Salicylic Acid and Analogs: Diamagnetic Chemical Exchange Saturation Transfer (diaCEST) Magnetic Resonance Imaging (MRI) Contrast Agents with Highly Shifted Exchangeable Protons

Xing Yang^{1#}, Xiaolei Song^{1,2#}, Yuguo Li^{1,2}, Guanshu Liu^{1,2}, Sangeeta Ray¹, Martin G. Pomper^{1*}, Michael T. McMahon^{1,2*}

¹Russell H. Morgan Department of Radiology The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

²F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.

SUPPORTING INFORMATION

1. GENERAL

Phantom Preparation: All compounds were purchased from Sigma Aldrich (St. Louis, MO). Samples were dissolved in 0.01M phosphate-buffered saline (PBS) at the desired concentrations, and titrated using high concentration HCl/NaOH to the desired pH. The solutions were placed into 1 mm glass capillaries and assembled in a holder for CEST MR imaging. The samples were kept in 37°C during imaging. Phantom CEST experiments were taken on a Bruker 11.7 Tesla vertical MR scanner, using a 20 mm birdcage transmit/receive coil. CEST images were acquired using a RARE (RARE $= 8$) sequence with CW saturation pulse length of 3 seconds and saturation field strength (ω_1) from 1.2 μ T to 14.4 μ T. The CEST Z-spectra were acquired by incrementing saturation frequency every 0.3 ppm from -15 to 15 ppm for phantoms; $TR = 6$ s, effective $TE = 17$ ms, matrix size = 64x48 and slice thickness of 1.2 mm.

Animal Imaging: BALB/c mice weighing 20–25 g (Charles River Laboratories, Wilmington, MA) were maintained under specific pathogen free conditions in the animal facility of Johns Hopkins University. For MRI, mice were anesthetized by using 0.5–2% isoflurane and placed in a 23 mm transmit/receive mouse coil. Breath rate was monitored throughout in vivo MRI experiments using a respiratory probe. A 60 µL volume of a 0.25 M salicylic acid solution in PBS (pH 7) was slowly injected *via* a catheter into the tail vein. In vivo images were acquired on a Bruker Biospec 11.7 T horizontal MR scanner, with one axial slice (1.5 mm thick) crossing both renal centre chosen for CEST screening. CEST images were acquired both pre- and postinjection. Image parameters were similar to those for the phantom except for $TR/TE = 5s/15$ ms, with optimized $\omega_1 = 7.2 \mu T$.

2. ¹ H-NMR SPECTRUM OF SALICYLIC ACID IN WATER

Salicylic acid (**1**) was dissolved in 0.01 M PBS with 10% deuterium oxide at the concentration of 25 mM and titrated with HCl/NaOH to pH 7.0. The ¹H-NMR was acquired on a 500M Bruker NMR spectrometer at room temperature. The spectra and proton assignment are shown in Figure S1. The C2-OH exchangeable proton was clearly observed at chemical shift 14 ppm from TMS.

Figure S1. 1 H-NMR of salicylic acid (**1**) in water.

3. Z-SPECTRA OF SALICYLIC ACID AT DIFFERENT PH AND CONCENTRATION

A) The effect of pH on the contrast of salicylic acid (**1**) was tested at a concentration of 25 mM, $ω_1 = 7.2 \mu$ T. The Z-spectra and MTR_{asym} of pH 5.8, 6.5, 6.8, 7.2, 7.6, 8.1, 11.7 were collected and shown in Figure S2. Maximal contrast was observed between pH 6.5 and 7.0.

Figure S2. pH effect on the contrast of salicylic acid (**1**)

B) The concentration dependence of the contrast of salicylic acid (**1**) at pH 7.3-7.4 was measured at a saturation field strength (ω_1) = 7.2 µT. The Z-spectra and MTR_{asym} spectra at concentrations 1.5 mM, 3.1 mM, 6.3 mM, 12.5 mM, 25.0 mM and 50.0 mM were collected and are shown below. 4% contrast was obtained at 1.50 mM.

