (5 days) -24.3452 76.697 2.2e-16 0.04725868 -0.005667348 -0.004810302
Healthy behavior 60% 41.9429 92 2.2e-16 0.03590205 0.005828117 0.006407501

Evaluating the effect of interventions in the absence of transients

Table 17: Levene test of homogeneity of variances (α=0.05) comparing the the fraction of residents infected at peak for
following scenarios, for resident population: no intervention, healthy behavior 80%, and healthy behavior 60%. The
significance value (0.391) is greater thanα (0.05). Hence, the variances are equal for all scenarios andwe can proceed
towards ANOVA.Note:Variances for ”close museums (5 days)”, close museums (14 days)”, ”healthy behavior 40%”,
and healthy behavior 20%” scenarios differ from other scenarios. So we compare them with ”no intervention” scenario
using Welch t-test later.

Levene statistic df1 df2 Sig.
0.945 2 146 0.391

Table 18: Analysis of variance (ANOVA) (α=0.05) comparing the fraction of residents infected at peakto see if any
of the following scenarios for resident population differ:no intervention, healthy behavior 80%, and healthy behavior
60%. The significance value (0.000) is less thanα (0.05). Hence, at least one scenario differs from others andwe can
proceed towards Tukey’s HSD test to see which scenarios differ. Note:Variances for ”close museums (5 days)”, close
museums (14 days)”, ”healthy behavior 40%”, and healthy behavior 20%” scenarios differ from other scenarios. So
we compare them with ”no intervention” scenario using Welcht-test later.

Sum of Squares df Mean Square F Sig.
Between Groups 0.001 2 0.000 5047.264 0.000
Within Groups 0.000 146 0.000

Total 0.001 148
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Table 19: Tukey’s HSD test (α = 0.05) comparing the fraction of residents infected at peak for following scenarios,
for resident population: no intervention, healthy behavior 80%, and healthy behavior 60%. Scenarios in the same
group are statistically similar to each other and cases in different groups (i.e., ”no intervention” is in group 1 and
”healthy beahvior 80%” is in group 2)are statistically different from each other. Hence, one is significantly better than
the other.Note: Variances for ”close museums (5 days)”, close museums (14 days)”, ”healthy behavior 40%”, and
healthy behavior 20%” scenarios differ from other scenarios. So we compare them with ”no intervention” scenario
using Welch t-test later.

Group N Subsets forα=0.05

1 2 3
Healthy behavior 60% 49 0.02927613465
Healthy behavior 80% 50 0.03220738820

No intervention 50 0.03424248026
Sig. 1.000 1.000 1.000

Table 20: Welch t-tests (α = 0.05, it assumes inequality of variances) comparing the fraction of residents infected
at peak for following intervention scenarios to the ”no intervention” scenario (with mean = 0.03424248), for resident
population: Close museums (5 days), close museums (14 days), healthy behavior 40% and healthy behavior 20%. In all
cases, p-values (2.2e-16) are less thanα (0.05). Hence, these scenarios differ significantly from the ”no intervention”
scenario. Doing multiple t-tests in this fashion can lead totype I error (rejecting null hypothesis when it is actually
true) but all p-values obtained here are very small. So we arereasonably confident that these interventions reduces the
fraction of residents infected at peak significantly as compared to the ”no intervention” scenario.

Scenario t df p-value mean 95% Confidence Interval

Lower Upper
Close museums (5 days) -76.0382 77.12 2.2e-16 0.03975947 -0.005661459 -0.005372514
Close museums (14 days) -19.7753 68.955 2.2e-16 0.03591980-0.001846534 -0.001508112

Healthy behavior 40% 20.613 49.117 2.2e-16 0.01302156 0.01915220 0.02328964
Healthy behavior 20% 55.1045 49.469 2.2e-16 0.005872231 0.02733588 0.02940462
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2.1.3 Comparing the fraction of residents infected cumulatively
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Figure 5: Scatter plots showing the fraction of residents infected cumulatively, and the day of peak verses group where
groups are defined as follows: 1 - No interventions (residents only), 2 - Museums closed for5 days (residents only),
3 - Museums closed for14 days (residents only), 4 - Healthy behavior80% (residents only), 5 - Healthy behavior
60% (residents only), 6 - Healthy behavior40% (residents only), 7 - Healthy behavior20% (residents only), 8 - No
interventions (residents + transients), 9 - Museums closedfor 5 days (residents + transients), 10 - Museums closed
for 14 days (residents + transients), 11 - Healthy behavior80% (residents + transients), 12 - Healthy behavior60%
(residents + transients), 13 - Healthy behavior40% (residents + transients), 14 - Healthy behavior20% (residents +
transients). We remove outliers from each group before performing statistical tests.

Evaluating the effect of transients

Table 21: Independent sample t-test (α = 0.05) comparing the fraction of resident infections cumulatively over the
course of simulation for residents only and residents + transients scenarios (without any interventions). Significance
level (0.228) for the Levene’s test for equality of varianceis greater thanα = 0.05, which suggests that the variances
of the two scenarios are equal. As the significance level (0.000) for t-test (in the line for equal variance assumed case)
is less thanα = 0.05, we can conclude that there are significantly more number of residents infected cumulatively
over the course of simulation when the transients are considered.

