Table S1 Phase I and Phase II Biotransformation Types in Meteor

Phase I

Redox

- Oxidation
 - Carboaliphatic Hydroxylation
 - Carboaromatic Hydroxylation
 - Heteroaromatic Hydroxylation
 - Epoxidation
 - Deamination
 - Dealkylation and Oxidative Ring-Opening
 - Oxidative Dehalogenation
 - Dehydrogenation
 - Oxidation of Aldehyde
 - Oxidation at Aliphatic and Aromatic Nitrogen
 - Oxidation at Aliphatic and Aromatic Sulphur
 - Oxidation at Other Heteroatoms
 - Miscellaneous Oxidative Ring Opening
 - Miscellaneous Oxidative Fragmentation
 - Miscellaneous Oxidative Coupling
 - Miscellaneous Other

Reduction

- Carbonyl Reduction
- Alkene Reduction
- Alkyne Reduction
- Reduction of Nitrogen-Containing Functional Groups
- Reductive Bond Scission

Non-Redox

- Hydrolytic Reactions
 - Ester Hydrolysis
 - Amide Hydrolysis
 - Other Carboxylic Acid Derivatives
 - Other Unsaturated Functional Groups
 - Ether Hydrolysis
 - Hydrolytic Deamination
 - Hydrolytic Dehalogenation
 - Dehydration
- Hydration
- Hydrolytic Fragmentation or Ring-Opening
- Non Hydrolytic Fragmentation or Ring-Opening
- Ring-Closure Reactions
- Other Elimination Reactions
- Decarboxylation
- Miscellanaeous
- Rearrangement

Phase II

- Glucuronidation
- > Sulphonation
- ➤ Glutathione Conjugation
- > Acetylation
- > Methylation
- > Conjugation with Amino Acids
- Conjugation with Other Acids
- Glucosidation

HMDB06335 Beta-tocopherol

Significant Differences in the Electrochemical Behavior of the α -, β -, γ -, and δ -Tocopherols (Vitamin E), Gregory J. Wilson, Ching Yeh Lin, and, and Richard D. Webster, *The Journal of Physical Chemistry B* **2006** *110* (23), 11540-11548

Parent Compound (HMDB06335) Meteor Generated Metabolites of HMDB06335 Metabolite-1 (known-unknown) found in PubChem - CID 5347345 Metabolite-2 (unknown-unknown) not found in any current database

Metabolite-3 (unknown-unknown) not found in any current database

HMDB12490 1,2-Dehydrosalsolinol

Michael A. Collins, Bhe Y. Cheng, Oxidative decarboxylation of salsolinol-1-carboxylic acid to 1,2-dehydrosalsolinol: Evidence for exclusive catalysis by particulate factors in rat kidney, Archives of Biochemistry and Biophysics, Volume 263, Issue 1, 15 May 1988, Pages 86-95, ISSN 0003-9861, http://dx.doi.org/10.1016/0003-9861(88)90616-9.

Parent Compound (HMDB12490)

Meteor Generated Metabolites of HMDB12490

Metabolite-1 (known-unknown) found in PubChem - CID 6056985

Metabolite-2 (known-unknown) found in PubChem - CID 5375238

Metabolite-3 (unknown-unknown) not found in any current database

HMDB00413 3-Hydroxydodecanedioic acid

S.H. Korman, H. Mandel, and A. Gutman, Characteristic urine organic acid profile in peroxisomal biogenesis disorders, Journal of Inherited Metabolic Disease 23, 425 (2000).

Parent Compound (HMDB00413)

Meteor Generated Metabolites of HMDB00413

Metabolite-1 (known-unknown) found in HMDB - HMDB00350

Metabolite-2 (known-unknown) found in PubChem - CID 14178865

Metabolite-3 (unknown-unknown) not found in any current database

A step-by-step guide to viewing and converting structures

To view a single structure, copy and paste a SMILES string to the drawing area of any one of the following structure-drawing programs.

Chemaxon Marvin Sketch ChemDraw IsisDraw ACD ChemSketch

Converting SMILES to SDF or Mol Format

- 1. Export the data in CSV format
- 2. Copy the column containing SMILES to a separate text file
- 3. Save the file with .smiles extension (e.g. streutures.smiles)
- 4. Open the structures.smiles file with ChemAxon MarvinView
- 5. Click on File \rightarrow Save All to save as an sd or mol file.