Figure S2. Concentration effect on the contrast of salicylic acid (1)

4. PROTON EXCHANGE OF SALICYLIC ACID AT DIFFERENT PH

QUESP datasets for salicylic acid (1) at 9.3 ppm were collected as a function of pH using $\omega_1 =$ 1.2 µT, 2.4 µT, 3.6 µT, 5.4 µT, 7.2 µT, 10.8 µT and 11.4 µT. The solvent to water exchange rate (k_{sw}) was calculated according to fitting to a 2-pool Bloch equation model.^[1] The parameters for all fitting were: $R_{1w} = 0.3$, $R_{2w} = 0.6$, $R_{1s} = 0.71$, $R_{2s} = 39$, $T_{sat} = 3s$. The results at pH 5.8, 6.2, 6.5, 7.0, 7.4 and 7.8 were summarized in Table S1.

Table S1. The calculated proton exchange rate of salicylic acid (**1**) at different pH.

5. Z-SPECTRA OF SALICYLIC ACID ANALOGUES

25 mM salicylic acid analogs (**4** – **11**) were made at pH 7.1-7.4 and tested with the phantom condition as mentioned in general section. The Z-spectra were obtained by using $T_{sat} = 3 \text{ sec}, \omega_1$ = 3.6 μ T at 37 °C. The Z-spectra, MTR_{asym} and QUESP curve are listed in the Table S2.

Table S2. The Z-spectra and MTR_{asym} of salicylic acid analogs

6. IN VIVO DATA

A) *In vivo* data collection scheme 1

For the initial test, we started with an injection of 100 µl of 250 mM compound **1** solution into the mouse tail vein (i.v.), and acquired CEST images using a saturation field strength of 5.9 μ T. A Z-spectrum was acquired before injection. For the dynamic CEST contrast measurements, we used a 6-offset scheme (\pm 9.6 ppm, \pm 9.3 ppm, \pm 9.0 ppm, 5 min temporal resolution) after i.v. injection to ensure robustness to B_0 inhomogeneity and high contrast-noise-ratio. The CEST contrast map was calculated with averaging over the 3 offsets (9.6 ppm, 9.3 ppm and 9.0 ppm). The kidney reached maximum CEST contrast at around 5 min, and then the contrast started decaying at 10 min. The Z-spectra are plotted in Figure S3, and the pre- and post- injection maps are shown in Table S3.

Figure S3. In vivo Z-spectra and MTR_{asym} spectra for renal calyx and cortex, acquired both preinjection and at 5 min post injection.

B) Scheme 2: Improved CEST imaging of kinetics:

According to the initial results in Figure S3 and Table S3, we modified the *in vivo* data collection scheme, in order to improve the kinetic data for compound **1** in the kidney. In addition, we further reduce the dose of agent to 60 μ l of 250 mM solution. Instead of time consuming 5.9 μ T 6-offset, we used 7.2 µT 2 offset at 9.3 ppm and -9.3 ppm for the dynamic CEST image acquisition. For the image post-processing, the CEST contrast maps at 9.3 ppm was smoothed by adding a 2x2 medium filter and overlapped to the saturation weighted image at -9.3 ppm. Images at every two adjacent time points were also averaged to increase the contrast-noise-ratio, with a temporal resolution of 3 min. For 2 mice, the dynamic contrast maps are shown in Table S4.

Entry	Time (min)	Mouse 1 (0309M2)	Mouse 2 (0311M3)
$\,1\,$	${\bf B0}$ Map	100 50 O -50 -100	100 ₁ 50 $\overline{}$ -50 L_{100}
$\overline{2}$	$\boldsymbol{0}$ Pre- inject	0.04 0.02 0 -0.02 -0.04 -0.06	0.04 0.02 0 -0.02 -0.04
3	$\overline{3}$	0.04 0.02 0 -0.02 -0.04 -0.06	0.04 0.02 0 -0.02 -0.04 -0.06
$\overline{4}$	$\overline{7}$	0.04 0.02 0 -0.02 -0.04 -0.06	0.04 0.02 0 -0.02 -0.04 -0.06

Table S4. The dynamic contrast maps for two mice

7. REFERENCES

[1] M. T. McMahon, A. A. Gilad, J. Zhou, P. Z. Sun, J. W. M. Bulte, P. C. M. van Zijl, *Magn. Reson. Med.* **2006**, *55*, 836-847

[2] D. L. Longo, W. Dastru, G. Digilio, J. Keupp, S. Langereis, S. Lanzardo, S. Prestigio, O.Steinbach, E. Terreno, F. Uggeri, S. Aime, *Magn. Reson. Med.* **2011**, *65*, 202-211.;