Levene’s Test for t-test for
Equality of Equality of
Variances Means

F Sig. t df Sig.(2 tailed) Mean Std. Error 95% Confidence
Difference Difference Interval of

the Difference

Lower Upper
Equal variances 1.474 0.228 27.933 97 0.000 0.0294 0.0011 -0.0315 -0.0273

assumed
Equal variances 28.073 79.194 0.000 0.0294 0.0010 -0.0315 -0.0273

not assumed
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Evaluating the effect of interventions in the presence of transients

Table 22: Levene test of homogeneity of variances (α=0.05) comparing the the fraction of residents infected cumula-
tively over the course of simulation for following scenarios, for residents + transient population: no intervention, close
museums (5 days), and close museums (14 days). The significance value (0.177) is greater thanα (0.05). Hence, the
variances are equal for all scenarios and we can proceed towards ANOVA. Note: Variances for all ”healthy beahv-
ior” scenarios (with efficacy 80%, 60%, 40%, and 20%”) differfrom other scenarios. So we compare them with ”no
intervention” scenario using Welch t-test later.

Levene statistic df1 df2 Sig.
1.753 2 145 0.177

Table 23: Analysis of variance (ANOVA) (α=0.05) comparing the fraction of residents infected cumulatively over the
course of simulation to see if any of the following scenariosfor residents + transient population differ: no intervention,
close museums (5 days), and close museums (14 days). The significance value (0.445) is greater thanα (0.05). Hence,
there is not a significant difference between these scenarios. Note:Variances for all ”healthy beahvior” scenarios (with
efficacy 80%, 60%, 40%, and 20%”) differ from other scenarios. So we compare them with ”no intervention” scenario
using Welch t-test later.

Sum of Squares df Mean Square F Sig.
Between Groups 0.000 2 0.000 0.815 0.445
Within Groups 0.002 145 0.000

Total 0.002 147

Table 24: Welch t-tests (α = 0.05, it assumes inequality of variances) comparing the fraction of residents infected
cumulatively over the course of simulation for following intervention scenarios to the ”no intervention” scenario
(with mean = 0.3437282), for residents + transients population: healthy behavior 80%, healthy behavior 60%, healthy
behavior 40%, and healthy behavior 20%. In all cases, p-valuse (2.2e-16) are less thanα (0.05). Hence, these scenarios
differ significantly from the ”no intervention” scenario. Doing multiple t-tests in this fashion can lead to type I error
(rejecting null hypothesis when it is actually true) but allp-values obtained here are very small. So we are reasonably
confident that these interventions reduces the fraction of residents infected cumulatively over the course of simulation
significantly as compared to the ”no intervention” scenario.

Scenario t df p-value mean 95% Confidence Interval

Lower Upper
Healthy behavior 80% 12.668 76.323 2.2e-16 0.3313268 0.01045175 0.01435098
Healthy behavior 60% 19.6952 52.856 2.2e-16 0.3128457 0.02773718 0.03402767
Healthy behavior 40% 13.2146 41.421 2.2e-16 0.2452898 0.08339898 0.11347778
Healthy behavior 20% 16.535 38.418 2.2e-16 0.2247314 0.1044331 0.1335604
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Evaluating the effect of interventions in the absence of transients

Table 25: Levene test of homogeneity of variances (α=0.05) comparing the the fraction of residents infected cumula-
tively over the course of simulation for following scenarios, for resident population: no intervention, close museums
(5 days), and close museums (14 days). The significance value(0.660) is greater thanα (0.05). Hence, the variances
are equal for all scenarios and we can proceed towards ANOVA.Note: Variances for all ”healthy beahvior” scenarios
(with efficacy 80%, 60%, 40%, and 20%”) differ from other scenarios. So we compare them with ”no intervention”
scenario using Welch t-test later.

Levene statistic df1 df2 Sig.
0.417 2 147 0.660

Table 26: Analysis of variance (ANOVA) (α=0.05) comparing the fraction of residents infected cumulatively over
the course of simulation to see if any of the following scenarios for resident population differ: no intervention, close
museums (5 days), and close museums (14 days). The significance value (0.331) is greater thanα (0.05). Hence, there
is not a significant difference between these scenarios.Note: Variances for all ”healthy beahvior” scenarios (with
efficacy 80%, 60%, 40%, and 20%”) differ from other scenarios. So we compare them with ”no intervention” scenario
using Welch t-test later.

Sum of Squares df Mean Square F Sig.
Between Groups 0.000 2 0.000 1.177 0.311
Within Groups 0.005 147 0.000

Total 0.005 149

Table 27: Welch t-tests (α = 0.05, it assumes inequality of variances) comparing the fraction of residents infected
cumulatively over the course of simulation for following intervention scenarios to the ”no intervention” scenario
(with mean = 0.3143110), for resident population: healthy behavior 80%, healthy behavior 60%, healthy behavior
40%, and healthy behavior 20%. In all cases, p-values (¡1.333e-08) are less thanα (0.05). Hence, these scenarios
differ significantly from the ”no intervention” scenario. Doing multiple t-tests in this fashion can lead to type I error
(rejecting null hypothesis when it is actually true) but allp-values obtained here are very small. So we are reasonably
confident that these interventions reduces the fraction of residents infected cumulatively over the course of simulation
significantly as compared to the ”no intervention” scenario.

Scenario t df p-value mean 95% Confidence Interval

Lower Upper
Healthy behavior 80% 6.4221 70.841 1.333e-08 0.3010247 0.009160976 0.017411638
Healthy behavior 60% 9.6737 50.227 4.627e-13 0.2563238 0.04594861 0.07002577
Healthy behavior 40% 50.4469 51.021 2.2e-16 0.05365425 0.2502838 0.2710297
Healthy behavior 20% 124.5587 65.684 2.2e-16 0.02328112 0.2863645 0.2956952
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3 Ordinary Differential Equation (ODE) Model

This section describes analysis of each case (effect of transients and intervention scenarios like closing four big muse-
ums and promoting healthy behavior at these museums) using ordinary differential equation (ODE) model.

