Jones and Lefebvre Supplementary Material

Fig. S1. Demonstration of the conditional excision of Tel7KI with Cre in ES cells.

(A) Schematic representation of the Tel7KI allele showing the conditional deletion of its *loxP* siteflanked elements, to reform the parental allele *I2loxP* by Cre excision. Diagnostic genomic PCR reactions amplifying a common element (Δ 3') as well as unique junctions (2x, I2 5') are positioned above the schemata. (B) Analysis of independent ES cell clones obtained after the transient transfection of a Tel7KI/+ cell line with a Cre expression vector. The samples analyzed are genomic DNA purified from Tel7KI/+ ES cells with (1 and 2) and without Cre transfection (3), the parental *I2loxP*/+ cells (4) and a water control (5).

Fig. S2. Q-RT-PCR analysis of GFP expression from Tel7KI

GFP expression from Tel7KI was analyzed by quantitative RT-PCR on RNA purified from whole E12.5 embryos. Each bar represents a single embryo, and shows expression of EGFP transcript relative to Gapdh (10-2 scale). Error bars indicate standard deviations for technical triplicates.

Fig. S3. Genomic imprints are maintained in cultured trophoblast giant cells.

(A) DNA methylation analysis of paternal transmission Tel7KI E8.5 EPCs differentiated into TGCs in vitro for 5 days. Sodium bisulfite-modified genomic DNA was analyzed for DNA methylation patterns at the *H19* DMR (IC1) as well as at KvDMR1 (IC2). The parental origin of the DNA strands analyzed was determined from sequence polymorphism within the regions studied (SNPs shown), such that each strand can be identified as being paternal (pat) or maternal (mat) in origin. H19 DMR (16 CpGs in 473 bp) and KvDMR1 (31 CpGs in 335 bp) analysis has been previously described (Davis et al., 1998; Umlauf et al., 2004; Oh et al., 2008). (B) Allele-specific expression analysis of the distal Chr7 imprinted genes *H19*, *Igf2*, and *Cdkn1c*. Analysis was performed on F1 hybrid conceptuses from a cross between a Tel7KI hemizygous animal (+/KI, *mus* background) and an animal homozygous for *M.m.castaneus* (*cast*) variants on distal Chr 7 (E12.5 *cast/mus* embryo, lane 1, E12.5 *mus/cast* embryo, lane 2) and compared to *cast/mus* F1 EPCs cultured for 5 days (lane 3). Each cDNA sample was amplified to detect a SNP in the genes of interest. PCR products were digested with a polymorphic restriction enzyme to determine the parental origin of the expressed allele.

Purpose	Sequence	Name	Reference
Genotyping (I2wt)	AGCACAGTCCCCTGTGTTCT	I2wt F	This study
	GTCTTCAACCCCATGTGACC	I2wt R	This study
Genotyping ($\Delta 5$ ')	CCAAAGAACGGAGCCGGTTG	PGK4	(1)
	TGAATGGGAAATGTGGTCCTTGG	M2G	(1)
Bisufite (β-a)	GGAGAGGTGYGGYGGTAGTTAATTAGAG	BABF6	This study
	TCATTAAACCAAACRCTAATTACAACCC	BABR4c	This study
	AAACCCCTCAAAACTTTCACRCAACCACAA	BABR5d	This study
Bisulfite (GFP ORF)	ATTATTTTCTAGATTGTTATGGTGAGTAAGGG	1870Fbis	(2)
	GAGGAGTTGTTTATYGGGGGTGGTGTTT	1903Fbis	(2)
	TAACTATTATAATTATACTCCAACTTATACC	2303Rbis	(2)
Bisulfite (H19 DMR)	GAGTATTTAGGAGGTATAAGAATT	BMsp2t1	(3)
	ATCAAAAACTAACATAAACCCCT	BHha1t3	(3)
	TGTAAGGAGATTATGTTTTATTTTTGGA	BMsp2t2.2	(1)
	AACCTCATAAAACCCATAACTATA	BHha1t4.2	(1)
Bisulfite (KvDMR1)	GGTTATAAAGTTTAGGGGGTTTTTAGATTTG	Kenq1ot1 OF	(4)
	AAAACTTTTCTATTCAACTTAATTCCCAAC	Kenqlotl OR	(4)
	GGTTTTAAGATTATTTTTGTTTTGTAAGT	Kenq1ot1 IF	(4)
	AATTCTCCTAAATATAATTTTTTTTCTCAAC	Kenq1ot1 IR	(4)
Q-PCR (GFP)	GCTCTGACTGACCGCGTTACT	BAE1F	This study
	GGACACGCTGAACTTGTGG	BAE1R	This study
Q-PCR (G3PDH)	ACCACAGTCCATGCCATCAC	G3PF	(1)
	TCCACCACCCTGTTGCTGTA	G3PR	(1)

Table S1. Oligonucleotides used in this study for genotyping, sodium bisulfite sequencing, quantitative RT-PCR.

- Oh R, Ho R, Mar L, Gertsenstein M, Paderova J, Hsien J, Squire JA, Higgins M, Nagy A, Lefebvre L (2008) Epigenetic and phenotypic consequences of a truncation disrupting the imprinted domain on distal mouse chromosome 7. *Mol Cell Biol* 28:1092–1103.
- Dong KB, Maksakova IA, Mohn F, Leung D, Appanah R, Lee S, Yang HW, Lam LL, Mager DL, Schübeler D *et al.* (2008) DNA methylation in ES cells requires the lysine methyltransferase G9a but not its catalytic activity. *EMBO J* 27:2691–2701.
- 3. Davis TL, Trasler JM, Moss SB, Yang GJ, Bartolomei MS (1999) Acquisition of the H19 methylation imprint occurs differentially on the parental alleles during spermatogenesis. *Genomics* 58:18–28.
- Umlauf D, Goto Y, Cao R, Cerqueira F, Wagschal A, Zhang Y, Feil R (2004) Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. *Nat Genet* 36:1296–1300.

Table S2. Primer sequences for allele-specific RT-PCR

Name	Sequence	Size	Enzyme	Cast	129	Ref
H19rt1	CCTCAAGATGAAAGAAATGGT	641	SmaI/	244, 44,	244, 44,	(1)
H19rt2	AACACTTTATGATGGAACTGC		<i>Cac</i> 81	222, 130	352	
Igf2F	CCATCAATCTGTGACCTCCTCTTG	200	Tsp5091			(2)
Igf2R	GGGTGTCAATTGGGTTGTTT					
P57S	GCCAATGCGAACGACTTC	364	Taqa1	257, 58, 49	306, 58	(3); Mann,
P574	TACACCTTGGGACCAGCGTACTCC					unpublished

- 1. Searle AG, Beechey CV (1990) Genome imprinting phenomena on mouse chromosome 7. Genet Res 56:237-244.
- Oh R, Ho R, Mar L, Gertsenstein M, Paderova J, Hsien J, Squire JA, Higgins M, Nagy A, Lefebvre L (2008) Epigenetic and phenotypic consequences of a truncation disrupting the imprinted domain on distal mouse chromosome 7. *Mol Cell Biol* 28:1092–1103.
- Doherty AS, Mann MR, Tremblay KD, Bartolomei MS, Schultz RM (2000) Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod 62:1526–1535.