3.1 Effect of transients

This section analyses the effect of transient population onepidemics. Table S28 lists the subscripts used for referring
to various sub-populations in the following analysis.

Table 28: Definitions of populations and subpopulations
Population Definition

r Resident population
t Transient population

Subpopulation Definition

rr Residents who only meet residents
rt Residents who meet residents and transients
tt Transients who only meet transients
tr Transients who meet transients and residents

Subpopulation Definition (based on activity at museums)

rr− Residents who only meet residents and they do not go to museums
rt− Residents who meet residents and transients and they do not go to museums
tr− Transients who meet transients and residents and they do notgo to museums
rr+ Residents who only meet residents and they go to museums
rt+ Residents who meet residents and transients and they go to museums
tr+ Transients who meet transients and residents and they go to museums

3.1.1 Homogeneously-mixing SEIR model

Two populations are considered in this paper. Resident population represents individuals who live in a given loca-
tion/city without any birth and death process. Consequently, resident population does not change over time. Transient
population represents individuals who stay for a short timein the same location/city as resident population. In partic-
ular, a transient individual arrives at the same location/city of the resident population, stays for a certain number of
days and leaves the location/city. Every transient arrivesto the residency city is assumed to be susceptible and stays on
the average for 5 days. Therefore, there exist birth and death processes for the transient population with rateρ = 0.2.
Individuals from each population are in contact with individuals from the same population as well as with the other
population. To clarify, a resident individual is in contactwith resident individuals and with transient individuals.The
same is true for transient individuals.

We now assume that a hypothetical Influenza-Like-Illness ILI described by Susceptible/Exposed/Infected/Recovered
SEIR compartmental model spreads in the resident population. Due to the existence of contact mixing between
resident and transient populations, the spread of ILI can reach the transient population. LetSr, Er, Ir, andRr

represent the fraction of susceptbile, exposed, infected/infectious, and recovered resident individuals, respectively.
In the same fashion, letSt, Et, It, andRt represent the fraction of susceptbile, exposed, infected/infectious, and
recovered transient individuals, respectively. We assumethat there is an initial small fraction of infected residents.
Every infected resident tries to transmit the infection to susceptible residents and transients with infection ratesβr→r
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andβt→r, respectively. The infection rate is a function of the contact rate, probability of infection transmission,
susceptibility and infectivity as follows [4]:

βi→j = αiξjCij(1− eTijp) (1)

whereαi andξi are the susceptibility and infectivity for populationsi andj, respectively.Ci,j is the contact rate per
individual in populationi with individuals in populationj, Ti,j is the average duration per contact between populations
i and j andp is the transmissibility value, which is set to4 × 10−5 transmission per minute. For simplicity, we
assume that all individuals have the same level of susceptibility and infectivity, i.e.αi =1 andξj = 1. The fraction of
susceptible individuals who receive the infection become exposed for1

γ
time units. Fraction of exposed individuals

become infected and infectious for1
µ

time units, during which they infect susceptible individuals. After being infected

and infectious for1
µ

time units, infected individuals recover without any further infection. Mathematically, the spread
of ILI in the two populations is represented using the following system of ordinary differential equations:

dSr

dt
= −Sr(βr→rIr + βr→tIt) (2a)

dEr

dt
= Sr(βr→rIr + βr→tIt)− γEr (2b)

dIr

dt
= γEr − µIr (2c)

dRr

dt
= µIr (2d)

dSt

dt
= −St(βt→rIr + βt→tIt) + ρ(1− St) (2e)

dEt

dt
= St(βt→rIr + βt→tIt)− Et(γ + ρ) (2f)

dIt

dt
= γEt − It(µ+ ρ) (2g)

dRt

dt
= µIt − ρRt. (2h)

Depending on the degree of mixing within the resident population, within transient population and between resident
and transient population, the spread can reach a non-negligible fraction of the populations.

Basic Reproductive Number Ro:

The basic reproductive numberRo is defined as the average number of secondary infection caused by a single infected
case in a fully susceptible population. The reproductive numbers for the resident population and the transient popu-
lation can be easily found to beRr

o = βr→r

µr
andRt

o = γβt→t

(ρ+γ)(ρ+µ) , respectively. These reproductive numbers do not
reflect the actual reproductive number of the whole systemRo, but they only represent the reproductive number of
their populations when the two populations are studied independently. To compute the overall reproductive number,
we apply the next generation method [5, 2]. LetF be a matrix with entriesfij representing the rate of appearance
of new infection case in statei. In addition, letV = V − − V +, whereV − is the transfer rate matrix of individuals
out of a given state andV + is the transfer rate matrix of individuals into a given state. We are only concern about the
infection states. Therefore the matricesF andV have4 × 4 dimension representing the statesEr, Et, Ir, It. Using
the system of differential equations (2a-2h), the matricesF andV are as follows:

19



F =









0 0 βr→r βr→t

0 0 βt→r βt→t

0 0 0 0
0 0 0 0









V =









γ 0 0 0
0 γ + ρ 0 0
−γ 0 µ 0
0 −γ 0 µ+ ρ









The matrixV is non-singular. The reproductive numberRo is the maximum eigenvalue of the matrixFV −1

FV −1 =











βr→r

µ
βr→tγ

(γ+ρ)(µ+ρ)
βr→r

µ
βr→t

(µ+ρ)
βt→r

µ
βt→tγ

(γ+ρ)(µ+ρ)
βt→r

µ
βt→t

(µ+ρ)

0 0 0 0
0 0 0 0











.

The reproductive numberRo is found to be as follows:

Ro =
βr→r

2µ
+

βt→tγ

2(γ + ρ)(µ+ ρ)
+
1

2
[(
βr→r

µ
)2−2

βr→r

µ

βt→tγ

(γ + ρ)(µ+ ρ)
+(

βt→tγ

(γ + ρ)(µ+ ρ)
)2+4

βr→tβt→rγ

µ(γ + ρ)(µ+ ρ)
]
1
2

(3)

After rearrangement,Ro is found to be:

Ro =
Rr

o +Rt
o

2
+

1

2
[(Rr

o −Rt
0)

2 + 4
βt→rβr→tγ

µ(γ + ρ)(µ+ ρ)
]
1
2 (4)

which is a function of the individual reproductive numbers for both the resident population and the transient popula-
tion. The term βt→rβr→tγ

µ(γ+ρ)(µ+ρ) is the competing reproductive number, which represents theaverage number of secondary
infected cases in a susceptible population caused by an infected individual from the other population. To clarify, it rep-
resents the average number of secondary infected transients caused by a single infected resident in a fully susceptible
transient population and vice versa. Below, we discuss the competing reproductive numberRc

o.

Competing Reproductive Number Rc
o:

Assume that there are contacts between transient and resident population, while there is no contact among individuals
in each population. The sysytem of differential equations represents the competing behavior can be obtained by letting
βr→r = βt→t = 0 in (2). Based on the susceptible, exposed and recovered compartments for each population, the
Jacobian matrix for the disease-free equilibrium is as follows:
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J =

















0 0 0 0 0 −βr→t

0 −γ 0 0 0 βr→t

0 γ −µ 0 0 0
0 0 −βt→r −ρ 0 0
0 0 βt→r 0 −γ − ρ βt→t

0 0 0 0 γ −µ− ρ

















. (5)

There are six eigenvalues for the Jacobian matrix, which areas follows:

0 (6a)

− ρ (6b)

−µ− γ − ρ

2
±

1

2

(

µ2 − 2γµ+ γ2 + ρ2 ± 2((µρ)2 − 2µγρ2 + (γρ)2 + 4βr→tβt→rγ
2)

1
2

)
1
2

. (6c)

The last four eigenvalues in (6c) represent the stability condition that each eigenvalue is less than 0. After rearrange-
ment, the four eigenvalues lead to the same competing reproductive number as follows:

Rc
o =

βr→tβt→rγ

µ(µ+ ρ)(γ + ρ)
< 1. (7)

The reproductive numberRc
o can also be obtained by lettingRr

o andRt
o equal 0 in Eq. 4. Therefore, ifRc

o < 1, there
is no secondary infection case in the susceptible population that happens due to a single infected individual who has
contacts with individuals from the former susceptible population. IfRc

o > 1, the epidemic invades the fully susceptible
population due to the existence of an infected individual inthe other population.

Stability Analysis:

To study the stability analysis, we first formulate the Jacobian matrix for the system of differential equations (2a-2h)
based 6 states, namelySr, Er, Ir, St, Et, It as follows:

J =

















−βr→rIr − βr→tIt 0 −βr→rSr 0 0 −βr→tSr

βr→rIr + βr→tIt −γ βr→rSr 0 0 βr→tSr

0 γ −µ 0 0 0
0 0 −βt→rSt −βt→tIt − βt→rIr − ρ 0 −βt→tSt

0 0 βt→rSt βt→tIt + βt→rIr −γ − ρ βt→tSt

0 0 0 0 γ −µ− ρ

















. (8)

The system has three equilibrium pointsSr, Er, Ir, Rr, St, Et, It, Rt representing the diease-free pointP1 : (1, 0, 0, 0, 1, 0, 0, 0),
non-endemic disease pointP2 : (S∗

r , 0, 0, R
∗

r , 1, 0, 0, 0), and the transient endemic pointP3 : (0, 0, 0, 1, S∗

t , E
∗

t , I
∗

t , R
∗

t ),
respectively. Below, we address each equilibrium point in detail.

Disease-free equilibrium P1 point
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The pointP1 represents the disease-free equilibrium point that the initial infected cases die out without causing any
new infection cases. Therefore, both resident and transient populations are susceptible. The reproductive number of
the system is less than one,Ro < 1. The following theorem addresses the stability of the system at pointP1.

Theorem 1 Consider the disease model for the resident and transient populations being in equilibrium pointP1. If
Ro < 1 the equilibrium pointP1 is locally asymptotically stable, while ifRo > 1 the equilibrium pointP1 is unstable.

Proof. Consider the following matrix properties: 1)F is nonnegative matrix, 2) the eigenvalues ofV are the diagonal
elements, 3)V is non singular M matrix where all eigenvalues are positive,and 4)V has Z sign pattern property since
all elementsvij ≤ 0 ∀ i 6= j. LetJ1 = F −V be the matrix representing the system of differential equation describing
the infection statesEr, Et, Ir, It. Using the properties ofF andV matrices,−J1 = V − F has the Z sign pattern. In
addition, the matrix−J1V

−1 = I − FV −1 has the Z sign pattern becauseFV −1 is nonnegative matrix.
Let the matrixI − FV −1 be non singular M matrix. It follows that maximum eigenvalueof FV −1 is less than 1.
Since both−J1 and−J1V

−1 have Z sign pattern andV −1 is a lower triangular with positive eigenvalues (V −1 is
nonsingular M matrix), the matrix−J1 is non singular M matrix [3, 5]. Therefore, the maximum eigenvalue ofJ1 is
less than 0 if and only if−J1V

−1 is nonsingular M matrix if and only if the leading eigenvalueof FV −1 is Ro < 1.
Now, let the matrixI − FV −1 be singular M matrix with 0 leading eigenvalue, which implies −J1 is singular M
matrix with leading eigenvalue equals 0 if and only if the leading eigenvalue ofFV −1 Ro = 1. It also follows that the
leading eigenvalue ofJ1 is greater than 0 if and only ifRo > 1.

Non-endemic disease equilibrium P2 and transient endemic equilibrium P3 points

The second equilibrium pointP2 represents the disease invasion in both populations. At equilibrium, resident popula-
tion are divided into susceptible and recovered states. Although the disease eventually reach the transient population
wheneverRo > 1, transient population becomes suspetible at equilibrium.To clarify, there is a birth and death
processes in transient population disease model. In such process, the transient individuals in each disease state are
removed from the population and replaced with susceptible transients at rateρ. Therefore, at equilibrium, there are
only susceptible transient populations. The process is conditioned by the reproductive number for transient population
Rt

o as shown in the following theorem.

Theorem 2 Consider the disease model for the resident and transient populations being at equilibrium pointP2 with
S∗

r = 0 andR∗

r = 1. The pointP2 is unstable if bothRo > 1 andRt
o > 1, and the transient disease model has

endemic equilibrium pointP3.

Proof. Let S∗

r = 0 andR∗

r = 1 and the pointP2 becomesP2 : (0, 0, 0, 1, 1, 0, 0, 0). SubstituteP2 in the Jacobian
matrix 8 considering six variables(Sr, Er, Ir, St, Et, It)=(0, 0, 0, 1, 0, 0, 0) , the matrix becomes as follows:

J(P2) =

















0 0 0 0 0 0
0 −γ 0 0 0 0
0 γ −µ 0 0 0
0 0 −βt→r −ρ 0 −βt→t

0 0 βt→r 0 −γ − ρ βt→t

0 0 0 0 γ −µ− ρ

















. (9)

The matrixJ(P2) is structured such that its overall eigenvalues are the eigenvalues of the diagonal blocks as shown
in 9. Thus, the eigenvalues are0, −γ, −µ, −ρ, and−γ+µ+2ρ

2 ± 1
2

√

(γ − µ)2 + 4γβt→t. The disease model is
asymptotically stable at the pointP2, if and only if all the eigenvalues ofJ(P2) are negative. Note that the zero
eigenvalue is due to the existence of a raw and a column with zero entries. Therefore, the stability condition is as
follows:
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Figure 6: Evaluation of the nomralized attack rates of residents, transients and both residents and transients for a range
of visit duration from 1 day until 15 days.

−
γ + µ+ 2ρ

2
+

1

2

√

(γ − µ)2 + 4γβt→t < 0. (10)

After rearrangement, the stability condition becomes as follows:

γβt→t

(ρ+ γ)(ρ+ µ)
< 1. (11)

The left-hand-side of the inequality is the reproductive number of the disease transmission within the transient popu-
lationRt

o.
The fraction of transient individuals in each state at endemic equilibriumP3 are as follows:

S∗

t =
1

Rt
o

(12)

E∗

t =
ρ

(γ + ρ)
(1−

1

Rt
o

) (13)

I∗t =
ρRt

o

βt→t

(1−
1

Rt
o

) (14)

R∗

t =
µRt

o

βt→t

(1−
1

Rt
o

) (15)

Sensitivity of the overall reproductive number and the attack rate with respect to the visit duration and the
individual reproductive numbers

We study the effect of visit duration of transients on the attack rate as shown in Figure S6. A large change in the
resident attack rate and the overall attack rate take place when the visit duration increases from 2 days to 4 days. The
transient attack rate increases nonlinearly as a convex function with the visit duration showing that the transient attack
rate is less sensitive to the increase of visit duration thanthe resident attack rate.

We also study the sensitivity of the overall reproductive numberRo and the total attack rate with respect to the
individual reproductive numbersRr

o, Rt
o andRc

o. Because the competing reproductive numberRc
o is a function of two
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infection transmission ratesβr→t andβt→r, there are four different infection rates to be considered.We evaluate the
overall reproductive number and the attack rate as a function of two infection rates, while fixing the other two infection
rates at their original values. As shown in Figures S7(a) andS7(b), the reproductive number and the attack rate are
evaluated when the infection ratesβr→t andβt→r are fixed and henceRc

o is fixed, while the infection rates within
resident populationβr→r and within transient populationβt→t are varied. Consequently, their reproductive numbers
Rr

o andRt
o are varied. The figures show that even the reproductive numbers Rr

o andRt
o are less than 1, the overall

reproductive number can be greater than 1 and the epidemic spreads in the two populations. This observation complies
with the non-endemic disease equilibrium pointP2 where there is no endemic equilibrium for the transient population.
The endemic equilibrium pointP3 is observed forRt

o > 1 where the attack rate becomes high0.45. Also the two
figures show that the transient reproductive number changesslower than the resident reproductive number when their
infection rates are changed similarly. Figures S7(c) and S7(d) show the evaluation of the overall reproductive and
the attack rate when the resident infection rate varies and so the resident reproductive number, and the infection rate
between residents and transients varies and so the competing reproductive number, while the transient infection rate
and the infection rate between transients and residents arefixed. The reproductive numberRc

o(βr→t) changes slower
thanRr

o. Also, for very small values ofRc
o(βr→t), the epidemic spreads between the two populations leading to a

large attack rate. Figures S7(e) and S7(f) show the evaluation of the reproductive number and the attack rate when
βr→r andβt→r vary and so the reproductive numbersRr

o andRc
o(βt→r). The competing reproductive number vary

faster than the resident reproductive number showing that any small change inRc
o(βt→r) leads to learge attack rate. If

we assume thatRo > 1, then Figures S7(d) and S7(f) show that the system can easilybecome epidemic free (Ro < 1)
if the infection rateβr→t is slightly reduced by reducing the contact rates and/or theduration per contact of residents
with transients. On the other hand, a slight reduction in theinfection rate from transients to residents may not reduce
Ro to be less than 1.

3.1.2 Effective residents and transients populations

The assumption that every resident has a certain number of contacts with transients is vague and misleading. Actu-
ally, not every resident has contacts with transients. To shade light on this argument, we decompose the resident and
transient populations to four subpopulations. The first subpopulation represents residents who only have contacts with
other residents. The second subpopulation represents residents who have contacts with other residents and transients.
The third subpopulation represents transients who have contacts with other transients and residents. The last subpop-
ulation represents transients who only have contacts with other transients. We denote the subpopulations asrr, rt, tr,
andtt, respectively. The four subpopulations are shown in FigureS9, where the ellipse shape represents a subpopula-
tion and the arrow highlights the contacts between subpopulations. Using our synthetic social network, we extract the
total number of contacts and the total contact duration between individuals who belong to two subpopulations. The av-
erage number of contact of an individual in subpopulationrr with other individuals in the same subpopulation equals
the total number of contacts among individuals in subpopulation rr divided by number of individuals in subpopulation
rr. The average number of contacts of an individual in subpopulationrr with other individuals in subpopulationrt
equals the total number of contacts between the two subpopulations divided by number of individuals in subpopulation
rr. The contact rates of every individual with individuals in the four subpopulations and the duration per contact are
reported in Table S29 for the non intervention scenario (left). Obviously, there is no contact between residents in
subpopulationrr and transients in subpopulationstr andtt. The same is true for transients in subpopulationtt and
residents in subpopulationsrr andrt. In addition, we notice that every transient has contacts with other transients and
residents because there is no contact rate between transients in subpopulationtt with the four subpopulations.

To study the spread of infectious diseases among the subpopulations, we develop and ODE system that accounts for
each state for every subpopulation as shown in Eq.(16a-16d,16e-16h, 16m-16p,16i-16l). We denote the fraction of
susceptible, exposed, infected and recovered individualsin subpopulationrr asSrr, Err, Irr andRrr, respectively.
The fraction of individuals in each state in each subpopulation is denoted in the same way. In addition, there are ten
different infection rates between subpopulations as shownin Figure S9. Each infection rate is denoted asβwx→yz

wherewx represents individuals in subpopulationwx and have contacts with individuals in subpopulationyz. For
example, the infection rate of subpopulationrr due to contacts in infected individuals in subpopulationrt is denoted
asβrr→rt.
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Figure 9: Contact pattern among four subpopulations. In general,βab→cd represents the infection transmission rate
due to the contact between subpopulationab to subpopulationcd. The infection ratesβrr→rr, βrr→rt, βrt→rr, βrt→rt,
βrt→tr, βtr→rt andβtr→tr have positive values, while the infection ratesβtt→tt, βtt→tr andβtr→tt equal 0 because
all transients have contacts with transients and residentsresulting in the populationtt equals 0.

dSrr

dt
= −Srr(βrr→rrIrr + βrr→rtIrt) (16a)

dErr

dt
= Srr(βrr→rrIrr + βrr→rtIrt)− γErr (16b)

dIrr

dt
= γErr − µIrr (16c)

dRrr

dt
= µIrr (16d)

dSrt

dt
= −Srt(βrt→rtIrt + βrt→rrIrr + βrt→trItr) (16e)

dErt

dt
= Srt(βrt→rtIrt + βrt→rrIrr + βrt→trItr)− γErt (16f)

dIrt

dt
= γErt − µIrt (16g)

dRrt

dt
= µIrt (16h)

dStt

dt
= −Stt(βtt→ttItt + βtt→trItr) + ρ(1− Stt) (16i)

dEtt

dt
= Stt(βtt→ttItt + βtt→trItr)− Ett(γ + ρ) (16j)

dItt

dt
= γEtt − Itt(µ+ ρ) (16k)

dRtt

dt
= µItt − ρRtt (16l)

dStr

dt
= −Str(βtr→trItr + βtr→rtIrt + βtr→ttItt) + ρ(1− Str) (16m)

dEtr

dt
= Str(βtr→trItr + βtr→rtIrt + βtr→ttItt)− Etr(γ + ρ) (16n)

dItr

dt
= γEtr − Itr(µ+ ρ) (16o)

dRtr

dt
= µItr − ρRtr. (16p)
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Using the next generation method, we obtain theF , V andFV −1 matrices as follows:

F =

















0 0 0 βrr→rr βrr→rt 0
0 0 0 βrt→rr βrt→rt βrt→tr

0 0 0 0 βtr→rt βtr→tr

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















(17)

V =

















γ 0 0 0 0 0
0 γ 0 0 0 0
0 0 γ + ρ 0 0 0
−γ 0 0 µ 0 0
0 −γ 0 0 µ 0
0 0 −γ 0 0 ρ+ µ

















. (18)

The matrixFV −1

FV −1 =



















βrr→rr

µ
βrr→rt

µ
0 βrr→rr

µ
βrr→rt

µ
0

βrt→rr

µ
βrt→rt

µ
βrt→trγ

(γ+ρ)(µ+ρ)
βrt→rr

µ
βrt→rt

µ
βrt→tr

(mu+rho)

0 βtr→rt

µ
βtr→trγ

(γ+ρ)(µ+ρ) 0 βtr→rt

µ
βtr→tr

µ+ρ

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



















. (19)

The reproductive numberRo is the largest eigenvalue of the matrixFV −1 as follows:

Ro =
Rrr↔rr +Rrt↔rt +Rtr↔tr

3
+

Y

X
+X (20)

where

X =

(

(

Rrr↔rr+Rrt↔rt+Rtr↔tr

3

)3

+ (21)

(

(

Rrr↔rrRrt↔tr

2 −
(

Rrr↔rr+Rrt↔rt+Rtr↔tr

3

)3
+ Rrr↔rtRtr↔tr

2 − Rrr↔rrRrt↔rtRtr↔tr

2 + Z
)2

− Y 3

)
1
2

−

Rrr↔rrRrt↔tr

2 − Rrr↔rtRtr↔tr

2 + Rrr↔rrRrt↔rtRtr↔tr

2 − Z

)
1
3

Y =

(

Rrr↔rr +Rrt↔rt +Rtr↔tr

3

)2

−

(

Rrr↔rrRrt↔rt +Rrr↔rrRtr↔tr +Rrt↔rtRtr↔tr

)

3
+

(

Rrr↔rt +Rrt↔tr

)

3

Z =

(

Rrr↔rr +Rrt↔rt +Rtr↔tr

)

2

(

Rrr↔rrRrt↔rt −Rrt↔tr −Rrr↔rt +Rrr↔rrRtr↔tr +Rrt↔rtRtr↔tr

)

3
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Figure 10: Evaluation of reproductive number as a function of the infection transmission rates. The circles represent
the estimated infection transmission rate values based on the synthetic social network. The thin dash line represents
the value of reproductive numberRo = 1.375 (Eq. 20), while the thick dash line represents reproductivenumber
Ro = 1 below which the epidemic dies out. For every infection transmission rate, we sweep the transmission rate
value between0 and2 and we evaluate the reproductive numberRo using Eq. 20.

Rrr↔rr = βrr→rr

µ
(22)

Rrr↔rt = βrr→rtβrt→rr

µ2

Rrt↔rt = βrt→rt

µ

Rrt↔tr = βrt→trβtr→rtγ
µ(γ+ρ)(µ+ρ)

Rtr↔tr = βtr→trγ
(γ+ρ)(µ+ρ)

whereRrr↔rr is the reproductive number for the resident subpopulation that only have contacts with residentsrr,
Rrr↔rt is the reproductive number between resident subpopulationthat only have contacts with residentsrr and
resident subpopulation that have contacts with both residents and transientsrt, Rrt↔rt is the reproductive number of
the resident subpopulation that have contacts with both residents and transientsrt, Rrt↔tr is the reproductive number
between resident and transients subpopulations that have contacts with both residents and transients (rt andtr) and
Rtr↔tr is the reproductive number of transient subpopulation thathave contacts with both transients and residentstr.

3.2 Interventions

3.2.1 Closing museums

For closing museums intervention, in Table S29 we compare the average contact rates and duration per contact among
the four subpopulations (rr, rt, tt andtr) for the non intervention scenario and closing museums scenario.

Table S30 shows the infection transmission rates among the four subpopulations given non intervention scenario and
closing museums intervention. Figure 11 shows the attack rate for the two cases: 1) museums are opened representing
the non-intervention scenario and 2) closed museums representing the intervention scenario. The figure shows that
the closing-museums intervention does not decrease the final number of infected individuals for both residents and
transients. This conclusion is in agreement with the conclusion drawn from the agent-based model.
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Table 29: The number of contacts per day (upper table) and theduration per contact in hours (lower table) among four
subpopulations without any intervention (left) and for closed museums (right)

Subpopulation Without intervention Closed museums
rr rt tt tr rr rt tt tr

rr 23.6 8.5 0 0 23.3 8.3 0 0
rt 39.2 413.1 0 242 38.5 52.7 0 23.5
tt 0 0 0 0 0 0 0 0
tr 0 4010.9 0 719.1 0 388.3 0 71
rr 2.04 1.35 0 0 2.05 1.36 0 0
rt 1.35 0.17 0 0.11 1.34 0.17 0 0.11
tt 0 0 0 0 0 0 0 0
tr 0 0.11 0 0.15 0 0.85 0 1.14

Table 30: Infection rates for non intervention scenario andclosing museums intervention
Subpopulation Without intervention Closing museums

rr rt tt tr rr rt tt tr

rr 0.1150 0.0274 0 0 0.1147 0.0270 0 0
rt 0.1268 0.1737 0 0.0655 0.1245 0.0222 0 0.0064
tt 0 0 0 0 0 0 0 0
tr 0 1.0857 0 0.2526 0 0.7910 0 0.1944
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Figure 11: Fraction of removed residents and transients after contracting the infection when the museums are opened
(non intervention) and the museums are closed (social distancing intervention).
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Symbol Definition Count
rr+ Residents who meet only residents and who go to museums 0
rr− Residents who meet residents and who do not go to museums 3400201
rt+ Residents who meet residents and transients and who go to museums 190124
rt− Residents who meet residents and transients and who do not goto museums 544236
tr+ Transients who meet residents and transients and who go to museums 24450
tr− Transients who meet residents and transients and who do not go to museums 19859

Table 31: Definitions for healthy behavior subpopulations

Residents �Transients 

Transients - Residents 

Residents �Residents 

Residents � 

Transients 

at museums 

Transients 

 �Residents     

at museums 

Contacts inside museums 

Contacts outside museums 

Figure 12: Resident and transient populations are divided based on museum visit for healthy behavior intervention.
TheResidents − Transients at museums subpopulation represents residents who visit museums and they meet
residents and transients. Similarly, theTransients − Residents at museums subpopulation represents transients
who visit museums and they meet transients and residents. These two subpopulations are denoted asrt+ andtr+ and
they have contacts inside the museums (red) and outside the museums (blue). The other three subpopulations (rr−,
rt− andtr−) represent subpopulations of individuals who do not visit museums.

3.2.2 Healthy behavior

We can also see museums where a lot of mixing happens as a places where we can promote healthy behavior and
hence reduce the number of infections that happen within museums. Hence, we evaluate a scenario where people are
encouraged to practice healthy behavior (like using hand sanitizer or covering cough) at the four big museums. As data
about how much infectivity and susceptibility are reduced by application of healthy behavior is unavailable, we did a
series of experiments assuming that the healthy behavior reduces infectivity and susceptibility to20%, 40%, 60%, and
80% of the original values (effective only inside the four museums). We assume that50% of the people going to these
engage in healthy behavior.

As healthy behavior intervention is assumed to be effectiveonly inside the museums, we further divide each of the
supopulation used for the ”close museum” case into that going to museums and not going to museums. Subpopulations
obtained are listed with the number of people in each category in Table S31 and resulting contact pattern is shown
in Figure S12 and Table S32. The infection transmission rates outside museums, inside museums among individuals
who do not comply with the intervention and inside museums among individuals who comply with the intervention
are shown in Tables S33, S34 and S35, respectively.
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dS

dt
= [diag(−S)]([β]I) + ρ(U− S) (23)

dE

dt
= [diag(S)]([β]I)− γE− ρE (24)

dI

dt
= γE− ρI− µI (25)

dR

dt
= µI− ρR (26)

where dS

dt
= [

dS
rr−

dt

dS
rt−

dt

dS
tr−

dt

dS
rt+

dt

dS
tr+

dt
]T , I = [Irr− Irt− . . . Itr+ ]

T , ρ is a diagonal matrix with diagonal
elements{0 0 ρ 0 ρ}, U = [1 1 . . . 1]T and[β] represents the transmission rate matrix among the subpopulations as
follows

βrr−→rr− βrr−→rt− 0 βrr−→rt+ 0
βrt−→rr− βrt−→rt− βrt−→tr− βrt−→rt+ βrt−→tr+

0 βtr−→rt− βtr−→tr− βtr−→rt+ βtr−→tr+

βrt+→rr− βrt+→rt− βrt+→tr−
1
2 (βrt+→rt+ + βrt+→rt+

′ )m + βrt+→rt+ |Om
1
2 (βrt+→tr+ + βrt+→tr+

′ )m + βrt+→tr+ |Om

0 βtr+→rt− βtr+→tr−
1
2 (βtr+→rt+ + βtr+→rt+

′ )m + βtr+→rt+ |Om
1
2 (βtr+→tr+ + βtr+→tr+

′ )m + βtr+→tr+ |Om

(27)

whereβ′

m is the reduced infection rate due to engaging in healthy behavior inside museums,βm is the infection rate
inside museums without the practice of healthy behavior andβ|Om is the infection rate outside museums.

Table 32: The number of contacts per day (upper table) and theduration per contact in hours (lower table) among the
subpopulations outside the museums (left) and inside the museums (right) for healthy behavior case

Subpopulation Outside museums Inside museums
rr− rt+ rt− tr+ tr− rt+ tr+

rr− 23.5519 2.7365 5.7353 0 0
rt+ 48.9407 1.6189 9.4496 0.1510 0.3170 1547.2 922.611
rt− 35.8319 3.3011 13.1099 1.8263 2.2491
tr+ 0 1.1740 40.6526 22.4098 14.2144 7174.3 1260
tr− 0 3.0345 61.6374 17.5004 8.1431
rr− 2.0409 1.0828 1.4771 0 0
rt+ 1.0828 0.9739 1.2873 1.4621 1.0619 0.1008 0.0984
rt− 1.4771 1.2873 2.8793 0.7583 1.5581
tr+ 0 1.4621 0.7583 1.9681 0.8888 0.0984 0.1008
tr− 0 1.0619 1.5581 0.8888 1.2636
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Table 35: Infection rates inside museums among subpopulations for half of individuals who go to museums and
comply with healthy behavior intervention (compliance rate 50%)

Efficacy 80% Efficacy 60% Efficacy 40% Efficacy 20%

Subpopulation rt+ tr+ rt+ tr+ rt+ tr+ rt+ tr+

rt+ 0.3019 0.1732 0.2264 0.1299 0.1509 0.0866 0.0755 0.0433
tr+ 1.3835 0.2430 1.0377 0.1823 0.6918 0.1215 0.3459 0.0608
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